postgresql/src/backend/commands/operatorcmds.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

555 lines
16 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* operatorcmds.c
*
* Routines for operator manipulation commands
*
* Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
2010-09-20 22:08:53 +02:00
* src/backend/commands/operatorcmds.c
*
* DESCRIPTION
* The "DefineFoo" routines take the parse tree and pick out the
* appropriate arguments/flags, passing the results to the
* corresponding "FooDefine" routines (in src/catalog) that do
* the actual catalog-munging. These routines also verify permission
* of the user to execute the command.
*
* NOTES
* These things must be defined and committed in the following order:
* "create function":
* input/output, recv/send functions
* "create type":
* type
* "create operator":
* operators
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "access/table.h"
#include "catalog/dependency.h"
#include "catalog/indexing.h"
#include "catalog/objectaccess.h"
#include "catalog/pg_namespace.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_proc.h"
Clean up the loose ends in selectivity estimation left by my patch for semi and anti joins. To do this, pass the SpecialJoinInfo struct for the current join as an additional optional argument to operator join selectivity estimation functions. This allows the estimator to tell not only what kind of join is being formed, but which variable is on which side of the join; a requirement long recognized but not dealt with till now. This also leaves the door open for future improvements in the estimators, such as accounting for the null-insertion effects of lower outer joins. I didn't do anything about that in the current patch but the information is in principle deducible from what's passed. The patch also clarifies the definition of join selectivity for semi/anti joins: it's the fraction of the left input that has (at least one) match in the right input. This allows getting rid of some very fuzzy thinking that I had committed in the original 7.4-era IN-optimization patch. There's probably room to estimate this better than the present patch does, but at least we know what to estimate. Since I had to touch CREATE OPERATOR anyway to allow a variant signature for join estimator functions, I took the opportunity to add a couple of additional checks that were missing, per my recent message to -hackers: * Check that estimator functions return float8; * Require execute permission at the time of CREATE OPERATOR on the operator's function as well as the estimator functions; * Require ownership of any pre-existing operator that's modified by the command. I also moved the lookup of the functions out of OperatorCreate() and into operatorcmds.c, since that seemed more consistent with most of the other catalog object creation processes, eg CREATE TYPE.
2008-08-16 02:01:38 +02:00
#include "catalog/pg_type.h"
#include "commands/alter.h"
#include "commands/defrem.h"
#include "miscadmin.h"
Clean up the loose ends in selectivity estimation left by my patch for semi and anti joins. To do this, pass the SpecialJoinInfo struct for the current join as an additional optional argument to operator join selectivity estimation functions. This allows the estimator to tell not only what kind of join is being formed, but which variable is on which side of the join; a requirement long recognized but not dealt with till now. This also leaves the door open for future improvements in the estimators, such as accounting for the null-insertion effects of lower outer joins. I didn't do anything about that in the current patch but the information is in principle deducible from what's passed. The patch also clarifies the definition of join selectivity for semi/anti joins: it's the fraction of the left input that has (at least one) match in the right input. This allows getting rid of some very fuzzy thinking that I had committed in the original 7.4-era IN-optimization patch. There's probably room to estimate this better than the present patch does, but at least we know what to estimate. Since I had to touch CREATE OPERATOR anyway to allow a variant signature for join estimator functions, I took the opportunity to add a couple of additional checks that were missing, per my recent message to -hackers: * Check that estimator functions return float8; * Require execute permission at the time of CREATE OPERATOR on the operator's function as well as the estimator functions; * Require ownership of any pre-existing operator that's modified by the command. I also moved the lookup of the functions out of OperatorCreate() and into operatorcmds.c, since that seemed more consistent with most of the other catalog object creation processes, eg CREATE TYPE.
2008-08-16 02:01:38 +02:00
#include "parser/parse_func.h"
#include "parser/parse_oper.h"
#include "parser/parse_type.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
#include "utils/rel.h"
#include "utils/syscache.h"
static Oid ValidateRestrictionEstimator(List *restrictionName);
static Oid ValidateJoinEstimator(List *joinName);
/*
* DefineOperator
* this function extracts all the information from the
* parameter list generated by the parser and then has
* OperatorCreate() do all the actual work.
*
* 'parameters' is a list of DefElem
*/
ObjectAddress
DefineOperator(List *names, List *parameters)
{
char *oprName;
Oid oprNamespace;
AclResult aclresult;
bool canMerge = false; /* operator merges */
bool canHash = false; /* operator hashes */
List *functionName = NIL; /* function for operator */
TypeName *typeName1 = NULL; /* first type name */
TypeName *typeName2 = NULL; /* second type name */
Oid typeId1 = InvalidOid; /* types converted to OID */
Oid typeId2 = InvalidOid;
Oid rettype;
List *commutatorName = NIL; /* optional commutator operator name */
List *negatorName = NIL; /* optional negator operator name */
List *restrictionName = NIL; /* optional restrict. sel. function */
List *joinName = NIL; /* optional join sel. function */
Clean up the loose ends in selectivity estimation left by my patch for semi and anti joins. To do this, pass the SpecialJoinInfo struct for the current join as an additional optional argument to operator join selectivity estimation functions. This allows the estimator to tell not only what kind of join is being formed, but which variable is on which side of the join; a requirement long recognized but not dealt with till now. This also leaves the door open for future improvements in the estimators, such as accounting for the null-insertion effects of lower outer joins. I didn't do anything about that in the current patch but the information is in principle deducible from what's passed. The patch also clarifies the definition of join selectivity for semi/anti joins: it's the fraction of the left input that has (at least one) match in the right input. This allows getting rid of some very fuzzy thinking that I had committed in the original 7.4-era IN-optimization patch. There's probably room to estimate this better than the present patch does, but at least we know what to estimate. Since I had to touch CREATE OPERATOR anyway to allow a variant signature for join estimator functions, I took the opportunity to add a couple of additional checks that were missing, per my recent message to -hackers: * Check that estimator functions return float8; * Require execute permission at the time of CREATE OPERATOR on the operator's function as well as the estimator functions; * Require ownership of any pre-existing operator that's modified by the command. I also moved the lookup of the functions out of OperatorCreate() and into operatorcmds.c, since that seemed more consistent with most of the other catalog object creation processes, eg CREATE TYPE.
2008-08-16 02:01:38 +02:00
Oid functionOid; /* functions converted to OID */
Oid restrictionOid;
Oid joinOid;
Oid typeId[2]; /* to hold left and right arg */
Clean up the loose ends in selectivity estimation left by my patch for semi and anti joins. To do this, pass the SpecialJoinInfo struct for the current join as an additional optional argument to operator join selectivity estimation functions. This allows the estimator to tell not only what kind of join is being formed, but which variable is on which side of the join; a requirement long recognized but not dealt with till now. This also leaves the door open for future improvements in the estimators, such as accounting for the null-insertion effects of lower outer joins. I didn't do anything about that in the current patch but the information is in principle deducible from what's passed. The patch also clarifies the definition of join selectivity for semi/anti joins: it's the fraction of the left input that has (at least one) match in the right input. This allows getting rid of some very fuzzy thinking that I had committed in the original 7.4-era IN-optimization patch. There's probably room to estimate this better than the present patch does, but at least we know what to estimate. Since I had to touch CREATE OPERATOR anyway to allow a variant signature for join estimator functions, I took the opportunity to add a couple of additional checks that were missing, per my recent message to -hackers: * Check that estimator functions return float8; * Require execute permission at the time of CREATE OPERATOR on the operator's function as well as the estimator functions; * Require ownership of any pre-existing operator that's modified by the command. I also moved the lookup of the functions out of OperatorCreate() and into operatorcmds.c, since that seemed more consistent with most of the other catalog object creation processes, eg CREATE TYPE.
2008-08-16 02:01:38 +02:00
int nargs;
ListCell *pl;
/* Convert list of names to a name and namespace */
oprNamespace = QualifiedNameGetCreationNamespace(names, &oprName);
/* Check we have creation rights in target namespace */
aclresult = object_aclcheck(NamespaceRelationId, oprNamespace, GetUserId(), ACL_CREATE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, OBJECT_SCHEMA,
get_namespace_name(oprNamespace));
/*
* loop over the definition list and extract the information we need.
*/
foreach(pl, parameters)
{
DefElem *defel = (DefElem *) lfirst(pl);
Avoid unnecessary use of pg_strcasecmp for already-downcased identifiers. We have a lot of code in which option names, which from the user's viewpoint are logically keywords, are passed through the grammar as plain identifiers, and then matched to string literals during command execution. This approach avoids making words into lexer keywords unnecessarily. Some places matched these strings using plain strcmp, some using pg_strcasecmp. But the latter should be unnecessary since identifiers would have been downcased on their way through the parser. Aside from any efficiency concerns (probably not a big factor), the lack of consistency in this area creates a hazard of subtle bugs due to different places coming to different conclusions about whether two option names are the same or different. Hence, standardize on using strcmp() to match any option names that are expected to have been fed through the parser. This does create a user-visible behavioral change, which is that while formerly all of these would work: alter table foo set (fillfactor = 50); alter table foo set (FillFactor = 50); alter table foo set ("fillfactor" = 50); alter table foo set ("FillFactor" = 50); now the last case will fail because that double-quoted identifier is different from the others. However, none of our documentation says that you can use a quoted identifier in such contexts at all, and we should discourage doing so since it would break if we ever decide to parse such constructs as true lexer keywords rather than poor man's substitutes. So this shouldn't create a significant compatibility issue for users. Daniel Gustafsson, reviewed by Michael Paquier, small changes by me Discussion: https://postgr.es/m/29405B24-564E-476B-98C0-677A29805B84@yesql.se
2018-01-27 00:25:02 +01:00
if (strcmp(defel->defname, "leftarg") == 0)
{
typeName1 = defGetTypeName(defel);
if (typeName1->setof)
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("SETOF type not allowed for operator argument")));
}
Avoid unnecessary use of pg_strcasecmp for already-downcased identifiers. We have a lot of code in which option names, which from the user's viewpoint are logically keywords, are passed through the grammar as plain identifiers, and then matched to string literals during command execution. This approach avoids making words into lexer keywords unnecessarily. Some places matched these strings using plain strcmp, some using pg_strcasecmp. But the latter should be unnecessary since identifiers would have been downcased on their way through the parser. Aside from any efficiency concerns (probably not a big factor), the lack of consistency in this area creates a hazard of subtle bugs due to different places coming to different conclusions about whether two option names are the same or different. Hence, standardize on using strcmp() to match any option names that are expected to have been fed through the parser. This does create a user-visible behavioral change, which is that while formerly all of these would work: alter table foo set (fillfactor = 50); alter table foo set (FillFactor = 50); alter table foo set ("fillfactor" = 50); alter table foo set ("FillFactor" = 50); now the last case will fail because that double-quoted identifier is different from the others. However, none of our documentation says that you can use a quoted identifier in such contexts at all, and we should discourage doing so since it would break if we ever decide to parse such constructs as true lexer keywords rather than poor man's substitutes. So this shouldn't create a significant compatibility issue for users. Daniel Gustafsson, reviewed by Michael Paquier, small changes by me Discussion: https://postgr.es/m/29405B24-564E-476B-98C0-677A29805B84@yesql.se
2018-01-27 00:25:02 +01:00
else if (strcmp(defel->defname, "rightarg") == 0)
{
typeName2 = defGetTypeName(defel);
if (typeName2->setof)
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("SETOF type not allowed for operator argument")));
}
/* "function" and "procedure" are equivalent here */
else if (strcmp(defel->defname, "function") == 0)
functionName = defGetQualifiedName(defel);
Avoid unnecessary use of pg_strcasecmp for already-downcased identifiers. We have a lot of code in which option names, which from the user's viewpoint are logically keywords, are passed through the grammar as plain identifiers, and then matched to string literals during command execution. This approach avoids making words into lexer keywords unnecessarily. Some places matched these strings using plain strcmp, some using pg_strcasecmp. But the latter should be unnecessary since identifiers would have been downcased on their way through the parser. Aside from any efficiency concerns (probably not a big factor), the lack of consistency in this area creates a hazard of subtle bugs due to different places coming to different conclusions about whether two option names are the same or different. Hence, standardize on using strcmp() to match any option names that are expected to have been fed through the parser. This does create a user-visible behavioral change, which is that while formerly all of these would work: alter table foo set (fillfactor = 50); alter table foo set (FillFactor = 50); alter table foo set ("fillfactor" = 50); alter table foo set ("FillFactor" = 50); now the last case will fail because that double-quoted identifier is different from the others. However, none of our documentation says that you can use a quoted identifier in such contexts at all, and we should discourage doing so since it would break if we ever decide to parse such constructs as true lexer keywords rather than poor man's substitutes. So this shouldn't create a significant compatibility issue for users. Daniel Gustafsson, reviewed by Michael Paquier, small changes by me Discussion: https://postgr.es/m/29405B24-564E-476B-98C0-677A29805B84@yesql.se
2018-01-27 00:25:02 +01:00
else if (strcmp(defel->defname, "procedure") == 0)
functionName = defGetQualifiedName(defel);
Avoid unnecessary use of pg_strcasecmp for already-downcased identifiers. We have a lot of code in which option names, which from the user's viewpoint are logically keywords, are passed through the grammar as plain identifiers, and then matched to string literals during command execution. This approach avoids making words into lexer keywords unnecessarily. Some places matched these strings using plain strcmp, some using pg_strcasecmp. But the latter should be unnecessary since identifiers would have been downcased on their way through the parser. Aside from any efficiency concerns (probably not a big factor), the lack of consistency in this area creates a hazard of subtle bugs due to different places coming to different conclusions about whether two option names are the same or different. Hence, standardize on using strcmp() to match any option names that are expected to have been fed through the parser. This does create a user-visible behavioral change, which is that while formerly all of these would work: alter table foo set (fillfactor = 50); alter table foo set (FillFactor = 50); alter table foo set ("fillfactor" = 50); alter table foo set ("FillFactor" = 50); now the last case will fail because that double-quoted identifier is different from the others. However, none of our documentation says that you can use a quoted identifier in such contexts at all, and we should discourage doing so since it would break if we ever decide to parse such constructs as true lexer keywords rather than poor man's substitutes. So this shouldn't create a significant compatibility issue for users. Daniel Gustafsson, reviewed by Michael Paquier, small changes by me Discussion: https://postgr.es/m/29405B24-564E-476B-98C0-677A29805B84@yesql.se
2018-01-27 00:25:02 +01:00
else if (strcmp(defel->defname, "commutator") == 0)
commutatorName = defGetQualifiedName(defel);
Avoid unnecessary use of pg_strcasecmp for already-downcased identifiers. We have a lot of code in which option names, which from the user's viewpoint are logically keywords, are passed through the grammar as plain identifiers, and then matched to string literals during command execution. This approach avoids making words into lexer keywords unnecessarily. Some places matched these strings using plain strcmp, some using pg_strcasecmp. But the latter should be unnecessary since identifiers would have been downcased on their way through the parser. Aside from any efficiency concerns (probably not a big factor), the lack of consistency in this area creates a hazard of subtle bugs due to different places coming to different conclusions about whether two option names are the same or different. Hence, standardize on using strcmp() to match any option names that are expected to have been fed through the parser. This does create a user-visible behavioral change, which is that while formerly all of these would work: alter table foo set (fillfactor = 50); alter table foo set (FillFactor = 50); alter table foo set ("fillfactor" = 50); alter table foo set ("FillFactor" = 50); now the last case will fail because that double-quoted identifier is different from the others. However, none of our documentation says that you can use a quoted identifier in such contexts at all, and we should discourage doing so since it would break if we ever decide to parse such constructs as true lexer keywords rather than poor man's substitutes. So this shouldn't create a significant compatibility issue for users. Daniel Gustafsson, reviewed by Michael Paquier, small changes by me Discussion: https://postgr.es/m/29405B24-564E-476B-98C0-677A29805B84@yesql.se
2018-01-27 00:25:02 +01:00
else if (strcmp(defel->defname, "negator") == 0)
negatorName = defGetQualifiedName(defel);
Avoid unnecessary use of pg_strcasecmp for already-downcased identifiers. We have a lot of code in which option names, which from the user's viewpoint are logically keywords, are passed through the grammar as plain identifiers, and then matched to string literals during command execution. This approach avoids making words into lexer keywords unnecessarily. Some places matched these strings using plain strcmp, some using pg_strcasecmp. But the latter should be unnecessary since identifiers would have been downcased on their way through the parser. Aside from any efficiency concerns (probably not a big factor), the lack of consistency in this area creates a hazard of subtle bugs due to different places coming to different conclusions about whether two option names are the same or different. Hence, standardize on using strcmp() to match any option names that are expected to have been fed through the parser. This does create a user-visible behavioral change, which is that while formerly all of these would work: alter table foo set (fillfactor = 50); alter table foo set (FillFactor = 50); alter table foo set ("fillfactor" = 50); alter table foo set ("FillFactor" = 50); now the last case will fail because that double-quoted identifier is different from the others. However, none of our documentation says that you can use a quoted identifier in such contexts at all, and we should discourage doing so since it would break if we ever decide to parse such constructs as true lexer keywords rather than poor man's substitutes. So this shouldn't create a significant compatibility issue for users. Daniel Gustafsson, reviewed by Michael Paquier, small changes by me Discussion: https://postgr.es/m/29405B24-564E-476B-98C0-677A29805B84@yesql.se
2018-01-27 00:25:02 +01:00
else if (strcmp(defel->defname, "restrict") == 0)
restrictionName = defGetQualifiedName(defel);
Avoid unnecessary use of pg_strcasecmp for already-downcased identifiers. We have a lot of code in which option names, which from the user's viewpoint are logically keywords, are passed through the grammar as plain identifiers, and then matched to string literals during command execution. This approach avoids making words into lexer keywords unnecessarily. Some places matched these strings using plain strcmp, some using pg_strcasecmp. But the latter should be unnecessary since identifiers would have been downcased on their way through the parser. Aside from any efficiency concerns (probably not a big factor), the lack of consistency in this area creates a hazard of subtle bugs due to different places coming to different conclusions about whether two option names are the same or different. Hence, standardize on using strcmp() to match any option names that are expected to have been fed through the parser. This does create a user-visible behavioral change, which is that while formerly all of these would work: alter table foo set (fillfactor = 50); alter table foo set (FillFactor = 50); alter table foo set ("fillfactor" = 50); alter table foo set ("FillFactor" = 50); now the last case will fail because that double-quoted identifier is different from the others. However, none of our documentation says that you can use a quoted identifier in such contexts at all, and we should discourage doing so since it would break if we ever decide to parse such constructs as true lexer keywords rather than poor man's substitutes. So this shouldn't create a significant compatibility issue for users. Daniel Gustafsson, reviewed by Michael Paquier, small changes by me Discussion: https://postgr.es/m/29405B24-564E-476B-98C0-677A29805B84@yesql.se
2018-01-27 00:25:02 +01:00
else if (strcmp(defel->defname, "join") == 0)
joinName = defGetQualifiedName(defel);
Avoid unnecessary use of pg_strcasecmp for already-downcased identifiers. We have a lot of code in which option names, which from the user's viewpoint are logically keywords, are passed through the grammar as plain identifiers, and then matched to string literals during command execution. This approach avoids making words into lexer keywords unnecessarily. Some places matched these strings using plain strcmp, some using pg_strcasecmp. But the latter should be unnecessary since identifiers would have been downcased on their way through the parser. Aside from any efficiency concerns (probably not a big factor), the lack of consistency in this area creates a hazard of subtle bugs due to different places coming to different conclusions about whether two option names are the same or different. Hence, standardize on using strcmp() to match any option names that are expected to have been fed through the parser. This does create a user-visible behavioral change, which is that while formerly all of these would work: alter table foo set (fillfactor = 50); alter table foo set (FillFactor = 50); alter table foo set ("fillfactor" = 50); alter table foo set ("FillFactor" = 50); now the last case will fail because that double-quoted identifier is different from the others. However, none of our documentation says that you can use a quoted identifier in such contexts at all, and we should discourage doing so since it would break if we ever decide to parse such constructs as true lexer keywords rather than poor man's substitutes. So this shouldn't create a significant compatibility issue for users. Daniel Gustafsson, reviewed by Michael Paquier, small changes by me Discussion: https://postgr.es/m/29405B24-564E-476B-98C0-677A29805B84@yesql.se
2018-01-27 00:25:02 +01:00
else if (strcmp(defel->defname, "hashes") == 0)
canHash = defGetBoolean(defel);
Avoid unnecessary use of pg_strcasecmp for already-downcased identifiers. We have a lot of code in which option names, which from the user's viewpoint are logically keywords, are passed through the grammar as plain identifiers, and then matched to string literals during command execution. This approach avoids making words into lexer keywords unnecessarily. Some places matched these strings using plain strcmp, some using pg_strcasecmp. But the latter should be unnecessary since identifiers would have been downcased on their way through the parser. Aside from any efficiency concerns (probably not a big factor), the lack of consistency in this area creates a hazard of subtle bugs due to different places coming to different conclusions about whether two option names are the same or different. Hence, standardize on using strcmp() to match any option names that are expected to have been fed through the parser. This does create a user-visible behavioral change, which is that while formerly all of these would work: alter table foo set (fillfactor = 50); alter table foo set (FillFactor = 50); alter table foo set ("fillfactor" = 50); alter table foo set ("FillFactor" = 50); now the last case will fail because that double-quoted identifier is different from the others. However, none of our documentation says that you can use a quoted identifier in such contexts at all, and we should discourage doing so since it would break if we ever decide to parse such constructs as true lexer keywords rather than poor man's substitutes. So this shouldn't create a significant compatibility issue for users. Daniel Gustafsson, reviewed by Michael Paquier, small changes by me Discussion: https://postgr.es/m/29405B24-564E-476B-98C0-677A29805B84@yesql.se
2018-01-27 00:25:02 +01:00
else if (strcmp(defel->defname, "merges") == 0)
canMerge = defGetBoolean(defel);
/* These obsolete options are taken as meaning canMerge */
Avoid unnecessary use of pg_strcasecmp for already-downcased identifiers. We have a lot of code in which option names, which from the user's viewpoint are logically keywords, are passed through the grammar as plain identifiers, and then matched to string literals during command execution. This approach avoids making words into lexer keywords unnecessarily. Some places matched these strings using plain strcmp, some using pg_strcasecmp. But the latter should be unnecessary since identifiers would have been downcased on their way through the parser. Aside from any efficiency concerns (probably not a big factor), the lack of consistency in this area creates a hazard of subtle bugs due to different places coming to different conclusions about whether two option names are the same or different. Hence, standardize on using strcmp() to match any option names that are expected to have been fed through the parser. This does create a user-visible behavioral change, which is that while formerly all of these would work: alter table foo set (fillfactor = 50); alter table foo set (FillFactor = 50); alter table foo set ("fillfactor" = 50); alter table foo set ("FillFactor" = 50); now the last case will fail because that double-quoted identifier is different from the others. However, none of our documentation says that you can use a quoted identifier in such contexts at all, and we should discourage doing so since it would break if we ever decide to parse such constructs as true lexer keywords rather than poor man's substitutes. So this shouldn't create a significant compatibility issue for users. Daniel Gustafsson, reviewed by Michael Paquier, small changes by me Discussion: https://postgr.es/m/29405B24-564E-476B-98C0-677A29805B84@yesql.se
2018-01-27 00:25:02 +01:00
else if (strcmp(defel->defname, "sort1") == 0)
canMerge = true;
Avoid unnecessary use of pg_strcasecmp for already-downcased identifiers. We have a lot of code in which option names, which from the user's viewpoint are logically keywords, are passed through the grammar as plain identifiers, and then matched to string literals during command execution. This approach avoids making words into lexer keywords unnecessarily. Some places matched these strings using plain strcmp, some using pg_strcasecmp. But the latter should be unnecessary since identifiers would have been downcased on their way through the parser. Aside from any efficiency concerns (probably not a big factor), the lack of consistency in this area creates a hazard of subtle bugs due to different places coming to different conclusions about whether two option names are the same or different. Hence, standardize on using strcmp() to match any option names that are expected to have been fed through the parser. This does create a user-visible behavioral change, which is that while formerly all of these would work: alter table foo set (fillfactor = 50); alter table foo set (FillFactor = 50); alter table foo set ("fillfactor" = 50); alter table foo set ("FillFactor" = 50); now the last case will fail because that double-quoted identifier is different from the others. However, none of our documentation says that you can use a quoted identifier in such contexts at all, and we should discourage doing so since it would break if we ever decide to parse such constructs as true lexer keywords rather than poor man's substitutes. So this shouldn't create a significant compatibility issue for users. Daniel Gustafsson, reviewed by Michael Paquier, small changes by me Discussion: https://postgr.es/m/29405B24-564E-476B-98C0-677A29805B84@yesql.se
2018-01-27 00:25:02 +01:00
else if (strcmp(defel->defname, "sort2") == 0)
canMerge = true;
Avoid unnecessary use of pg_strcasecmp for already-downcased identifiers. We have a lot of code in which option names, which from the user's viewpoint are logically keywords, are passed through the grammar as plain identifiers, and then matched to string literals during command execution. This approach avoids making words into lexer keywords unnecessarily. Some places matched these strings using plain strcmp, some using pg_strcasecmp. But the latter should be unnecessary since identifiers would have been downcased on their way through the parser. Aside from any efficiency concerns (probably not a big factor), the lack of consistency in this area creates a hazard of subtle bugs due to different places coming to different conclusions about whether two option names are the same or different. Hence, standardize on using strcmp() to match any option names that are expected to have been fed through the parser. This does create a user-visible behavioral change, which is that while formerly all of these would work: alter table foo set (fillfactor = 50); alter table foo set (FillFactor = 50); alter table foo set ("fillfactor" = 50); alter table foo set ("FillFactor" = 50); now the last case will fail because that double-quoted identifier is different from the others. However, none of our documentation says that you can use a quoted identifier in such contexts at all, and we should discourage doing so since it would break if we ever decide to parse such constructs as true lexer keywords rather than poor man's substitutes. So this shouldn't create a significant compatibility issue for users. Daniel Gustafsson, reviewed by Michael Paquier, small changes by me Discussion: https://postgr.es/m/29405B24-564E-476B-98C0-677A29805B84@yesql.se
2018-01-27 00:25:02 +01:00
else if (strcmp(defel->defname, "ltcmp") == 0)
canMerge = true;
Avoid unnecessary use of pg_strcasecmp for already-downcased identifiers. We have a lot of code in which option names, which from the user's viewpoint are logically keywords, are passed through the grammar as plain identifiers, and then matched to string literals during command execution. This approach avoids making words into lexer keywords unnecessarily. Some places matched these strings using plain strcmp, some using pg_strcasecmp. But the latter should be unnecessary since identifiers would have been downcased on their way through the parser. Aside from any efficiency concerns (probably not a big factor), the lack of consistency in this area creates a hazard of subtle bugs due to different places coming to different conclusions about whether two option names are the same or different. Hence, standardize on using strcmp() to match any option names that are expected to have been fed through the parser. This does create a user-visible behavioral change, which is that while formerly all of these would work: alter table foo set (fillfactor = 50); alter table foo set (FillFactor = 50); alter table foo set ("fillfactor" = 50); alter table foo set ("FillFactor" = 50); now the last case will fail because that double-quoted identifier is different from the others. However, none of our documentation says that you can use a quoted identifier in such contexts at all, and we should discourage doing so since it would break if we ever decide to parse such constructs as true lexer keywords rather than poor man's substitutes. So this shouldn't create a significant compatibility issue for users. Daniel Gustafsson, reviewed by Michael Paquier, small changes by me Discussion: https://postgr.es/m/29405B24-564E-476B-98C0-677A29805B84@yesql.se
2018-01-27 00:25:02 +01:00
else if (strcmp(defel->defname, "gtcmp") == 0)
canMerge = true;
else
{
/* WARNING, not ERROR, for historical backwards-compatibility */
ereport(WARNING,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("operator attribute \"%s\" not recognized",
defel->defname)));
}
}
/*
* make sure we have our required definitions
*/
if (functionName == NIL)
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("operator function must be specified")));
/* Transform type names to type OIDs */
if (typeName1)
typeId1 = typenameTypeId(NULL, typeName1);
if (typeName2)
typeId2 = typenameTypeId(NULL, typeName2);
/*
* If only the right argument is missing, the user is likely trying to
* create a postfix operator, so give them a hint about why that does not
* work. But if both arguments are missing, do not mention postfix
* operators, as the user most likely simply neglected to mention the
* arguments.
*/
Clean up the loose ends in selectivity estimation left by my patch for semi and anti joins. To do this, pass the SpecialJoinInfo struct for the current join as an additional optional argument to operator join selectivity estimation functions. This allows the estimator to tell not only what kind of join is being formed, but which variable is on which side of the join; a requirement long recognized but not dealt with till now. This also leaves the door open for future improvements in the estimators, such as accounting for the null-insertion effects of lower outer joins. I didn't do anything about that in the current patch but the information is in principle deducible from what's passed. The patch also clarifies the definition of join selectivity for semi/anti joins: it's the fraction of the left input that has (at least one) match in the right input. This allows getting rid of some very fuzzy thinking that I had committed in the original 7.4-era IN-optimization patch. There's probably room to estimate this better than the present patch does, but at least we know what to estimate. Since I had to touch CREATE OPERATOR anyway to allow a variant signature for join estimator functions, I took the opportunity to add a couple of additional checks that were missing, per my recent message to -hackers: * Check that estimator functions return float8; * Require execute permission at the time of CREATE OPERATOR on the operator's function as well as the estimator functions; * Require ownership of any pre-existing operator that's modified by the command. I also moved the lookup of the functions out of OperatorCreate() and into operatorcmds.c, since that seemed more consistent with most of the other catalog object creation processes, eg CREATE TYPE.
2008-08-16 02:01:38 +02:00
if (!OidIsValid(typeId1) && !OidIsValid(typeId2))
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("operator argument types must be specified")));
if (!OidIsValid(typeId2))
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("operator right argument type must be specified"),
errdetail("Postfix operators are not supported.")));
Clean up the loose ends in selectivity estimation left by my patch for semi and anti joins. To do this, pass the SpecialJoinInfo struct for the current join as an additional optional argument to operator join selectivity estimation functions. This allows the estimator to tell not only what kind of join is being formed, but which variable is on which side of the join; a requirement long recognized but not dealt with till now. This also leaves the door open for future improvements in the estimators, such as accounting for the null-insertion effects of lower outer joins. I didn't do anything about that in the current patch but the information is in principle deducible from what's passed. The patch also clarifies the definition of join selectivity for semi/anti joins: it's the fraction of the left input that has (at least one) match in the right input. This allows getting rid of some very fuzzy thinking that I had committed in the original 7.4-era IN-optimization patch. There's probably room to estimate this better than the present patch does, but at least we know what to estimate. Since I had to touch CREATE OPERATOR anyway to allow a variant signature for join estimator functions, I took the opportunity to add a couple of additional checks that were missing, per my recent message to -hackers: * Check that estimator functions return float8; * Require execute permission at the time of CREATE OPERATOR on the operator's function as well as the estimator functions; * Require ownership of any pre-existing operator that's modified by the command. I also moved the lookup of the functions out of OperatorCreate() and into operatorcmds.c, since that seemed more consistent with most of the other catalog object creation processes, eg CREATE TYPE.
2008-08-16 02:01:38 +02:00
if (typeName1)
{
aclresult = object_aclcheck(TypeRelationId, typeId1, GetUserId(), ACL_USAGE);
if (aclresult != ACLCHECK_OK)
aclcheck_error_type(aclresult, typeId1);
}
if (typeName2)
{
aclresult = object_aclcheck(TypeRelationId, typeId2, GetUserId(), ACL_USAGE);
if (aclresult != ACLCHECK_OK)
aclcheck_error_type(aclresult, typeId2);
}
Clean up the loose ends in selectivity estimation left by my patch for semi and anti joins. To do this, pass the SpecialJoinInfo struct for the current join as an additional optional argument to operator join selectivity estimation functions. This allows the estimator to tell not only what kind of join is being formed, but which variable is on which side of the join; a requirement long recognized but not dealt with till now. This also leaves the door open for future improvements in the estimators, such as accounting for the null-insertion effects of lower outer joins. I didn't do anything about that in the current patch but the information is in principle deducible from what's passed. The patch also clarifies the definition of join selectivity for semi/anti joins: it's the fraction of the left input that has (at least one) match in the right input. This allows getting rid of some very fuzzy thinking that I had committed in the original 7.4-era IN-optimization patch. There's probably room to estimate this better than the present patch does, but at least we know what to estimate. Since I had to touch CREATE OPERATOR anyway to allow a variant signature for join estimator functions, I took the opportunity to add a couple of additional checks that were missing, per my recent message to -hackers: * Check that estimator functions return float8; * Require execute permission at the time of CREATE OPERATOR on the operator's function as well as the estimator functions; * Require ownership of any pre-existing operator that's modified by the command. I also moved the lookup of the functions out of OperatorCreate() and into operatorcmds.c, since that seemed more consistent with most of the other catalog object creation processes, eg CREATE TYPE.
2008-08-16 02:01:38 +02:00
/*
* Look up the operator's underlying function.
*/
if (!OidIsValid(typeId1))
{
typeId[0] = typeId2;
nargs = 1;
}
else if (!OidIsValid(typeId2))
{
typeId[0] = typeId1;
nargs = 1;
}
else
{
typeId[0] = typeId1;
typeId[1] = typeId2;
nargs = 2;
}
functionOid = LookupFuncName(functionName, nargs, typeId, false);
/*
* We require EXECUTE rights for the function. This isn't strictly
* necessary, since EXECUTE will be checked at any attempted use of the
* operator, but it seems like a good idea anyway.
*/
aclresult = object_aclcheck(ProcedureRelationId, functionOid, GetUserId(), ACL_EXECUTE);
Clean up the loose ends in selectivity estimation left by my patch for semi and anti joins. To do this, pass the SpecialJoinInfo struct for the current join as an additional optional argument to operator join selectivity estimation functions. This allows the estimator to tell not only what kind of join is being formed, but which variable is on which side of the join; a requirement long recognized but not dealt with till now. This also leaves the door open for future improvements in the estimators, such as accounting for the null-insertion effects of lower outer joins. I didn't do anything about that in the current patch but the information is in principle deducible from what's passed. The patch also clarifies the definition of join selectivity for semi/anti joins: it's the fraction of the left input that has (at least one) match in the right input. This allows getting rid of some very fuzzy thinking that I had committed in the original 7.4-era IN-optimization patch. There's probably room to estimate this better than the present patch does, but at least we know what to estimate. Since I had to touch CREATE OPERATOR anyway to allow a variant signature for join estimator functions, I took the opportunity to add a couple of additional checks that were missing, per my recent message to -hackers: * Check that estimator functions return float8; * Require execute permission at the time of CREATE OPERATOR on the operator's function as well as the estimator functions; * Require ownership of any pre-existing operator that's modified by the command. I also moved the lookup of the functions out of OperatorCreate() and into operatorcmds.c, since that seemed more consistent with most of the other catalog object creation processes, eg CREATE TYPE.
2008-08-16 02:01:38 +02:00
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, OBJECT_FUNCTION,
Clean up the loose ends in selectivity estimation left by my patch for semi and anti joins. To do this, pass the SpecialJoinInfo struct for the current join as an additional optional argument to operator join selectivity estimation functions. This allows the estimator to tell not only what kind of join is being formed, but which variable is on which side of the join; a requirement long recognized but not dealt with till now. This also leaves the door open for future improvements in the estimators, such as accounting for the null-insertion effects of lower outer joins. I didn't do anything about that in the current patch but the information is in principle deducible from what's passed. The patch also clarifies the definition of join selectivity for semi/anti joins: it's the fraction of the left input that has (at least one) match in the right input. This allows getting rid of some very fuzzy thinking that I had committed in the original 7.4-era IN-optimization patch. There's probably room to estimate this better than the present patch does, but at least we know what to estimate. Since I had to touch CREATE OPERATOR anyway to allow a variant signature for join estimator functions, I took the opportunity to add a couple of additional checks that were missing, per my recent message to -hackers: * Check that estimator functions return float8; * Require execute permission at the time of CREATE OPERATOR on the operator's function as well as the estimator functions; * Require ownership of any pre-existing operator that's modified by the command. I also moved the lookup of the functions out of OperatorCreate() and into operatorcmds.c, since that seemed more consistent with most of the other catalog object creation processes, eg CREATE TYPE.
2008-08-16 02:01:38 +02:00
NameListToString(functionName));
rettype = get_func_rettype(functionOid);
aclresult = object_aclcheck(TypeRelationId, rettype, GetUserId(), ACL_USAGE);
if (aclresult != ACLCHECK_OK)
aclcheck_error_type(aclresult, rettype);
Clean up the loose ends in selectivity estimation left by my patch for semi and anti joins. To do this, pass the SpecialJoinInfo struct for the current join as an additional optional argument to operator join selectivity estimation functions. This allows the estimator to tell not only what kind of join is being formed, but which variable is on which side of the join; a requirement long recognized but not dealt with till now. This also leaves the door open for future improvements in the estimators, such as accounting for the null-insertion effects of lower outer joins. I didn't do anything about that in the current patch but the information is in principle deducible from what's passed. The patch also clarifies the definition of join selectivity for semi/anti joins: it's the fraction of the left input that has (at least one) match in the right input. This allows getting rid of some very fuzzy thinking that I had committed in the original 7.4-era IN-optimization patch. There's probably room to estimate this better than the present patch does, but at least we know what to estimate. Since I had to touch CREATE OPERATOR anyway to allow a variant signature for join estimator functions, I took the opportunity to add a couple of additional checks that were missing, per my recent message to -hackers: * Check that estimator functions return float8; * Require execute permission at the time of CREATE OPERATOR on the operator's function as well as the estimator functions; * Require ownership of any pre-existing operator that's modified by the command. I also moved the lookup of the functions out of OperatorCreate() and into operatorcmds.c, since that seemed more consistent with most of the other catalog object creation processes, eg CREATE TYPE.
2008-08-16 02:01:38 +02:00
/*
* Look up restriction and join estimators if specified
Clean up the loose ends in selectivity estimation left by my patch for semi and anti joins. To do this, pass the SpecialJoinInfo struct for the current join as an additional optional argument to operator join selectivity estimation functions. This allows the estimator to tell not only what kind of join is being formed, but which variable is on which side of the join; a requirement long recognized but not dealt with till now. This also leaves the door open for future improvements in the estimators, such as accounting for the null-insertion effects of lower outer joins. I didn't do anything about that in the current patch but the information is in principle deducible from what's passed. The patch also clarifies the definition of join selectivity for semi/anti joins: it's the fraction of the left input that has (at least one) match in the right input. This allows getting rid of some very fuzzy thinking that I had committed in the original 7.4-era IN-optimization patch. There's probably room to estimate this better than the present patch does, but at least we know what to estimate. Since I had to touch CREATE OPERATOR anyway to allow a variant signature for join estimator functions, I took the opportunity to add a couple of additional checks that were missing, per my recent message to -hackers: * Check that estimator functions return float8; * Require execute permission at the time of CREATE OPERATOR on the operator's function as well as the estimator functions; * Require ownership of any pre-existing operator that's modified by the command. I also moved the lookup of the functions out of OperatorCreate() and into operatorcmds.c, since that seemed more consistent with most of the other catalog object creation processes, eg CREATE TYPE.
2008-08-16 02:01:38 +02:00
*/
if (restrictionName)
restrictionOid = ValidateRestrictionEstimator(restrictionName);
Clean up the loose ends in selectivity estimation left by my patch for semi and anti joins. To do this, pass the SpecialJoinInfo struct for the current join as an additional optional argument to operator join selectivity estimation functions. This allows the estimator to tell not only what kind of join is being formed, but which variable is on which side of the join; a requirement long recognized but not dealt with till now. This also leaves the door open for future improvements in the estimators, such as accounting for the null-insertion effects of lower outer joins. I didn't do anything about that in the current patch but the information is in principle deducible from what's passed. The patch also clarifies the definition of join selectivity for semi/anti joins: it's the fraction of the left input that has (at least one) match in the right input. This allows getting rid of some very fuzzy thinking that I had committed in the original 7.4-era IN-optimization patch. There's probably room to estimate this better than the present patch does, but at least we know what to estimate. Since I had to touch CREATE OPERATOR anyway to allow a variant signature for join estimator functions, I took the opportunity to add a couple of additional checks that were missing, per my recent message to -hackers: * Check that estimator functions return float8; * Require execute permission at the time of CREATE OPERATOR on the operator's function as well as the estimator functions; * Require ownership of any pre-existing operator that's modified by the command. I also moved the lookup of the functions out of OperatorCreate() and into operatorcmds.c, since that seemed more consistent with most of the other catalog object creation processes, eg CREATE TYPE.
2008-08-16 02:01:38 +02:00
else
restrictionOid = InvalidOid;
if (joinName)
joinOid = ValidateJoinEstimator(joinName);
Clean up the loose ends in selectivity estimation left by my patch for semi and anti joins. To do this, pass the SpecialJoinInfo struct for the current join as an additional optional argument to operator join selectivity estimation functions. This allows the estimator to tell not only what kind of join is being formed, but which variable is on which side of the join; a requirement long recognized but not dealt with till now. This also leaves the door open for future improvements in the estimators, such as accounting for the null-insertion effects of lower outer joins. I didn't do anything about that in the current patch but the information is in principle deducible from what's passed. The patch also clarifies the definition of join selectivity for semi/anti joins: it's the fraction of the left input that has (at least one) match in the right input. This allows getting rid of some very fuzzy thinking that I had committed in the original 7.4-era IN-optimization patch. There's probably room to estimate this better than the present patch does, but at least we know what to estimate. Since I had to touch CREATE OPERATOR anyway to allow a variant signature for join estimator functions, I took the opportunity to add a couple of additional checks that were missing, per my recent message to -hackers: * Check that estimator functions return float8; * Require execute permission at the time of CREATE OPERATOR on the operator's function as well as the estimator functions; * Require ownership of any pre-existing operator that's modified by the command. I also moved the lookup of the functions out of OperatorCreate() and into operatorcmds.c, since that seemed more consistent with most of the other catalog object creation processes, eg CREATE TYPE.
2008-08-16 02:01:38 +02:00
else
joinOid = InvalidOid;
/*
* now have OperatorCreate do all the work..
*/
return
OperatorCreate(oprName, /* operator name */
oprNamespace, /* namespace */
typeId1, /* left type id */
typeId2, /* right type id */
functionOid, /* function for operator */
commutatorName, /* optional commutator operator name */
negatorName, /* optional negator operator name */
restrictionOid, /* optional restrict. sel. function */
joinOid, /* optional join sel. function name */
canMerge, /* operator merges */
canHash); /* operator hashes */
}
/*
* Look up a restriction estimator function by name, and verify that it has
* the correct signature and we have the permissions to attach it to an
* operator.
*/
static Oid
ValidateRestrictionEstimator(List *restrictionName)
{
Oid typeId[4];
Oid restrictionOid;
AclResult aclresult;
typeId[0] = INTERNALOID; /* PlannerInfo */
typeId[1] = OIDOID; /* operator OID */
typeId[2] = INTERNALOID; /* args list */
typeId[3] = INT4OID; /* varRelid */
restrictionOid = LookupFuncName(restrictionName, 4, typeId, false);
/* estimators must return float8 */
if (get_func_rettype(restrictionOid) != FLOAT8OID)
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("restriction estimator function %s must return type %s",
NameListToString(restrictionName), "float8")));
/* Require EXECUTE rights for the estimator */
aclresult = object_aclcheck(ProcedureRelationId, restrictionOid, GetUserId(), ACL_EXECUTE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, OBJECT_FUNCTION,
NameListToString(restrictionName));
return restrictionOid;
}
/*
* Look up a join estimator function by name, and verify that it has the
* correct signature and we have the permissions to attach it to an
* operator.
*/
static Oid
ValidateJoinEstimator(List *joinName)
{
Oid typeId[5];
Oid joinOid;
Make contrib modules' installation scripts more secure. Hostile objects located within the installation-time search_path could capture references in an extension's installation or upgrade script. If the extension is being installed with superuser privileges, this opens the door to privilege escalation. While such hazards have existed all along, their urgency increases with the v13 "trusted extensions" feature, because that lets a non-superuser control the installation path for a superuser-privileged script. Therefore, make a number of changes to make such situations more secure: * Tweak the construction of the installation-time search_path to ensure that references to objects in pg_catalog can't be subverted; and explicitly add pg_temp to the end of the path to prevent attacks using temporary objects. * Disable check_function_bodies within installation/upgrade scripts, so that any security gaps in SQL-language or PL-language function bodies cannot create a risk of unwanted installation-time code execution. * Adjust lookup of type input/receive functions and join estimator functions to complain if there are multiple candidate functions. This prevents capture of references to functions whose signature is not the first one checked; and it's arguably more user-friendly anyway. * Modify various contrib upgrade scripts to ensure that catalog modification queries are executed with secure search paths. (These are in-place modifications with no extension version changes, since it is the update process itself that is at issue, not the end result.) Extensions that depend on other extensions cannot be made fully secure by these methods alone; therefore, revert the "trusted" marking that commit eb67623c9 applied to earthdistance and hstore_plperl, pending some better solution to that set of issues. Also add documentation around these issues, to help extension authors write secure installation scripts. Patch by me, following an observation by Andres Freund; thanks to Noah Misch for review. Security: CVE-2020-14350
2020-08-10 16:44:42 +02:00
Oid joinOid2;
AclResult aclresult;
typeId[0] = INTERNALOID; /* PlannerInfo */
typeId[1] = OIDOID; /* operator OID */
typeId[2] = INTERNALOID; /* args list */
typeId[3] = INT2OID; /* jointype */
typeId[4] = INTERNALOID; /* SpecialJoinInfo */
/*
* As of Postgres 8.4, the preferred signature for join estimators has 5
Make contrib modules' installation scripts more secure. Hostile objects located within the installation-time search_path could capture references in an extension's installation or upgrade script. If the extension is being installed with superuser privileges, this opens the door to privilege escalation. While such hazards have existed all along, their urgency increases with the v13 "trusted extensions" feature, because that lets a non-superuser control the installation path for a superuser-privileged script. Therefore, make a number of changes to make such situations more secure: * Tweak the construction of the installation-time search_path to ensure that references to objects in pg_catalog can't be subverted; and explicitly add pg_temp to the end of the path to prevent attacks using temporary objects. * Disable check_function_bodies within installation/upgrade scripts, so that any security gaps in SQL-language or PL-language function bodies cannot create a risk of unwanted installation-time code execution. * Adjust lookup of type input/receive functions and join estimator functions to complain if there are multiple candidate functions. This prevents capture of references to functions whose signature is not the first one checked; and it's arguably more user-friendly anyway. * Modify various contrib upgrade scripts to ensure that catalog modification queries are executed with secure search paths. (These are in-place modifications with no extension version changes, since it is the update process itself that is at issue, not the end result.) Extensions that depend on other extensions cannot be made fully secure by these methods alone; therefore, revert the "trusted" marking that commit eb67623c9 applied to earthdistance and hstore_plperl, pending some better solution to that set of issues. Also add documentation around these issues, to help extension authors write secure installation scripts. Patch by me, following an observation by Andres Freund; thanks to Noah Misch for review. Security: CVE-2020-14350
2020-08-10 16:44:42 +02:00
* arguments, but we still allow the old 4-argument form. Whine about
* ambiguity if both forms exist.
*/
joinOid = LookupFuncName(joinName, 5, typeId, true);
Make contrib modules' installation scripts more secure. Hostile objects located within the installation-time search_path could capture references in an extension's installation or upgrade script. If the extension is being installed with superuser privileges, this opens the door to privilege escalation. While such hazards have existed all along, their urgency increases with the v13 "trusted extensions" feature, because that lets a non-superuser control the installation path for a superuser-privileged script. Therefore, make a number of changes to make such situations more secure: * Tweak the construction of the installation-time search_path to ensure that references to objects in pg_catalog can't be subverted; and explicitly add pg_temp to the end of the path to prevent attacks using temporary objects. * Disable check_function_bodies within installation/upgrade scripts, so that any security gaps in SQL-language or PL-language function bodies cannot create a risk of unwanted installation-time code execution. * Adjust lookup of type input/receive functions and join estimator functions to complain if there are multiple candidate functions. This prevents capture of references to functions whose signature is not the first one checked; and it's arguably more user-friendly anyway. * Modify various contrib upgrade scripts to ensure that catalog modification queries are executed with secure search paths. (These are in-place modifications with no extension version changes, since it is the update process itself that is at issue, not the end result.) Extensions that depend on other extensions cannot be made fully secure by these methods alone; therefore, revert the "trusted" marking that commit eb67623c9 applied to earthdistance and hstore_plperl, pending some better solution to that set of issues. Also add documentation around these issues, to help extension authors write secure installation scripts. Patch by me, following an observation by Andres Freund; thanks to Noah Misch for review. Security: CVE-2020-14350
2020-08-10 16:44:42 +02:00
joinOid2 = LookupFuncName(joinName, 4, typeId, true);
if (OidIsValid(joinOid))
{
if (OidIsValid(joinOid2))
ereport(ERROR,
(errcode(ERRCODE_AMBIGUOUS_FUNCTION),
errmsg("join estimator function %s has multiple matches",
NameListToString(joinName))));
}
else
{
joinOid = joinOid2;
/* If not found, reference the 5-argument signature in error msg */
if (!OidIsValid(joinOid))
joinOid = LookupFuncName(joinName, 5, typeId, false);
}
/* estimators must return float8 */
if (get_func_rettype(joinOid) != FLOAT8OID)
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("join estimator function %s must return type %s",
NameListToString(joinName), "float8")));
/* Require EXECUTE rights for the estimator */
aclresult = object_aclcheck(ProcedureRelationId, joinOid, GetUserId(), ACL_EXECUTE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, OBJECT_FUNCTION,
NameListToString(joinName));
return joinOid;
}
/*
* Guts of operator deletion.
*/
void
RemoveOperatorById(Oid operOid)
{
Relation relation;
HeapTuple tup;
Form_pg_operator op;
relation = table_open(OperatorRelationId, RowExclusiveLock);
tup = SearchSysCache1(OPEROID, ObjectIdGetDatum(operOid));
if (!HeapTupleIsValid(tup)) /* should not happen */
elog(ERROR, "cache lookup failed for operator %u", operOid);
op = (Form_pg_operator) GETSTRUCT(tup);
/*
* Reset links from commutator and negator, if any. In case of a
* self-commutator or self-negator, this means we have to re-fetch the
* updated tuple. (We could optimize away updates on the tuple we're
* about to drop, but it doesn't seem worth convoluting the logic for.)
*/
if (OidIsValid(op->oprcom) || OidIsValid(op->oprnegate))
{
OperatorUpd(operOid, op->oprcom, op->oprnegate, true);
if (operOid == op->oprcom || operOid == op->oprnegate)
{
ReleaseSysCache(tup);
tup = SearchSysCache1(OPEROID, ObjectIdGetDatum(operOid));
if (!HeapTupleIsValid(tup)) /* should not happen */
elog(ERROR, "cache lookup failed for operator %u", operOid);
}
}
CatalogTupleDelete(relation, &tup->t_self);
ReleaseSysCache(tup);
table_close(relation, RowExclusiveLock);
}
/*
* AlterOperator
* routine implementing ALTER OPERATOR <operator> SET (option = ...).
*
* Currently, only RESTRICT and JOIN estimator functions can be changed.
*/
ObjectAddress
AlterOperator(AlterOperatorStmt *stmt)
{
ObjectAddress address;
Oid oprId;
Relation catalog;
HeapTuple tup;
Form_pg_operator oprForm;
int i;
ListCell *pl;
Datum values[Natts_pg_operator];
bool nulls[Natts_pg_operator];
bool replaces[Natts_pg_operator];
List *restrictionName = NIL; /* optional restrict. sel. function */
bool updateRestriction = false;
Oid restrictionOid;
List *joinName = NIL; /* optional join sel. function */
bool updateJoin = false;
Oid joinOid;
/* Look up the operator */
oprId = LookupOperWithArgs(stmt->opername, false);
catalog = table_open(OperatorRelationId, RowExclusiveLock);
tup = SearchSysCacheCopy1(OPEROID, ObjectIdGetDatum(oprId));
if (!HeapTupleIsValid(tup))
elog(ERROR, "cache lookup failed for operator %u", oprId);
oprForm = (Form_pg_operator) GETSTRUCT(tup);
/* Process options */
foreach(pl, stmt->options)
{
DefElem *defel = (DefElem *) lfirst(pl);
List *param;
if (defel->arg == NULL)
param = NIL; /* NONE, removes the function */
else
param = defGetQualifiedName(defel);
Avoid unnecessary use of pg_strcasecmp for already-downcased identifiers. We have a lot of code in which option names, which from the user's viewpoint are logically keywords, are passed through the grammar as plain identifiers, and then matched to string literals during command execution. This approach avoids making words into lexer keywords unnecessarily. Some places matched these strings using plain strcmp, some using pg_strcasecmp. But the latter should be unnecessary since identifiers would have been downcased on their way through the parser. Aside from any efficiency concerns (probably not a big factor), the lack of consistency in this area creates a hazard of subtle bugs due to different places coming to different conclusions about whether two option names are the same or different. Hence, standardize on using strcmp() to match any option names that are expected to have been fed through the parser. This does create a user-visible behavioral change, which is that while formerly all of these would work: alter table foo set (fillfactor = 50); alter table foo set (FillFactor = 50); alter table foo set ("fillfactor" = 50); alter table foo set ("FillFactor" = 50); now the last case will fail because that double-quoted identifier is different from the others. However, none of our documentation says that you can use a quoted identifier in such contexts at all, and we should discourage doing so since it would break if we ever decide to parse such constructs as true lexer keywords rather than poor man's substitutes. So this shouldn't create a significant compatibility issue for users. Daniel Gustafsson, reviewed by Michael Paquier, small changes by me Discussion: https://postgr.es/m/29405B24-564E-476B-98C0-677A29805B84@yesql.se
2018-01-27 00:25:02 +01:00
if (strcmp(defel->defname, "restrict") == 0)
{
restrictionName = param;
updateRestriction = true;
}
Avoid unnecessary use of pg_strcasecmp for already-downcased identifiers. We have a lot of code in which option names, which from the user's viewpoint are logically keywords, are passed through the grammar as plain identifiers, and then matched to string literals during command execution. This approach avoids making words into lexer keywords unnecessarily. Some places matched these strings using plain strcmp, some using pg_strcasecmp. But the latter should be unnecessary since identifiers would have been downcased on their way through the parser. Aside from any efficiency concerns (probably not a big factor), the lack of consistency in this area creates a hazard of subtle bugs due to different places coming to different conclusions about whether two option names are the same or different. Hence, standardize on using strcmp() to match any option names that are expected to have been fed through the parser. This does create a user-visible behavioral change, which is that while formerly all of these would work: alter table foo set (fillfactor = 50); alter table foo set (FillFactor = 50); alter table foo set ("fillfactor" = 50); alter table foo set ("FillFactor" = 50); now the last case will fail because that double-quoted identifier is different from the others. However, none of our documentation says that you can use a quoted identifier in such contexts at all, and we should discourage doing so since it would break if we ever decide to parse such constructs as true lexer keywords rather than poor man's substitutes. So this shouldn't create a significant compatibility issue for users. Daniel Gustafsson, reviewed by Michael Paquier, small changes by me Discussion: https://postgr.es/m/29405B24-564E-476B-98C0-677A29805B84@yesql.se
2018-01-27 00:25:02 +01:00
else if (strcmp(defel->defname, "join") == 0)
{
joinName = param;
updateJoin = true;
}
/*
* The rest of the options that CREATE accepts cannot be changed.
* Check for them so that we can give a meaningful error message.
*/
Avoid unnecessary use of pg_strcasecmp for already-downcased identifiers. We have a lot of code in which option names, which from the user's viewpoint are logically keywords, are passed through the grammar as plain identifiers, and then matched to string literals during command execution. This approach avoids making words into lexer keywords unnecessarily. Some places matched these strings using plain strcmp, some using pg_strcasecmp. But the latter should be unnecessary since identifiers would have been downcased on their way through the parser. Aside from any efficiency concerns (probably not a big factor), the lack of consistency in this area creates a hazard of subtle bugs due to different places coming to different conclusions about whether two option names are the same or different. Hence, standardize on using strcmp() to match any option names that are expected to have been fed through the parser. This does create a user-visible behavioral change, which is that while formerly all of these would work: alter table foo set (fillfactor = 50); alter table foo set (FillFactor = 50); alter table foo set ("fillfactor" = 50); alter table foo set ("FillFactor" = 50); now the last case will fail because that double-quoted identifier is different from the others. However, none of our documentation says that you can use a quoted identifier in such contexts at all, and we should discourage doing so since it would break if we ever decide to parse such constructs as true lexer keywords rather than poor man's substitutes. So this shouldn't create a significant compatibility issue for users. Daniel Gustafsson, reviewed by Michael Paquier, small changes by me Discussion: https://postgr.es/m/29405B24-564E-476B-98C0-677A29805B84@yesql.se
2018-01-27 00:25:02 +01:00
else if (strcmp(defel->defname, "leftarg") == 0 ||
strcmp(defel->defname, "rightarg") == 0 ||
strcmp(defel->defname, "function") == 0 ||
Avoid unnecessary use of pg_strcasecmp for already-downcased identifiers. We have a lot of code in which option names, which from the user's viewpoint are logically keywords, are passed through the grammar as plain identifiers, and then matched to string literals during command execution. This approach avoids making words into lexer keywords unnecessarily. Some places matched these strings using plain strcmp, some using pg_strcasecmp. But the latter should be unnecessary since identifiers would have been downcased on their way through the parser. Aside from any efficiency concerns (probably not a big factor), the lack of consistency in this area creates a hazard of subtle bugs due to different places coming to different conclusions about whether two option names are the same or different. Hence, standardize on using strcmp() to match any option names that are expected to have been fed through the parser. This does create a user-visible behavioral change, which is that while formerly all of these would work: alter table foo set (fillfactor = 50); alter table foo set (FillFactor = 50); alter table foo set ("fillfactor" = 50); alter table foo set ("FillFactor" = 50); now the last case will fail because that double-quoted identifier is different from the others. However, none of our documentation says that you can use a quoted identifier in such contexts at all, and we should discourage doing so since it would break if we ever decide to parse such constructs as true lexer keywords rather than poor man's substitutes. So this shouldn't create a significant compatibility issue for users. Daniel Gustafsson, reviewed by Michael Paquier, small changes by me Discussion: https://postgr.es/m/29405B24-564E-476B-98C0-677A29805B84@yesql.se
2018-01-27 00:25:02 +01:00
strcmp(defel->defname, "procedure") == 0 ||
strcmp(defel->defname, "commutator") == 0 ||
strcmp(defel->defname, "negator") == 0 ||
strcmp(defel->defname, "hashes") == 0 ||
strcmp(defel->defname, "merges") == 0)
{
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
2016-06-07 20:18:08 +02:00
errmsg("operator attribute \"%s\" cannot be changed",
defel->defname)));
}
else
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("operator attribute \"%s\" not recognized",
defel->defname)));
}
/* Check permissions. Must be owner. */
if (!object_ownercheck(OperatorRelationId, oprId, GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, OBJECT_OPERATOR,
NameStr(oprForm->oprname));
/*
* Look up restriction and join estimators if specified
*/
if (restrictionName)
restrictionOid = ValidateRestrictionEstimator(restrictionName);
else
restrictionOid = InvalidOid;
if (joinName)
joinOid = ValidateJoinEstimator(joinName);
else
joinOid = InvalidOid;
/* Perform additional checks, like OperatorCreate does */
if (!(OidIsValid(oprForm->oprleft) && OidIsValid(oprForm->oprright)))
{
/* If it's not a binary op, these things mustn't be set: */
if (OidIsValid(joinOid))
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("only binary operators can have join selectivity")));
}
if (oprForm->oprresult != BOOLOID)
{
if (OidIsValid(restrictionOid))
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("only boolean operators can have restriction selectivity")));
if (OidIsValid(joinOid))
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("only boolean operators can have join selectivity")));
}
/* Update the tuple */
for (i = 0; i < Natts_pg_operator; ++i)
{
values[i] = (Datum) 0;
replaces[i] = false;
nulls[i] = false;
}
if (updateRestriction)
{
replaces[Anum_pg_operator_oprrest - 1] = true;
values[Anum_pg_operator_oprrest - 1] = restrictionOid;
}
if (updateJoin)
{
replaces[Anum_pg_operator_oprjoin - 1] = true;
values[Anum_pg_operator_oprjoin - 1] = joinOid;
}
tup = heap_modify_tuple(tup, RelationGetDescr(catalog),
values, nulls, replaces);
CatalogTupleUpdate(catalog, &tup->t_self, tup);
Prevent ALTER TYPE/DOMAIN/OPERATOR from changing extension membership. If recordDependencyOnCurrentExtension is invoked on a pre-existing, free-standing object during an extension update script, that object will become owned by the extension. In our current code this is possible in three cases: * Replacing a "shell" type or operator. * CREATE OR REPLACE overwriting an existing object. * ALTER TYPE SET, ALTER DOMAIN SET, and ALTER OPERATOR SET. The first of these cases is intentional behavior, as noted by the existing comments for GenerateTypeDependencies. It seems like appropriate behavior for CREATE OR REPLACE too; at least, the obvious alternatives are not better. However, the fact that it happens during ALTER is an artifact of trying to share code (GenerateTypeDependencies and makeOperatorDependencies) between the CREATE and ALTER cases. Since an extension script would be unlikely to ALTER an object that didn't already belong to the extension, this behavior is not very troubling for the direct target object ... but ALTER TYPE SET will recurse to dependent domains, and it is very uncool for those to become owned by the extension if they were not already. Let's fix this by redefining the ALTER cases to never change extension membership, full stop. We could minimize the behavioral change by only changing the behavior when ALTER TYPE SET is recursing to a domain, but that would complicate the code and it does not seem like a better definition. Per bug #17144 from Alex Kozhemyakin. Back-patch to v13 where ALTER TYPE SET was added. (The other cases are older, but since they only affect the directly-named object, there's not enough of a problem to justify changing the behavior further back.) Discussion: https://postgr.es/m/17144-e67d7a8f049de9af@postgresql.org
2021-08-17 20:29:22 +02:00
address = makeOperatorDependencies(tup, false, true);
InvokeObjectPostAlterHook(OperatorRelationId, oprId, 0);
table_close(catalog, NoLock);
return address;
}