postgresql/src/common/checksum_helper.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

233 lines
6.1 KiB
C
Raw Permalink Normal View History

/*-------------------------------------------------------------------------
*
* checksum_helper.c
* Compute a checksum of any of various types using common routines
*
* Portions Copyright (c) 2016-2024, PostgreSQL Global Development Group
*
* IDENTIFICATION
* src/common/checksum_helper.c
*
*-------------------------------------------------------------------------
*/
#ifndef FRONTEND
#include "postgres.h"
#else
#include "postgres_fe.h"
#endif
#include "common/checksum_helper.h"
/*
* If 'name' is a recognized checksum type, set *type to the corresponding
* constant and return true. Otherwise, set *type to CHECKSUM_TYPE_NONE and
* return false.
*/
bool
pg_checksum_parse_type(char *name, pg_checksum_type *type)
{
pg_checksum_type result_type = CHECKSUM_TYPE_NONE;
bool result = true;
if (pg_strcasecmp(name, "none") == 0)
result_type = CHECKSUM_TYPE_NONE;
else if (pg_strcasecmp(name, "crc32c") == 0)
result_type = CHECKSUM_TYPE_CRC32C;
else if (pg_strcasecmp(name, "sha224") == 0)
result_type = CHECKSUM_TYPE_SHA224;
else if (pg_strcasecmp(name, "sha256") == 0)
result_type = CHECKSUM_TYPE_SHA256;
else if (pg_strcasecmp(name, "sha384") == 0)
result_type = CHECKSUM_TYPE_SHA384;
else if (pg_strcasecmp(name, "sha512") == 0)
result_type = CHECKSUM_TYPE_SHA512;
else
result = false;
*type = result_type;
return result;
}
/*
* Get the canonical human-readable name corresponding to a checksum type.
*/
char *
pg_checksum_type_name(pg_checksum_type type)
{
switch (type)
{
case CHECKSUM_TYPE_NONE:
return "NONE";
case CHECKSUM_TYPE_CRC32C:
return "CRC32C";
case CHECKSUM_TYPE_SHA224:
return "SHA224";
case CHECKSUM_TYPE_SHA256:
return "SHA256";
case CHECKSUM_TYPE_SHA384:
return "SHA384";
case CHECKSUM_TYPE_SHA512:
return "SHA512";
}
Assert(false);
return "???";
}
/*
* Initialize a checksum context for checksums of the given type.
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
* Returns 0 for a success, -1 for a failure.
*/
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
int
pg_checksum_init(pg_checksum_context *context, pg_checksum_type type)
{
context->type = type;
switch (type)
{
case CHECKSUM_TYPE_NONE:
/* do nothing */
break;
case CHECKSUM_TYPE_CRC32C:
INIT_CRC32C(context->raw_context.c_crc32c);
break;
case CHECKSUM_TYPE_SHA224:
context->raw_context.c_sha2 = pg_cryptohash_create(PG_SHA224);
if (context->raw_context.c_sha2 == NULL)
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
return -1;
if (pg_cryptohash_init(context->raw_context.c_sha2) < 0)
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
{
pg_cryptohash_free(context->raw_context.c_sha2);
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
return -1;
}
break;
case CHECKSUM_TYPE_SHA256:
context->raw_context.c_sha2 = pg_cryptohash_create(PG_SHA256);
if (context->raw_context.c_sha2 == NULL)
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
return -1;
if (pg_cryptohash_init(context->raw_context.c_sha2) < 0)
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
{
pg_cryptohash_free(context->raw_context.c_sha2);
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
return -1;
}
break;
case CHECKSUM_TYPE_SHA384:
context->raw_context.c_sha2 = pg_cryptohash_create(PG_SHA384);
if (context->raw_context.c_sha2 == NULL)
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
return -1;
if (pg_cryptohash_init(context->raw_context.c_sha2) < 0)
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
{
pg_cryptohash_free(context->raw_context.c_sha2);
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
return -1;
}
break;
case CHECKSUM_TYPE_SHA512:
context->raw_context.c_sha2 = pg_cryptohash_create(PG_SHA512);
if (context->raw_context.c_sha2 == NULL)
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
return -1;
if (pg_cryptohash_init(context->raw_context.c_sha2) < 0)
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
{
pg_cryptohash_free(context->raw_context.c_sha2);
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
return -1;
}
break;
}
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
return 0;
}
/*
* Update a checksum context with new data.
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
* Returns 0 for a success, -1 for a failure.
*/
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
int
pg_checksum_update(pg_checksum_context *context, const uint8 *input,
size_t len)
{
switch (context->type)
{
case CHECKSUM_TYPE_NONE:
/* do nothing */
break;
case CHECKSUM_TYPE_CRC32C:
COMP_CRC32C(context->raw_context.c_crc32c, input, len);
break;
case CHECKSUM_TYPE_SHA224:
case CHECKSUM_TYPE_SHA256:
case CHECKSUM_TYPE_SHA384:
case CHECKSUM_TYPE_SHA512:
if (pg_cryptohash_update(context->raw_context.c_sha2, input, len) < 0)
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
return -1;
break;
}
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
return 0;
}
/*
* Finalize a checksum computation and write the result to an output buffer.
*
* The caller must ensure that the buffer is at least PG_CHECKSUM_MAX_LENGTH
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
* bytes in length. The return value is the number of bytes actually written,
* or -1 for a failure.
*/
int
pg_checksum_final(pg_checksum_context *context, uint8 *output)
{
int retval = 0;
StaticAssertDecl(sizeof(pg_crc32c) <= PG_CHECKSUM_MAX_LENGTH,
"CRC-32C digest too big for PG_CHECKSUM_MAX_LENGTH");
StaticAssertDecl(PG_SHA224_DIGEST_LENGTH <= PG_CHECKSUM_MAX_LENGTH,
"SHA224 digest too big for PG_CHECKSUM_MAX_LENGTH");
StaticAssertDecl(PG_SHA256_DIGEST_LENGTH <= PG_CHECKSUM_MAX_LENGTH,
"SHA256 digest too big for PG_CHECKSUM_MAX_LENGTH");
StaticAssertDecl(PG_SHA384_DIGEST_LENGTH <= PG_CHECKSUM_MAX_LENGTH,
"SHA384 digest too big for PG_CHECKSUM_MAX_LENGTH");
StaticAssertDecl(PG_SHA512_DIGEST_LENGTH <= PG_CHECKSUM_MAX_LENGTH,
"SHA512 digest too big for PG_CHECKSUM_MAX_LENGTH");
switch (context->type)
{
case CHECKSUM_TYPE_NONE:
break;
case CHECKSUM_TYPE_CRC32C:
FIN_CRC32C(context->raw_context.c_crc32c);
retval = sizeof(pg_crc32c);
memcpy(output, &context->raw_context.c_crc32c, retval);
break;
case CHECKSUM_TYPE_SHA224:
retval = PG_SHA224_DIGEST_LENGTH;
if (pg_cryptohash_final(context->raw_context.c_sha2,
output, retval) < 0)
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
return -1;
pg_cryptohash_free(context->raw_context.c_sha2);
break;
case CHECKSUM_TYPE_SHA256:
retval = PG_SHA256_DIGEST_LENGTH;
if (pg_cryptohash_final(context->raw_context.c_sha2,
output, retval) < 0)
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
return -1;
pg_cryptohash_free(context->raw_context.c_sha2);
break;
case CHECKSUM_TYPE_SHA384:
retval = PG_SHA384_DIGEST_LENGTH;
if (pg_cryptohash_final(context->raw_context.c_sha2,
output, retval) < 0)
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
return -1;
pg_cryptohash_free(context->raw_context.c_sha2);
break;
case CHECKSUM_TYPE_SHA512:
retval = PG_SHA512_DIGEST_LENGTH;
if (pg_cryptohash_final(context->raw_context.c_sha2,
output, retval) < 0)
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
return -1;
pg_cryptohash_free(context->raw_context.c_sha2);
break;
}
Assert(retval <= PG_CHECKSUM_MAX_LENGTH);
return retval;
}