postgresql/src/backend/executor/nodeModifyTable.c

1146 lines
32 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* nodeModifyTable.c
* routines to handle ModifyTable nodes.
*
2011-01-01 19:18:15 +01:00
* Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
2010-09-20 22:08:53 +02:00
* src/backend/executor/nodeModifyTable.c
*
*-------------------------------------------------------------------------
*/
/* INTERFACE ROUTINES
2010-02-26 03:01:40 +01:00
* ExecInitModifyTable - initialize the ModifyTable node
* ExecModifyTable - retrieve the next tuple from the node
* ExecEndModifyTable - shut down the ModifyTable node
* ExecReScanModifyTable - rescan the ModifyTable node
*
* NOTES
* Each ModifyTable node contains a list of one or more subplans,
* much like an Append node. There is one subplan per result relation.
* The key reason for this is that in an inherited UPDATE command, each
* result relation could have a different schema (more or different
* columns) requiring a different plan tree to produce it. In an
* inherited DELETE, all the subplans should produce the same output
* rowtype, but we might still find that different plans are appropriate
* for different child relations.
*
* If the query specifies RETURNING, then the ModifyTable returns a
* RETURNING tuple after completing each row insert, update, or delete.
2010-02-26 03:01:40 +01:00
* It must be called again to continue the operation. Without RETURNING,
* we just loop within the node until all the work is done, then
* return NULL. This avoids useless call/return overhead.
*/
#include "postgres.h"
#include "access/xact.h"
#include "commands/trigger.h"
#include "executor/executor.h"
#include "executor/nodeModifyTable.h"
#include "miscadmin.h"
#include "nodes/nodeFuncs.h"
#include "storage/bufmgr.h"
#include "utils/builtins.h"
#include "utils/memutils.h"
#include "utils/tqual.h"
/*
* Verify that the tuples to be produced by INSERT or UPDATE match the
* target relation's rowtype
*
* We do this to guard against stale plans. If plan invalidation is
* functioning properly then we should never get a failure here, but better
* safe than sorry. Note that this is called after we have obtained lock
* on the target rel, so the rowtype can't change underneath us.
*
* The plan output is represented by its targetlist, because that makes
* handling the dropped-column case easier.
*/
static void
ExecCheckPlanOutput(Relation resultRel, List *targetList)
{
TupleDesc resultDesc = RelationGetDescr(resultRel);
int attno = 0;
ListCell *lc;
foreach(lc, targetList)
{
TargetEntry *tle = (TargetEntry *) lfirst(lc);
Form_pg_attribute attr;
if (tle->resjunk)
continue; /* ignore junk tlist items */
if (attno >= resultDesc->natts)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("table row type and query-specified row type do not match"),
errdetail("Query has too many columns.")));
attr = resultDesc->attrs[attno++];
if (!attr->attisdropped)
{
/* Normal case: demand type match */
if (exprType((Node *) tle->expr) != attr->atttypid)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("table row type and query-specified row type do not match"),
errdetail("Table has type %s at ordinal position %d, but query expects %s.",
format_type_be(attr->atttypid),
attno,
format_type_be(exprType((Node *) tle->expr)))));
}
else
{
/*
* For a dropped column, we can't check atttypid (it's likely 0).
* In any case the planner has most likely inserted an INT4 null.
* What we insist on is just *some* NULL constant.
*/
if (!IsA(tle->expr, Const) ||
!((Const *) tle->expr)->constisnull)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("table row type and query-specified row type do not match"),
errdetail("Query provides a value for a dropped column at ordinal position %d.",
attno)));
}
}
if (attno != resultDesc->natts)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("table row type and query-specified row type do not match"),
errdetail("Query has too few columns.")));
}
/*
* ExecProcessReturning --- evaluate a RETURNING list
*
* projectReturning: RETURNING projection info for current result rel
* tupleSlot: slot holding tuple actually inserted/updated/deleted
* planSlot: slot holding tuple returned by top subplan node
*
* Returns a slot holding the result tuple
*/
static TupleTableSlot *
ExecProcessReturning(ProjectionInfo *projectReturning,
TupleTableSlot *tupleSlot,
TupleTableSlot *planSlot)
{
ExprContext *econtext = projectReturning->pi_exprContext;
/*
* Reset per-tuple memory context to free any expression evaluation
* storage allocated in the previous cycle.
*/
ResetExprContext(econtext);
/* Make tuple and any needed join variables available to ExecProject */
econtext->ecxt_scantuple = tupleSlot;
econtext->ecxt_outertuple = planSlot;
/* Compute the RETURNING expressions */
return ExecProject(projectReturning, NULL);
}
/* ----------------------------------------------------------------
* ExecInsert
*
* For INSERT, we have to insert the tuple into the target relation
* and insert appropriate tuples into the index relations.
*
* Returns RETURNING result if any, otherwise NULL.
* ----------------------------------------------------------------
*/
static TupleTableSlot *
ExecInsert(TupleTableSlot *slot,
TupleTableSlot *planSlot,
EState *estate)
{
HeapTuple tuple;
ResultRelInfo *resultRelInfo;
Relation resultRelationDesc;
Oid newId;
List *recheckIndexes = NIL;
/*
* get the heap tuple out of the tuple table slot, making sure we have a
* writable copy
*/
tuple = ExecMaterializeSlot(slot);
/*
* get information on the (current) result relation
*/
resultRelInfo = estate->es_result_relation_info;
resultRelationDesc = resultRelInfo->ri_RelationDesc;
/*
* If the result relation has OIDs, force the tuple's OID to zero so that
* heap_insert will assign a fresh OID. Usually the OID already will be
* zero at this point, but there are corner cases where the plan tree can
* return a tuple extracted literally from some table with the same
* rowtype.
*
* XXX if we ever wanted to allow users to assign their own OIDs to new
* rows, this'd be the place to do it. For the moment, we make a point of
* doing this before calling triggers, so that a user-supplied trigger
* could hack the OID if desired.
*/
if (resultRelationDesc->rd_rel->relhasoids)
HeapTupleSetOid(tuple, InvalidOid);
/* BEFORE ROW INSERT Triggers */
if (resultRelInfo->ri_TrigDesc &&
resultRelInfo->ri_TrigDesc->trig_insert_before_row)
{
slot = ExecBRInsertTriggers(estate, resultRelInfo, slot);
if (slot == NULL) /* "do nothing" */
return NULL;
/* trigger might have changed tuple */
tuple = ExecMaterializeSlot(slot);
}
/* INSTEAD OF ROW INSERT Triggers */
if (resultRelInfo->ri_TrigDesc &&
resultRelInfo->ri_TrigDesc->trig_insert_instead_row)
{
slot = ExecIRInsertTriggers(estate, resultRelInfo, slot);
if (slot == NULL) /* "do nothing" */
return NULL;
/* trigger might have changed tuple */
tuple = ExecMaterializeSlot(slot);
newId = InvalidOid;
}
else
{
/*
* Check the constraints of the tuple
*/
if (resultRelationDesc->rd_att->constr)
ExecConstraints(resultRelInfo, slot, estate);
/*
* insert the tuple
*
* Note: heap_insert returns the tid (location) of the new tuple in
* the t_self field.
*/
newId = heap_insert(resultRelationDesc, tuple,
estate->es_output_cid, 0, NULL);
/*
* insert index entries for tuple
*/
if (resultRelInfo->ri_NumIndices > 0)
recheckIndexes = ExecInsertIndexTuples(slot, &(tuple->t_self),
estate);
}
(estate->es_processed)++;
estate->es_lastoid = newId;
setLastTid(&(tuple->t_self));
/* AFTER ROW INSERT Triggers */
ExecARInsertTriggers(estate, resultRelInfo, tuple, recheckIndexes);
list_free(recheckIndexes);
/* Process RETURNING if present */
if (resultRelInfo->ri_projectReturning)
return ExecProcessReturning(resultRelInfo->ri_projectReturning,
slot, planSlot);
return NULL;
}
/* ----------------------------------------------------------------
* ExecDelete
*
* DELETE is like UPDATE, except that we delete the tuple and no
* index modifications are needed.
*
* When deleting from a table, tupleid identifies the tuple to
* delete and oldtuple is NULL. When deleting from a view,
* oldtuple is passed to the INSTEAD OF triggers and identifies
* what to delete, and tupleid is invalid.
*
* Returns RETURNING result if any, otherwise NULL.
* ----------------------------------------------------------------
*/
static TupleTableSlot *
ExecDelete(ItemPointer tupleid,
HeapTupleHeader oldtuple,
TupleTableSlot *planSlot,
EPQState *epqstate,
EState *estate)
{
ResultRelInfo *resultRelInfo;
Relation resultRelationDesc;
HTSU_Result result;
ItemPointerData update_ctid;
TransactionId update_xmax;
/*
* get information on the (current) result relation
*/
resultRelInfo = estate->es_result_relation_info;
resultRelationDesc = resultRelInfo->ri_RelationDesc;
/* BEFORE ROW DELETE Triggers */
if (resultRelInfo->ri_TrigDesc &&
resultRelInfo->ri_TrigDesc->trig_delete_before_row)
{
bool dodelete;
dodelete = ExecBRDeleteTriggers(estate, epqstate, resultRelInfo,
tupleid);
if (!dodelete) /* "do nothing" */
return NULL;
}
/* INSTEAD OF ROW DELETE Triggers */
if (resultRelInfo->ri_TrigDesc &&
resultRelInfo->ri_TrigDesc->trig_delete_instead_row)
{
HeapTupleData tuple;
bool dodelete;
Assert(oldtuple != NULL);
tuple.t_data = oldtuple;
tuple.t_len = HeapTupleHeaderGetDatumLength(oldtuple);
ItemPointerSetInvalid(&(tuple.t_self));
tuple.t_tableOid = InvalidOid;
dodelete = ExecIRDeleteTriggers(estate, resultRelInfo, &tuple);
if (!dodelete) /* "do nothing" */
return NULL;
}
else
{
/*
* delete the tuple
*
* Note: if es_crosscheck_snapshot isn't InvalidSnapshot, we check
* that the row to be deleted is visible to that snapshot, and throw a
* can't-serialize error if not. This is a special-case behavior
* needed for referential integrity updates in transaction-snapshot
* mode transactions.
*/
ldelete:;
result = heap_delete(resultRelationDesc, tupleid,
&update_ctid, &update_xmax,
estate->es_output_cid,
estate->es_crosscheck_snapshot,
true /* wait for commit */ );
switch (result)
{
case HeapTupleSelfUpdated:
/* already deleted by self; nothing to do */
return NULL;
case HeapTupleMayBeUpdated:
break;
case HeapTupleUpdated:
if (IsolationUsesXactSnapshot())
ereport(ERROR,
(errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
errmsg("could not serialize access due to concurrent update")));
if (!ItemPointerEquals(tupleid, &update_ctid))
{
TupleTableSlot *epqslot;
epqslot = EvalPlanQual(estate,
epqstate,
resultRelationDesc,
resultRelInfo->ri_RangeTableIndex,
&update_ctid,
update_xmax);
if (!TupIsNull(epqslot))
{
*tupleid = update_ctid;
goto ldelete;
}
}
/* tuple already deleted; nothing to do */
return NULL;
default:
elog(ERROR, "unrecognized heap_delete status: %u", result);
return NULL;
}
/*
* Note: Normally one would think that we have to delete index tuples
* associated with the heap tuple now...
*
* ... but in POSTGRES, we have no need to do this because VACUUM will
* take care of it later. We can't delete index tuples immediately
* anyway, since the tuple is still visible to other transactions.
*/
}
(estate->es_processed)++;
/* AFTER ROW DELETE Triggers */
ExecARDeleteTriggers(estate, resultRelInfo, tupleid);
/* Process RETURNING if present */
if (resultRelInfo->ri_projectReturning)
{
/*
* We have to put the target tuple into a slot, which means first we
* gotta fetch it. We can use the trigger tuple slot.
*/
TupleTableSlot *slot = estate->es_trig_tuple_slot;
TupleTableSlot *rslot;
HeapTupleData deltuple;
Buffer delbuffer;
if (oldtuple != NULL)
{
deltuple.t_data = oldtuple;
deltuple.t_len = HeapTupleHeaderGetDatumLength(oldtuple);
ItemPointerSetInvalid(&(deltuple.t_self));
deltuple.t_tableOid = InvalidOid;
delbuffer = InvalidBuffer;
}
else
{
deltuple.t_self = *tupleid;
if (!heap_fetch(resultRelationDesc, SnapshotAny,
&deltuple, &delbuffer, false, NULL))
elog(ERROR, "failed to fetch deleted tuple for DELETE RETURNING");
}
if (slot->tts_tupleDescriptor != RelationGetDescr(resultRelationDesc))
ExecSetSlotDescriptor(slot, RelationGetDescr(resultRelationDesc));
ExecStoreTuple(&deltuple, slot, InvalidBuffer, false);
rslot = ExecProcessReturning(resultRelInfo->ri_projectReturning,
slot, planSlot);
ExecClearTuple(slot);
if (BufferIsValid(delbuffer))
ReleaseBuffer(delbuffer);
return rslot;
}
return NULL;
}
/* ----------------------------------------------------------------
* ExecUpdate
*
* note: we can't run UPDATE queries with transactions
* off because UPDATEs are actually INSERTs and our
* scan will mistakenly loop forever, updating the tuple
* it just inserted.. This should be fixed but until it
* is, we don't want to get stuck in an infinite loop
* which corrupts your database..
*
* When updating a table, tupleid identifies the tuple to
* update and oldtuple is NULL. When updating a view, oldtuple
* is passed to the INSTEAD OF triggers and identifies what to
* update, and tupleid is invalid.
*
* Returns RETURNING result if any, otherwise NULL.
* ----------------------------------------------------------------
*/
static TupleTableSlot *
ExecUpdate(ItemPointer tupleid,
HeapTupleHeader oldtuple,
TupleTableSlot *slot,
TupleTableSlot *planSlot,
EPQState *epqstate,
EState *estate)
{
HeapTuple tuple;
ResultRelInfo *resultRelInfo;
Relation resultRelationDesc;
HTSU_Result result;
ItemPointerData update_ctid;
TransactionId update_xmax;
List *recheckIndexes = NIL;
/*
* abort the operation if not running transactions
*/
if (IsBootstrapProcessingMode())
elog(ERROR, "cannot UPDATE during bootstrap");
/*
* get the heap tuple out of the tuple table slot, making sure we have a
* writable copy
*/
tuple = ExecMaterializeSlot(slot);
/*
* get information on the (current) result relation
*/
resultRelInfo = estate->es_result_relation_info;
resultRelationDesc = resultRelInfo->ri_RelationDesc;
/* BEFORE ROW UPDATE Triggers */
if (resultRelInfo->ri_TrigDesc &&
resultRelInfo->ri_TrigDesc->trig_update_before_row)
{
slot = ExecBRUpdateTriggers(estate, epqstate, resultRelInfo,
tupleid, slot);
if (slot == NULL) /* "do nothing" */
return NULL;
/* trigger might have changed tuple */
tuple = ExecMaterializeSlot(slot);
}
/* INSTEAD OF ROW UPDATE Triggers */
if (resultRelInfo->ri_TrigDesc &&
resultRelInfo->ri_TrigDesc->trig_update_instead_row)
{
HeapTupleData oldtup;
Assert(oldtuple != NULL);
oldtup.t_data = oldtuple;
oldtup.t_len = HeapTupleHeaderGetDatumLength(oldtuple);
ItemPointerSetInvalid(&(oldtup.t_self));
oldtup.t_tableOid = InvalidOid;
slot = ExecIRUpdateTriggers(estate, resultRelInfo,
&oldtup, slot);
if (slot == NULL) /* "do nothing" */
return NULL;
/* trigger might have changed tuple */
tuple = ExecMaterializeSlot(slot);
}
else
{
/*
* Check the constraints of the tuple
*
* If we generate a new candidate tuple after EvalPlanQual testing, we
* must loop back here and recheck constraints. (We don't need to
* redo triggers, however. If there are any BEFORE triggers then
* trigger.c will have done heap_lock_tuple to lock the correct tuple,
* so there's no need to do them again.)
*/
lreplace:;
if (resultRelationDesc->rd_att->constr)
ExecConstraints(resultRelInfo, slot, estate);
/*
* replace the heap tuple
*
* Note: if es_crosscheck_snapshot isn't InvalidSnapshot, we check
* that the row to be updated is visible to that snapshot, and throw a
* can't-serialize error if not. This is a special-case behavior
* needed for referential integrity updates in transaction-snapshot
* mode transactions.
*/
result = heap_update(resultRelationDesc, tupleid, tuple,
&update_ctid, &update_xmax,
estate->es_output_cid,
estate->es_crosscheck_snapshot,
true /* wait for commit */ );
switch (result)
{
case HeapTupleSelfUpdated:
/* already deleted by self; nothing to do */
return NULL;
case HeapTupleMayBeUpdated:
break;
case HeapTupleUpdated:
if (IsolationUsesXactSnapshot())
ereport(ERROR,
(errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
errmsg("could not serialize access due to concurrent update")));
if (!ItemPointerEquals(tupleid, &update_ctid))
{
TupleTableSlot *epqslot;
epqslot = EvalPlanQual(estate,
epqstate,
resultRelationDesc,
resultRelInfo->ri_RangeTableIndex,
&update_ctid,
update_xmax);
if (!TupIsNull(epqslot))
{
*tupleid = update_ctid;
slot = ExecFilterJunk(resultRelInfo->ri_junkFilter, epqslot);
tuple = ExecMaterializeSlot(slot);
goto lreplace;
}
}
/* tuple already deleted; nothing to do */
return NULL;
default:
elog(ERROR, "unrecognized heap_update status: %u", result);
return NULL;
}
/*
* Note: instead of having to update the old index tuples associated
* with the heap tuple, all we do is form and insert new index
* tuples. This is because UPDATEs are actually DELETEs and INSERTs,
* and index tuple deletion is done later by VACUUM (see notes in
* ExecDelete). All we do here is insert new index tuples. -cim
* 9/27/89
*/
/*
* insert index entries for tuple
*
* Note: heap_update returns the tid (location) of the new tuple in
* the t_self field.
*
* If it's a HOT update, we mustn't insert new index entries.
*/
if (resultRelInfo->ri_NumIndices > 0 && !HeapTupleIsHeapOnly(tuple))
recheckIndexes = ExecInsertIndexTuples(slot, &(tuple->t_self),
estate);
}
(estate->es_processed)++;
/* AFTER ROW UPDATE Triggers */
ExecARUpdateTriggers(estate, resultRelInfo, tupleid, tuple,
recheckIndexes);
list_free(recheckIndexes);
/* Process RETURNING if present */
if (resultRelInfo->ri_projectReturning)
return ExecProcessReturning(resultRelInfo->ri_projectReturning,
slot, planSlot);
return NULL;
}
/*
* Process BEFORE EACH STATEMENT triggers
*/
static void
fireBSTriggers(ModifyTableState *node)
{
switch (node->operation)
{
case CMD_INSERT:
ExecBSInsertTriggers(node->ps.state,
node->ps.state->es_result_relations);
break;
case CMD_UPDATE:
ExecBSUpdateTriggers(node->ps.state,
node->ps.state->es_result_relations);
break;
case CMD_DELETE:
ExecBSDeleteTriggers(node->ps.state,
node->ps.state->es_result_relations);
break;
default:
elog(ERROR, "unknown operation");
break;
}
}
/*
* Process AFTER EACH STATEMENT triggers
*/
static void
fireASTriggers(ModifyTableState *node)
{
switch (node->operation)
{
case CMD_INSERT:
ExecASInsertTriggers(node->ps.state,
node->ps.state->es_result_relations);
break;
case CMD_UPDATE:
ExecASUpdateTriggers(node->ps.state,
node->ps.state->es_result_relations);
break;
case CMD_DELETE:
ExecASDeleteTriggers(node->ps.state,
node->ps.state->es_result_relations);
break;
default:
elog(ERROR, "unknown operation");
break;
}
}
/* ----------------------------------------------------------------
* ExecModifyTable
*
* Perform table modifications as required, and return RETURNING results
* if needed.
* ----------------------------------------------------------------
*/
TupleTableSlot *
ExecModifyTable(ModifyTableState *node)
{
2010-02-26 03:01:40 +01:00
EState *estate = node->ps.state;
CmdType operation = node->operation;
PlanState *subplanstate;
JunkFilter *junkfilter;
TupleTableSlot *slot;
TupleTableSlot *planSlot;
ItemPointer tupleid = NULL;
ItemPointerData tuple_ctid;
HeapTupleHeader oldtuple = NULL;
/*
* On first call, fire BEFORE STATEMENT triggers before proceeding.
*/
if (node->fireBSTriggers)
{
fireBSTriggers(node);
node->fireBSTriggers = false;
}
/*
* es_result_relation_info must point to the currently active result
2010-02-26 03:01:40 +01:00
* relation. (Note we assume that ModifyTable nodes can't be nested.) We
* want it to be NULL whenever we're not within ModifyTable, though.
*/
estate->es_result_relation_info =
estate->es_result_relations + node->mt_whichplan;
/* Preload local variables */
subplanstate = node->mt_plans[node->mt_whichplan];
junkfilter = estate->es_result_relation_info->ri_junkFilter;
/*
* Fetch rows from subplan(s), and execute the required table modification
* for each row.
*/
for (;;)
{
/*
* Reset the per-output-tuple exprcontext. This is needed because
* triggers expect to use that context as workspace. It's a bit ugly
* to do this below the top level of the plan, however. We might need
* to rethink this later.
*/
ResetPerTupleExprContext(estate);
planSlot = ExecProcNode(subplanstate);
if (TupIsNull(planSlot))
{
/* advance to next subplan if any */
node->mt_whichplan++;
if (node->mt_whichplan < node->mt_nplans)
{
estate->es_result_relation_info++;
subplanstate = node->mt_plans[node->mt_whichplan];
junkfilter = estate->es_result_relation_info->ri_junkFilter;
EvalPlanQualSetPlan(&node->mt_epqstate, subplanstate->plan,
node->mt_arowmarks[node->mt_whichplan]);
continue;
}
else
break;
}
EvalPlanQualSetSlot(&node->mt_epqstate, planSlot);
slot = planSlot;
if (junkfilter != NULL)
{
/*
* extract the 'ctid' or 'wholerow' junk attribute.
*/
if (operation == CMD_UPDATE || operation == CMD_DELETE)
{
Datum datum;
bool isNull;
if (estate->es_result_relation_info->ri_RelationDesc->rd_rel->relkind == RELKIND_RELATION)
{
datum = ExecGetJunkAttribute(slot,
junkfilter->jf_junkAttNo,
&isNull);
/* shouldn't ever get a null result... */
if (isNull)
elog(ERROR, "ctid is NULL");
tupleid = (ItemPointer) DatumGetPointer(datum);
tuple_ctid = *tupleid; /* be sure we don't free ctid!! */
tupleid = &tuple_ctid;
}
else
{
datum = ExecGetJunkAttribute(slot,
junkfilter->jf_junkAttNo,
&isNull);
/* shouldn't ever get a null result... */
if (isNull)
elog(ERROR, "wholerow is NULL");
oldtuple = DatumGetHeapTupleHeader(datum);
}
}
/*
* apply the junkfilter if needed.
*/
if (operation != CMD_DELETE)
slot = ExecFilterJunk(junkfilter, slot);
}
switch (operation)
{
case CMD_INSERT:
slot = ExecInsert(slot, planSlot, estate);
break;
case CMD_UPDATE:
slot = ExecUpdate(tupleid, oldtuple, slot, planSlot,
&node->mt_epqstate, estate);
break;
case CMD_DELETE:
slot = ExecDelete(tupleid, oldtuple, planSlot,
&node->mt_epqstate, estate);
break;
default:
elog(ERROR, "unknown operation");
break;
}
/*
* If we got a RETURNING result, return it to caller. We'll continue
* the work on next call.
*/
if (slot)
{
estate->es_result_relation_info = NULL;
return slot;
}
}
/* Reset es_result_relation_info before exiting */
estate->es_result_relation_info = NULL;
/*
* We're done, but fire AFTER STATEMENT triggers before exiting.
*/
fireASTriggers(node);
return NULL;
}
/* ----------------------------------------------------------------
* ExecInitModifyTable
* ----------------------------------------------------------------
*/
ModifyTableState *
ExecInitModifyTable(ModifyTable *node, EState *estate, int eflags)
{
ModifyTableState *mtstate;
CmdType operation = node->operation;
int nplans = list_length(node->plans);
ResultRelInfo *resultRelInfo;
TupleDesc tupDesc;
Plan *subplan;
ListCell *l;
int i;
/* check for unsupported flags */
Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
/*
2010-02-26 03:01:40 +01:00
* This should NOT get called during EvalPlanQual; we should have passed a
* subplan tree to EvalPlanQual, instead. Use a runtime test not just
* Assert because this condition is easy to miss in testing ...
*/
if (estate->es_epqTuple != NULL)
elog(ERROR, "ModifyTable should not be called during EvalPlanQual");
/*
* create state structure
*/
mtstate = makeNode(ModifyTableState);
mtstate->ps.plan = (Plan *) node;
mtstate->ps.state = estate;
mtstate->ps.targetlist = NIL; /* not actually used */
mtstate->mt_plans = (PlanState **) palloc0(sizeof(PlanState *) * nplans);
mtstate->mt_arowmarks = (List **) palloc0(sizeof(List *) * nplans);
mtstate->mt_nplans = nplans;
mtstate->operation = operation;
/* set up epqstate with dummy subplan data for the moment */
EvalPlanQualInit(&mtstate->mt_epqstate, estate, NULL, NIL, node->epqParam);
mtstate->fireBSTriggers = true;
/* For the moment, assume our targets are exactly the global result rels */
/*
* call ExecInitNode on each of the plans to be executed and save the
* results into the array "mt_plans". Note we *must* set
* estate->es_result_relation_info correctly while we initialize each
* sub-plan; ExecContextForcesOids depends on that!
*/
estate->es_result_relation_info = estate->es_result_relations;
i = 0;
foreach(l, node->plans)
{
subplan = (Plan *) lfirst(l);
mtstate->mt_plans[i] = ExecInitNode(subplan, estate, eflags);
estate->es_result_relation_info++;
i++;
}
estate->es_result_relation_info = NULL;
/*
* Initialize RETURNING projections if needed.
*/
if (node->returningLists)
{
TupleTableSlot *slot;
ExprContext *econtext;
/*
2010-02-26 03:01:40 +01:00
* Initialize result tuple slot and assign its rowtype using the first
* RETURNING list. We assume the rest will look the same.
*/
tupDesc = ExecTypeFromTL((List *) linitial(node->returningLists),
false);
/* Set up a slot for the output of the RETURNING projection(s) */
ExecInitResultTupleSlot(estate, &mtstate->ps);
ExecAssignResultType(&mtstate->ps, tupDesc);
slot = mtstate->ps.ps_ResultTupleSlot;
/* Need an econtext too */
econtext = CreateExprContext(estate);
mtstate->ps.ps_ExprContext = econtext;
/*
* Build a projection for each result rel.
*/
Assert(list_length(node->returningLists) == estate->es_num_result_relations);
resultRelInfo = estate->es_result_relations;
foreach(l, node->returningLists)
{
List *rlist = (List *) lfirst(l);
List *rliststate;
rliststate = (List *) ExecInitExpr((Expr *) rlist, &mtstate->ps);
resultRelInfo->ri_projectReturning =
ExecBuildProjectionInfo(rliststate, econtext, slot,
resultRelInfo->ri_RelationDesc->rd_att);
resultRelInfo++;
}
}
else
{
/*
2010-02-26 03:01:40 +01:00
* We still must construct a dummy result tuple type, because InitPlan
* expects one (maybe should change that?).
*/
tupDesc = ExecTypeFromTL(NIL, false);
ExecInitResultTupleSlot(estate, &mtstate->ps);
ExecAssignResultType(&mtstate->ps, tupDesc);
mtstate->ps.ps_ExprContext = NULL;
}
/*
2010-02-26 03:01:40 +01:00
* If we have any secondary relations in an UPDATE or DELETE, they need to
* be treated like non-locked relations in SELECT FOR UPDATE, ie, the
* EvalPlanQual mechanism needs to be told about them. Locate the
* relevant ExecRowMarks.
*/
foreach(l, node->rowMarks)
{
PlanRowMark *rc = (PlanRowMark *) lfirst(l);
ExecRowMark *erm;
Assert(IsA(rc, PlanRowMark));
/* ignore "parent" rowmarks; they are irrelevant at runtime */
if (rc->isParent)
continue;
/* find ExecRowMark (same for all subplans) */
erm = ExecFindRowMark(estate, rc->rti);
/* build ExecAuxRowMark for each subplan */
for (i = 0; i < nplans; i++)
{
ExecAuxRowMark *aerm;
subplan = mtstate->mt_plans[i]->plan;
aerm = ExecBuildAuxRowMark(erm, subplan->targetlist);
mtstate->mt_arowmarks[i] = lappend(mtstate->mt_arowmarks[i], aerm);
}
}
/* select first subplan */
mtstate->mt_whichplan = 0;
subplan = (Plan *) linitial(node->plans);
EvalPlanQualSetPlan(&mtstate->mt_epqstate, subplan,
mtstate->mt_arowmarks[0]);
/*
* Initialize the junk filter(s) if needed. INSERT queries need a filter
2010-02-26 03:01:40 +01:00
* if there are any junk attrs in the tlist. UPDATE and DELETE always
* need a filter, since there's always a junk 'ctid' or 'wholerow'
* attribute present --- no need to look first.
*
* If there are multiple result relations, each one needs its own junk
2010-02-26 03:01:40 +01:00
* filter. Note multiple rels are only possible for UPDATE/DELETE, so we
* can't be fooled by some needing a filter and some not.
*
* This section of code is also a convenient place to verify that the
* output of an INSERT or UPDATE matches the target table(s).
*/
{
bool junk_filter_needed = false;
switch (operation)
{
case CMD_INSERT:
foreach(l, subplan->targetlist)
{
TargetEntry *tle = (TargetEntry *) lfirst(l);
if (tle->resjunk)
{
junk_filter_needed = true;
break;
}
}
break;
case CMD_UPDATE:
case CMD_DELETE:
junk_filter_needed = true;
break;
default:
elog(ERROR, "unknown operation");
break;
}
if (junk_filter_needed)
{
resultRelInfo = estate->es_result_relations;
for (i = 0; i < nplans; i++)
{
JunkFilter *j;
subplan = mtstate->mt_plans[i]->plan;
if (operation == CMD_INSERT || operation == CMD_UPDATE)
ExecCheckPlanOutput(resultRelInfo->ri_RelationDesc,
subplan->targetlist);
j = ExecInitJunkFilter(subplan->targetlist,
resultRelInfo->ri_RelationDesc->rd_att->tdhasoid,
ExecInitExtraTupleSlot(estate));
if (operation == CMD_UPDATE || operation == CMD_DELETE)
{
/* For UPDATE/DELETE, find the appropriate junk attr now */
if (resultRelInfo->ri_RelationDesc->rd_rel->relkind == RELKIND_RELATION)
{
j->jf_junkAttNo = ExecFindJunkAttribute(j, "ctid");
if (!AttributeNumberIsValid(j->jf_junkAttNo))
elog(ERROR, "could not find junk ctid column");
}
else
{
j->jf_junkAttNo = ExecFindJunkAttribute(j, "wholerow");
if (!AttributeNumberIsValid(j->jf_junkAttNo))
elog(ERROR, "could not find junk wholerow column");
}
}
resultRelInfo->ri_junkFilter = j;
resultRelInfo++;
}
}
else
{
if (operation == CMD_INSERT)
ExecCheckPlanOutput(estate->es_result_relations->ri_RelationDesc,
subplan->targetlist);
}
}
/*
2010-02-26 03:01:40 +01:00
* Set up a tuple table slot for use for trigger output tuples. In a plan
* containing multiple ModifyTable nodes, all can share one such slot, so
* we keep it in the estate.
*/
if (estate->es_trig_tuple_slot == NULL)
estate->es_trig_tuple_slot = ExecInitExtraTupleSlot(estate);
return mtstate;
}
/* ----------------------------------------------------------------
* ExecEndModifyTable
*
* Shuts down the plan.
*
* Returns nothing of interest.
* ----------------------------------------------------------------
*/
void
ExecEndModifyTable(ModifyTableState *node)
{
2010-02-26 03:01:40 +01:00
int i;
/*
* Free the exprcontext
*/
ExecFreeExprContext(&node->ps);
/*
* clean out the tuple table
*/
ExecClearTuple(node->ps.ps_ResultTupleSlot);
/*
* Terminate EPQ execution if active
*/
EvalPlanQualEnd(&node->mt_epqstate);
/*
* shut down subplans
*/
2010-02-26 03:01:40 +01:00
for (i = 0; i < node->mt_nplans; i++)
ExecEndNode(node->mt_plans[i]);
}
void
ExecReScanModifyTable(ModifyTableState *node)
{
/*
2010-02-26 03:01:40 +01:00
* Currently, we don't need to support rescan on ModifyTable nodes. The
* semantics of that would be a bit debatable anyway.
*/
elog(ERROR, "ExecReScanModifyTable is not implemented");
}