postgresql/src/common/d2s_intrinsics.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

203 lines
5.2 KiB
C
Raw Permalink Normal View History

Change floating-point output format for improved performance. Previously, floating-point output was done by rounding to a specific decimal precision; by default, to 6 or 15 decimal digits (losing information) or as requested using extra_float_digits. Drivers that wanted exact float values, and applications like pg_dump that must preserve values exactly, set extra_float_digits=3 (or sometimes 2 for historical reasons, though this isn't enough for float4). Unfortunately, decimal rounded output is slow enough to become a noticable bottleneck when dealing with large result sets or COPY of large tables when many floating-point values are involved. Floating-point output can be done much faster when the output is not rounded to a specific decimal length, but rather is chosen as the shortest decimal representation that is closer to the original float value than to any other value representable in the same precision. The recently published Ryu algorithm by Ulf Adams is both relatively simple and remarkably fast. Accordingly, change float4out/float8out to output shortest decimal representations if extra_float_digits is greater than 0, and make that the new default. Applications that need rounded output can set extra_float_digits back to 0 or below, and take the resulting performance hit. We make one concession to portability for systems with buggy floating-point input: we do not output decimal values that fall exactly halfway between adjacent representable binary values (which would rely on the reader doing round-to-nearest-even correctly). This is known to be a problem at least for VS2013 on Windows. Our version of the Ryu code originates from https://github.com/ulfjack/ryu/ at commit c9c3fb1979, but with the following (significant) modifications: - Output format is changed to use fixed-point notation for small exponents, as printf would, and also to use lowercase 'e', a minimum of 2 exponent digits, and a mandatory sign on the exponent, to keep the formatting as close as possible to previous output. - The output of exact midpoint values is disabled as noted above. - The integer fast-path code is changed somewhat (since we have fixed-point output and the upstream did not). - Our project style has been largely applied to the code with the exception of C99 declaration-after-statement, which has been retained as an exception to our present policy. - Most of upstream's debugging and conditionals are removed, and we use our own configure tests to determine things like uint128 availability. Changing the float output format obviously affects a number of regression tests. This patch uses an explicit setting of extra_float_digits=0 for test output that is not expected to be exactly reproducible (e.g. due to numerical instability or differing algorithms for transcendental functions). Conversions from floats to numeric are unchanged by this patch. These may appear in index expressions and it is not yet clear whether any change should be made, so that can be left for another day. This patch assumes that the only supported floating point format is now IEEE format, and the documentation is updated to reflect that. Code by me, adapting the work of Ulf Adams and other contributors. References: https://dl.acm.org/citation.cfm?id=3192369 Reviewed-by: Tom Lane, Andres Freund, Donald Dong Discussion: https://postgr.es/m/87r2el1bx6.fsf@news-spur.riddles.org.uk
2019-02-13 16:20:33 +01:00
/*---------------------------------------------------------------------------
*
* Ryu floating-point output for double precision.
*
* Portions Copyright (c) 2018-2024, PostgreSQL Global Development Group
Change floating-point output format for improved performance. Previously, floating-point output was done by rounding to a specific decimal precision; by default, to 6 or 15 decimal digits (losing information) or as requested using extra_float_digits. Drivers that wanted exact float values, and applications like pg_dump that must preserve values exactly, set extra_float_digits=3 (or sometimes 2 for historical reasons, though this isn't enough for float4). Unfortunately, decimal rounded output is slow enough to become a noticable bottleneck when dealing with large result sets or COPY of large tables when many floating-point values are involved. Floating-point output can be done much faster when the output is not rounded to a specific decimal length, but rather is chosen as the shortest decimal representation that is closer to the original float value than to any other value representable in the same precision. The recently published Ryu algorithm by Ulf Adams is both relatively simple and remarkably fast. Accordingly, change float4out/float8out to output shortest decimal representations if extra_float_digits is greater than 0, and make that the new default. Applications that need rounded output can set extra_float_digits back to 0 or below, and take the resulting performance hit. We make one concession to portability for systems with buggy floating-point input: we do not output decimal values that fall exactly halfway between adjacent representable binary values (which would rely on the reader doing round-to-nearest-even correctly). This is known to be a problem at least for VS2013 on Windows. Our version of the Ryu code originates from https://github.com/ulfjack/ryu/ at commit c9c3fb1979, but with the following (significant) modifications: - Output format is changed to use fixed-point notation for small exponents, as printf would, and also to use lowercase 'e', a minimum of 2 exponent digits, and a mandatory sign on the exponent, to keep the formatting as close as possible to previous output. - The output of exact midpoint values is disabled as noted above. - The integer fast-path code is changed somewhat (since we have fixed-point output and the upstream did not). - Our project style has been largely applied to the code with the exception of C99 declaration-after-statement, which has been retained as an exception to our present policy. - Most of upstream's debugging and conditionals are removed, and we use our own configure tests to determine things like uint128 availability. Changing the float output format obviously affects a number of regression tests. This patch uses an explicit setting of extra_float_digits=0 for test output that is not expected to be exactly reproducible (e.g. due to numerical instability or differing algorithms for transcendental functions). Conversions from floats to numeric are unchanged by this patch. These may appear in index expressions and it is not yet clear whether any change should be made, so that can be left for another day. This patch assumes that the only supported floating point format is now IEEE format, and the documentation is updated to reflect that. Code by me, adapting the work of Ulf Adams and other contributors. References: https://dl.acm.org/citation.cfm?id=3192369 Reviewed-by: Tom Lane, Andres Freund, Donald Dong Discussion: https://postgr.es/m/87r2el1bx6.fsf@news-spur.riddles.org.uk
2019-02-13 16:20:33 +01:00
*
* IDENTIFICATION
* src/common/d2s_intrinsics.h
*
* This is a modification of code taken from github.com/ulfjack/ryu under the
* terms of the Boost license (not the Apache license). The original copyright
* notice follows:
*
* Copyright 2018 Ulf Adams
*
* The contents of this file may be used under the terms of the Apache
* License, Version 2.0.
*
* (See accompanying file LICENSE-Apache or copy at
* http://www.apache.org/licenses/LICENSE-2.0)
*
* Alternatively, the contents of this file may be used under the terms of the
* Boost Software License, Version 1.0.
*
* (See accompanying file LICENSE-Boost or copy at
* https://www.boost.org/LICENSE_1_0.txt)
*
* Unless required by applicable law or agreed to in writing, this software is
* distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied.
*
*---------------------------------------------------------------------------
*/
#ifndef RYU_D2S_INTRINSICS_H
#define RYU_D2S_INTRINSICS_H
#if defined(HAS_64_BIT_INTRINSICS)
#include <intrin.h>
static inline uint64
umul128(const uint64 a, const uint64 b, uint64 *const productHi)
{
return _umul128(a, b, productHi);
}
static inline uint64
shiftright128(const uint64 lo, const uint64 hi, const uint32 dist)
{
/*
* For the __shiftright128 intrinsic, the shift value is always modulo 64.
* In the current implementation of the double-precision version of Ryu,
* the shift value is always < 64. (In the case RYU_OPTIMIZE_SIZE == 0,
* the shift value is in the range [49, 58]. Otherwise in the range [2,
* 59].) Check this here in case a future change requires larger shift
* values. In this case this function needs to be adjusted.
*/
Assert(dist < 64);
return __shiftright128(lo, hi, (unsigned char) dist);
}
#else /* defined(HAS_64_BIT_INTRINSICS) */
static inline uint64
umul128(const uint64 a, const uint64 b, uint64 *const productHi)
{
/*
* The casts here help MSVC to avoid calls to the __allmul library
* function.
*/
const uint32 aLo = (uint32) a;
const uint32 aHi = (uint32) (a >> 32);
const uint32 bLo = (uint32) b;
const uint32 bHi = (uint32) (b >> 32);
const uint64 b00 = (uint64) aLo * bLo;
const uint64 b01 = (uint64) aLo * bHi;
const uint64 b10 = (uint64) aHi * bLo;
const uint64 b11 = (uint64) aHi * bHi;
const uint32 b00Lo = (uint32) b00;
const uint32 b00Hi = (uint32) (b00 >> 32);
const uint64 mid1 = b10 + b00Hi;
const uint32 mid1Lo = (uint32) (mid1);
const uint32 mid1Hi = (uint32) (mid1 >> 32);
const uint64 mid2 = b01 + mid1Lo;
const uint32 mid2Lo = (uint32) (mid2);
const uint32 mid2Hi = (uint32) (mid2 >> 32);
const uint64 pHi = b11 + mid1Hi + mid2Hi;
const uint64 pLo = ((uint64) mid2Lo << 32) + b00Lo;
*productHi = pHi;
return pLo;
}
static inline uint64
shiftright128(const uint64 lo, const uint64 hi, const uint32 dist)
{
/* We don't need to handle the case dist >= 64 here (see above). */
Assert(dist < 64);
#if !defined(RYU_32_BIT_PLATFORM)
Assert(dist > 0);
return (hi << (64 - dist)) | (lo >> dist);
#else
/* Avoid a 64-bit shift by taking advantage of the range of shift values. */
Assert(dist >= 32);
return (hi << (64 - dist)) | ((uint32) (lo >> 32) >> (dist - 32));
#endif
}
#endif /* // defined(HAS_64_BIT_INTRINSICS) */
#ifdef RYU_32_BIT_PLATFORM
/* Returns the high 64 bits of the 128-bit product of a and b. */
static inline uint64
umulh(const uint64 a, const uint64 b)
{
/*
* Reuse the umul128 implementation. Optimizers will likely eliminate the
* instructions used to compute the low part of the product.
*/
uint64 hi;
umul128(a, b, &hi);
return hi;
}
/*----
* On 32-bit platforms, compilers typically generate calls to library
* functions for 64-bit divisions, even if the divisor is a constant.
*
* E.g.:
* https://bugs.llvm.org/show_bug.cgi?id=37932
* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=17958
* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=37443
*
* The functions here perform division-by-constant using multiplications
* in the same way as 64-bit compilers would do.
*
* NB:
* The multipliers and shift values are the ones generated by clang x64
* for expressions like x/5, x/10, etc.
*----
*/
static inline uint64
div5(const uint64 x)
{
return umulh(x, UINT64CONST(0xCCCCCCCCCCCCCCCD)) >> 2;
}
static inline uint64
div10(const uint64 x)
{
return umulh(x, UINT64CONST(0xCCCCCCCCCCCCCCCD)) >> 3;
}
static inline uint64
div100(const uint64 x)
{
return umulh(x >> 2, UINT64CONST(0x28F5C28F5C28F5C3)) >> 2;
}
static inline uint64
div1e8(const uint64 x)
{
return umulh(x, UINT64CONST(0xABCC77118461CEFD)) >> 26;
}
#else /* RYU_32_BIT_PLATFORM */
static inline uint64
div5(const uint64 x)
{
return x / 5;
}
static inline uint64
div10(const uint64 x)
{
return x / 10;
}
static inline uint64
div100(const uint64 x)
{
return x / 100;
}
static inline uint64
div1e8(const uint64 x)
{
return x / 100000000;
}
#endif /* RYU_32_BIT_PLATFORM */
#endif /* RYU_D2S_INTRINSICS_H */