postgresql/src/backend/commands/proclang.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

240 lines
6.9 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* proclang.c
* PostgreSQL LANGUAGE support code.
*
* Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
2010-09-20 22:08:53 +02:00
* src/backend/commands/proclang.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/table.h"
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
#include "catalog/catalog.h"
#include "catalog/dependency.h"
#include "catalog/indexing.h"
#include "catalog/objectaccess.h"
#include "catalog/pg_language.h"
#include "catalog/pg_namespace.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "commands/defrem.h"
#include "commands/proclang.h"
#include "miscadmin.h"
#include "parser/parse_func.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
#include "utils/rel.h"
#include "utils/syscache.h"
/*
* CREATE LANGUAGE
*/
ObjectAddress
CreateProceduralLanguage(CreatePLangStmt *stmt)
{
Invent "trusted" extensions, and remove the pg_pltemplate catalog. This patch creates a new extension property, "trusted". An extension that's marked that way in its control file can be installed by a non-superuser who has the CREATE privilege on the current database, even if the extension contains objects that normally would have to be created by a superuser. The objects within the extension will (by default) be owned by the bootstrap superuser, but the extension itself will be owned by the calling user. This allows replicating the old behavior around trusted procedural languages, without all the special-case logic in CREATE LANGUAGE. We have, however, chosen to loosen the rules slightly: formerly, only a database owner could take advantage of the special case that allowed installation of a trusted language, but now anyone who has CREATE privilege can do so. Having done that, we can delete the pg_pltemplate catalog, moving the knowledge it contained into the extension script files for the various PLs. This ends up being no change at all for the in-core PLs, but it is a large step forward for external PLs: they can now have the same ease of installation as core PLs do. The old "trusted PL" behavior was only available to PLs that had entries in pg_pltemplate, but now any extension can be marked trusted if appropriate. This also removes one of the stumbling blocks for our Python 2 -> 3 migration, since the association of "plpythonu" with Python 2 is no longer hard-wired into pg_pltemplate's initial contents. Exactly where we go from here on that front remains to be settled, but one problem is fixed. Patch by me, reviewed by Peter Eisentraut, Stephen Frost, and others. Discussion: https://postgr.es/m/5889.1566415762@sss.pgh.pa.us
2020-01-30 00:42:43 +01:00
const char *languageName = stmt->plname;
Oid languageOwner = GetUserId();
Oid handlerOid,
inlineOid,
valOid;
Oid funcrettype;
Oid funcargtypes[1];
Invent "trusted" extensions, and remove the pg_pltemplate catalog. This patch creates a new extension property, "trusted". An extension that's marked that way in its control file can be installed by a non-superuser who has the CREATE privilege on the current database, even if the extension contains objects that normally would have to be created by a superuser. The objects within the extension will (by default) be owned by the bootstrap superuser, but the extension itself will be owned by the calling user. This allows replicating the old behavior around trusted procedural languages, without all the special-case logic in CREATE LANGUAGE. We have, however, chosen to loosen the rules slightly: formerly, only a database owner could take advantage of the special case that allowed installation of a trusted language, but now anyone who has CREATE privilege can do so. Having done that, we can delete the pg_pltemplate catalog, moving the knowledge it contained into the extension script files for the various PLs. This ends up being no change at all for the in-core PLs, but it is a large step forward for external PLs: they can now have the same ease of installation as core PLs do. The old "trusted PL" behavior was only available to PLs that had entries in pg_pltemplate, but now any extension can be marked trusted if appropriate. This also removes one of the stumbling blocks for our Python 2 -> 3 migration, since the association of "plpythonu" with Python 2 is no longer hard-wired into pg_pltemplate's initial contents. Exactly where we go from here on that front remains to be settled, but one problem is fixed. Patch by me, reviewed by Peter Eisentraut, Stephen Frost, and others. Discussion: https://postgr.es/m/5889.1566415762@sss.pgh.pa.us
2020-01-30 00:42:43 +01:00
Relation rel;
TupleDesc tupDesc;
Datum values[Natts_pg_language];
bool nulls[Natts_pg_language];
bool replaces[Natts_pg_language];
NameData langname;
HeapTuple oldtup;
HeapTuple tup;
Oid langoid;
bool is_update;
ObjectAddress myself,
referenced;
ObjectAddresses *addrs;
/*
Invent "trusted" extensions, and remove the pg_pltemplate catalog. This patch creates a new extension property, "trusted". An extension that's marked that way in its control file can be installed by a non-superuser who has the CREATE privilege on the current database, even if the extension contains objects that normally would have to be created by a superuser. The objects within the extension will (by default) be owned by the bootstrap superuser, but the extension itself will be owned by the calling user. This allows replicating the old behavior around trusted procedural languages, without all the special-case logic in CREATE LANGUAGE. We have, however, chosen to loosen the rules slightly: formerly, only a database owner could take advantage of the special case that allowed installation of a trusted language, but now anyone who has CREATE privilege can do so. Having done that, we can delete the pg_pltemplate catalog, moving the knowledge it contained into the extension script files for the various PLs. This ends up being no change at all for the in-core PLs, but it is a large step forward for external PLs: they can now have the same ease of installation as core PLs do. The old "trusted PL" behavior was only available to PLs that had entries in pg_pltemplate, but now any extension can be marked trusted if appropriate. This also removes one of the stumbling blocks for our Python 2 -> 3 migration, since the association of "plpythonu" with Python 2 is no longer hard-wired into pg_pltemplate's initial contents. Exactly where we go from here on that front remains to be settled, but one problem is fixed. Patch by me, reviewed by Peter Eisentraut, Stephen Frost, and others. Discussion: https://postgr.es/m/5889.1566415762@sss.pgh.pa.us
2020-01-30 00:42:43 +01:00
* Check permission
*/
Invent "trusted" extensions, and remove the pg_pltemplate catalog. This patch creates a new extension property, "trusted". An extension that's marked that way in its control file can be installed by a non-superuser who has the CREATE privilege on the current database, even if the extension contains objects that normally would have to be created by a superuser. The objects within the extension will (by default) be owned by the bootstrap superuser, but the extension itself will be owned by the calling user. This allows replicating the old behavior around trusted procedural languages, without all the special-case logic in CREATE LANGUAGE. We have, however, chosen to loosen the rules slightly: formerly, only a database owner could take advantage of the special case that allowed installation of a trusted language, but now anyone who has CREATE privilege can do so. Having done that, we can delete the pg_pltemplate catalog, moving the knowledge it contained into the extension script files for the various PLs. This ends up being no change at all for the in-core PLs, but it is a large step forward for external PLs: they can now have the same ease of installation as core PLs do. The old "trusted PL" behavior was only available to PLs that had entries in pg_pltemplate, but now any extension can be marked trusted if appropriate. This also removes one of the stumbling blocks for our Python 2 -> 3 migration, since the association of "plpythonu" with Python 2 is no longer hard-wired into pg_pltemplate's initial contents. Exactly where we go from here on that front remains to be settled, but one problem is fixed. Patch by me, reviewed by Peter Eisentraut, Stephen Frost, and others. Discussion: https://postgr.es/m/5889.1566415762@sss.pgh.pa.us
2020-01-30 00:42:43 +01:00
if (!superuser())
ereport(ERROR,
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
errmsg("must be superuser to create custom procedural language")));
Invent "trusted" extensions, and remove the pg_pltemplate catalog. This patch creates a new extension property, "trusted". An extension that's marked that way in its control file can be installed by a non-superuser who has the CREATE privilege on the current database, even if the extension contains objects that normally would have to be created by a superuser. The objects within the extension will (by default) be owned by the bootstrap superuser, but the extension itself will be owned by the calling user. This allows replicating the old behavior around trusted procedural languages, without all the special-case logic in CREATE LANGUAGE. We have, however, chosen to loosen the rules slightly: formerly, only a database owner could take advantage of the special case that allowed installation of a trusted language, but now anyone who has CREATE privilege can do so. Having done that, we can delete the pg_pltemplate catalog, moving the knowledge it contained into the extension script files for the various PLs. This ends up being no change at all for the in-core PLs, but it is a large step forward for external PLs: they can now have the same ease of installation as core PLs do. The old "trusted PL" behavior was only available to PLs that had entries in pg_pltemplate, but now any extension can be marked trusted if appropriate. This also removes one of the stumbling blocks for our Python 2 -> 3 migration, since the association of "plpythonu" with Python 2 is no longer hard-wired into pg_pltemplate's initial contents. Exactly where we go from here on that front remains to be settled, but one problem is fixed. Patch by me, reviewed by Peter Eisentraut, Stephen Frost, and others. Discussion: https://postgr.es/m/5889.1566415762@sss.pgh.pa.us
2020-01-30 00:42:43 +01:00
/*
* Lookup the PL handler function and check that it is of the expected
* return type
*/
Assert(stmt->plhandler);
handlerOid = LookupFuncName(stmt->plhandler, 0, NULL, false);
funcrettype = get_func_rettype(handlerOid);
if (funcrettype != LANGUAGE_HANDLEROID)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("function %s must return type %s",
NameListToString(stmt->plhandler), "language_handler")));
Invent "trusted" extensions, and remove the pg_pltemplate catalog. This patch creates a new extension property, "trusted". An extension that's marked that way in its control file can be installed by a non-superuser who has the CREATE privilege on the current database, even if the extension contains objects that normally would have to be created by a superuser. The objects within the extension will (by default) be owned by the bootstrap superuser, but the extension itself will be owned by the calling user. This allows replicating the old behavior around trusted procedural languages, without all the special-case logic in CREATE LANGUAGE. We have, however, chosen to loosen the rules slightly: formerly, only a database owner could take advantage of the special case that allowed installation of a trusted language, but now anyone who has CREATE privilege can do so. Having done that, we can delete the pg_pltemplate catalog, moving the knowledge it contained into the extension script files for the various PLs. This ends up being no change at all for the in-core PLs, but it is a large step forward for external PLs: they can now have the same ease of installation as core PLs do. The old "trusted PL" behavior was only available to PLs that had entries in pg_pltemplate, but now any extension can be marked trusted if appropriate. This also removes one of the stumbling blocks for our Python 2 -> 3 migration, since the association of "plpythonu" with Python 2 is no longer hard-wired into pg_pltemplate's initial contents. Exactly where we go from here on that front remains to be settled, but one problem is fixed. Patch by me, reviewed by Peter Eisentraut, Stephen Frost, and others. Discussion: https://postgr.es/m/5889.1566415762@sss.pgh.pa.us
2020-01-30 00:42:43 +01:00
/* validate the inline function */
if (stmt->plinline)
{
funcargtypes[0] = INTERNALOID;
inlineOid = LookupFuncName(stmt->plinline, 1, funcargtypes, false);
/* return value is ignored, so we don't check the type */
}
else
Invent "trusted" extensions, and remove the pg_pltemplate catalog. This patch creates a new extension property, "trusted". An extension that's marked that way in its control file can be installed by a non-superuser who has the CREATE privilege on the current database, even if the extension contains objects that normally would have to be created by a superuser. The objects within the extension will (by default) be owned by the bootstrap superuser, but the extension itself will be owned by the calling user. This allows replicating the old behavior around trusted procedural languages, without all the special-case logic in CREATE LANGUAGE. We have, however, chosen to loosen the rules slightly: formerly, only a database owner could take advantage of the special case that allowed installation of a trusted language, but now anyone who has CREATE privilege can do so. Having done that, we can delete the pg_pltemplate catalog, moving the knowledge it contained into the extension script files for the various PLs. This ends up being no change at all for the in-core PLs, but it is a large step forward for external PLs: they can now have the same ease of installation as core PLs do. The old "trusted PL" behavior was only available to PLs that had entries in pg_pltemplate, but now any extension can be marked trusted if appropriate. This also removes one of the stumbling blocks for our Python 2 -> 3 migration, since the association of "plpythonu" with Python 2 is no longer hard-wired into pg_pltemplate's initial contents. Exactly where we go from here on that front remains to be settled, but one problem is fixed. Patch by me, reviewed by Peter Eisentraut, Stephen Frost, and others. Discussion: https://postgr.es/m/5889.1566415762@sss.pgh.pa.us
2020-01-30 00:42:43 +01:00
inlineOid = InvalidOid;
Invent "trusted" extensions, and remove the pg_pltemplate catalog. This patch creates a new extension property, "trusted". An extension that's marked that way in its control file can be installed by a non-superuser who has the CREATE privilege on the current database, even if the extension contains objects that normally would have to be created by a superuser. The objects within the extension will (by default) be owned by the bootstrap superuser, but the extension itself will be owned by the calling user. This allows replicating the old behavior around trusted procedural languages, without all the special-case logic in CREATE LANGUAGE. We have, however, chosen to loosen the rules slightly: formerly, only a database owner could take advantage of the special case that allowed installation of a trusted language, but now anyone who has CREATE privilege can do so. Having done that, we can delete the pg_pltemplate catalog, moving the knowledge it contained into the extension script files for the various PLs. This ends up being no change at all for the in-core PLs, but it is a large step forward for external PLs: they can now have the same ease of installation as core PLs do. The old "trusted PL" behavior was only available to PLs that had entries in pg_pltemplate, but now any extension can be marked trusted if appropriate. This also removes one of the stumbling blocks for our Python 2 -> 3 migration, since the association of "plpythonu" with Python 2 is no longer hard-wired into pg_pltemplate's initial contents. Exactly where we go from here on that front remains to be settled, but one problem is fixed. Patch by me, reviewed by Peter Eisentraut, Stephen Frost, and others. Discussion: https://postgr.es/m/5889.1566415762@sss.pgh.pa.us
2020-01-30 00:42:43 +01:00
/* validate the validator function */
if (stmt->plvalidator)
{
funcargtypes[0] = OIDOID;
valOid = LookupFuncName(stmt->plvalidator, 1, funcargtypes, false);
/* return value is ignored, so we don't check the type */
}
Invent "trusted" extensions, and remove the pg_pltemplate catalog. This patch creates a new extension property, "trusted". An extension that's marked that way in its control file can be installed by a non-superuser who has the CREATE privilege on the current database, even if the extension contains objects that normally would have to be created by a superuser. The objects within the extension will (by default) be owned by the bootstrap superuser, but the extension itself will be owned by the calling user. This allows replicating the old behavior around trusted procedural languages, without all the special-case logic in CREATE LANGUAGE. We have, however, chosen to loosen the rules slightly: formerly, only a database owner could take advantage of the special case that allowed installation of a trusted language, but now anyone who has CREATE privilege can do so. Having done that, we can delete the pg_pltemplate catalog, moving the knowledge it contained into the extension script files for the various PLs. This ends up being no change at all for the in-core PLs, but it is a large step forward for external PLs: they can now have the same ease of installation as core PLs do. The old "trusted PL" behavior was only available to PLs that had entries in pg_pltemplate, but now any extension can be marked trusted if appropriate. This also removes one of the stumbling blocks for our Python 2 -> 3 migration, since the association of "plpythonu" with Python 2 is no longer hard-wired into pg_pltemplate's initial contents. Exactly where we go from here on that front remains to be settled, but one problem is fixed. Patch by me, reviewed by Peter Eisentraut, Stephen Frost, and others. Discussion: https://postgr.es/m/5889.1566415762@sss.pgh.pa.us
2020-01-30 00:42:43 +01:00
else
valOid = InvalidOid;
Invent "trusted" extensions, and remove the pg_pltemplate catalog. This patch creates a new extension property, "trusted". An extension that's marked that way in its control file can be installed by a non-superuser who has the CREATE privilege on the current database, even if the extension contains objects that normally would have to be created by a superuser. The objects within the extension will (by default) be owned by the bootstrap superuser, but the extension itself will be owned by the calling user. This allows replicating the old behavior around trusted procedural languages, without all the special-case logic in CREATE LANGUAGE. We have, however, chosen to loosen the rules slightly: formerly, only a database owner could take advantage of the special case that allowed installation of a trusted language, but now anyone who has CREATE privilege can do so. Having done that, we can delete the pg_pltemplate catalog, moving the knowledge it contained into the extension script files for the various PLs. This ends up being no change at all for the in-core PLs, but it is a large step forward for external PLs: they can now have the same ease of installation as core PLs do. The old "trusted PL" behavior was only available to PLs that had entries in pg_pltemplate, but now any extension can be marked trusted if appropriate. This also removes one of the stumbling blocks for our Python 2 -> 3 migration, since the association of "plpythonu" with Python 2 is no longer hard-wired into pg_pltemplate's initial contents. Exactly where we go from here on that front remains to be settled, but one problem is fixed. Patch by me, reviewed by Peter Eisentraut, Stephen Frost, and others. Discussion: https://postgr.es/m/5889.1566415762@sss.pgh.pa.us
2020-01-30 00:42:43 +01:00
/* ok to create it */
rel = table_open(LanguageRelationId, RowExclusiveLock);
tupDesc = RelationGetDescr(rel);
/* Prepare data to be inserted */
memset(values, 0, sizeof(values));
memset(nulls, false, sizeof(nulls));
memset(replaces, true, sizeof(replaces));
namestrcpy(&langname, languageName);
values[Anum_pg_language_lanname - 1] = NameGetDatum(&langname);
values[Anum_pg_language_lanowner - 1] = ObjectIdGetDatum(languageOwner);
values[Anum_pg_language_lanispl - 1] = BoolGetDatum(true);
Invent "trusted" extensions, and remove the pg_pltemplate catalog. This patch creates a new extension property, "trusted". An extension that's marked that way in its control file can be installed by a non-superuser who has the CREATE privilege on the current database, even if the extension contains objects that normally would have to be created by a superuser. The objects within the extension will (by default) be owned by the bootstrap superuser, but the extension itself will be owned by the calling user. This allows replicating the old behavior around trusted procedural languages, without all the special-case logic in CREATE LANGUAGE. We have, however, chosen to loosen the rules slightly: formerly, only a database owner could take advantage of the special case that allowed installation of a trusted language, but now anyone who has CREATE privilege can do so. Having done that, we can delete the pg_pltemplate catalog, moving the knowledge it contained into the extension script files for the various PLs. This ends up being no change at all for the in-core PLs, but it is a large step forward for external PLs: they can now have the same ease of installation as core PLs do. The old "trusted PL" behavior was only available to PLs that had entries in pg_pltemplate, but now any extension can be marked trusted if appropriate. This also removes one of the stumbling blocks for our Python 2 -> 3 migration, since the association of "plpythonu" with Python 2 is no longer hard-wired into pg_pltemplate's initial contents. Exactly where we go from here on that front remains to be settled, but one problem is fixed. Patch by me, reviewed by Peter Eisentraut, Stephen Frost, and others. Discussion: https://postgr.es/m/5889.1566415762@sss.pgh.pa.us
2020-01-30 00:42:43 +01:00
values[Anum_pg_language_lanpltrusted - 1] = BoolGetDatum(stmt->pltrusted);
values[Anum_pg_language_lanplcallfoid - 1] = ObjectIdGetDatum(handlerOid);
values[Anum_pg_language_laninline - 1] = ObjectIdGetDatum(inlineOid);
values[Anum_pg_language_lanvalidator - 1] = ObjectIdGetDatum(valOid);
nulls[Anum_pg_language_lanacl - 1] = true;
/* Check for pre-existing definition */
oldtup = SearchSysCache1(LANGNAME, PointerGetDatum(languageName));
if (HeapTupleIsValid(oldtup))
{
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
Form_pg_language oldform = (Form_pg_language) GETSTRUCT(oldtup);
/* There is one; okay to replace it? */
Invent "trusted" extensions, and remove the pg_pltemplate catalog. This patch creates a new extension property, "trusted". An extension that's marked that way in its control file can be installed by a non-superuser who has the CREATE privilege on the current database, even if the extension contains objects that normally would have to be created by a superuser. The objects within the extension will (by default) be owned by the bootstrap superuser, but the extension itself will be owned by the calling user. This allows replicating the old behavior around trusted procedural languages, without all the special-case logic in CREATE LANGUAGE. We have, however, chosen to loosen the rules slightly: formerly, only a database owner could take advantage of the special case that allowed installation of a trusted language, but now anyone who has CREATE privilege can do so. Having done that, we can delete the pg_pltemplate catalog, moving the knowledge it contained into the extension script files for the various PLs. This ends up being no change at all for the in-core PLs, but it is a large step forward for external PLs: they can now have the same ease of installation as core PLs do. The old "trusted PL" behavior was only available to PLs that had entries in pg_pltemplate, but now any extension can be marked trusted if appropriate. This also removes one of the stumbling blocks for our Python 2 -> 3 migration, since the association of "plpythonu" with Python 2 is no longer hard-wired into pg_pltemplate's initial contents. Exactly where we go from here on that front remains to be settled, but one problem is fixed. Patch by me, reviewed by Peter Eisentraut, Stephen Frost, and others. Discussion: https://postgr.es/m/5889.1566415762@sss.pgh.pa.us
2020-01-30 00:42:43 +01:00
if (!stmt->replace)
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_OBJECT),
errmsg("language \"%s\" already exists", languageName)));
Invent "trusted" extensions, and remove the pg_pltemplate catalog. This patch creates a new extension property, "trusted". An extension that's marked that way in its control file can be installed by a non-superuser who has the CREATE privilege on the current database, even if the extension contains objects that normally would have to be created by a superuser. The objects within the extension will (by default) be owned by the bootstrap superuser, but the extension itself will be owned by the calling user. This allows replicating the old behavior around trusted procedural languages, without all the special-case logic in CREATE LANGUAGE. We have, however, chosen to loosen the rules slightly: formerly, only a database owner could take advantage of the special case that allowed installation of a trusted language, but now anyone who has CREATE privilege can do so. Having done that, we can delete the pg_pltemplate catalog, moving the knowledge it contained into the extension script files for the various PLs. This ends up being no change at all for the in-core PLs, but it is a large step forward for external PLs: they can now have the same ease of installation as core PLs do. The old "trusted PL" behavior was only available to PLs that had entries in pg_pltemplate, but now any extension can be marked trusted if appropriate. This also removes one of the stumbling blocks for our Python 2 -> 3 migration, since the association of "plpythonu" with Python 2 is no longer hard-wired into pg_pltemplate's initial contents. Exactly where we go from here on that front remains to be settled, but one problem is fixed. Patch by me, reviewed by Peter Eisentraut, Stephen Frost, and others. Discussion: https://postgr.es/m/5889.1566415762@sss.pgh.pa.us
2020-01-30 00:42:43 +01:00
/* This is currently pointless, since we already checked superuser */
#ifdef NOT_USED
if (!object_ownercheck(LanguageRelationId, oldform->oid, languageOwner))
aclcheck_error(ACLCHECK_NOT_OWNER, OBJECT_LANGUAGE,
languageName);
Invent "trusted" extensions, and remove the pg_pltemplate catalog. This patch creates a new extension property, "trusted". An extension that's marked that way in its control file can be installed by a non-superuser who has the CREATE privilege on the current database, even if the extension contains objects that normally would have to be created by a superuser. The objects within the extension will (by default) be owned by the bootstrap superuser, but the extension itself will be owned by the calling user. This allows replicating the old behavior around trusted procedural languages, without all the special-case logic in CREATE LANGUAGE. We have, however, chosen to loosen the rules slightly: formerly, only a database owner could take advantage of the special case that allowed installation of a trusted language, but now anyone who has CREATE privilege can do so. Having done that, we can delete the pg_pltemplate catalog, moving the knowledge it contained into the extension script files for the various PLs. This ends up being no change at all for the in-core PLs, but it is a large step forward for external PLs: they can now have the same ease of installation as core PLs do. The old "trusted PL" behavior was only available to PLs that had entries in pg_pltemplate, but now any extension can be marked trusted if appropriate. This also removes one of the stumbling blocks for our Python 2 -> 3 migration, since the association of "plpythonu" with Python 2 is no longer hard-wired into pg_pltemplate's initial contents. Exactly where we go from here on that front remains to be settled, but one problem is fixed. Patch by me, reviewed by Peter Eisentraut, Stephen Frost, and others. Discussion: https://postgr.es/m/5889.1566415762@sss.pgh.pa.us
2020-01-30 00:42:43 +01:00
#endif
/*
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
* Do not change existing oid, ownership or permissions. Note
* dependency-update code below has to agree with this decision.
*/
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
replaces[Anum_pg_language_oid - 1] = false;
replaces[Anum_pg_language_lanowner - 1] = false;
replaces[Anum_pg_language_lanacl - 1] = false;
/* Okay, do it... */
tup = heap_modify_tuple(oldtup, tupDesc, values, nulls, replaces);
CatalogTupleUpdate(rel, &tup->t_self, tup);
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
langoid = oldform->oid;
ReleaseSysCache(oldtup);
is_update = true;
}
else
{
/* Creating a new language */
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
langoid = GetNewOidWithIndex(rel, LanguageOidIndexId,
Anum_pg_language_oid);
values[Anum_pg_language_oid - 1] = ObjectIdGetDatum(langoid);
tup = heap_form_tuple(tupDesc, values, nulls);
CatalogTupleInsert(rel, tup);
is_update = false;
}
/*
* Create dependencies for the new language. If we are updating an
* existing language, first delete any existing pg_depend entries.
* (However, since we are not changing ownership or permissions, the
* shared dependencies do *not* need to change, and we leave them alone.)
*/
myself.classId = LanguageRelationId;
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
myself.objectId = langoid;
myself.objectSubId = 0;
if (is_update)
deleteDependencyRecordsFor(myself.classId, myself.objectId, true);
/* dependency on owner of language */
if (!is_update)
recordDependencyOnOwner(myself.classId, myself.objectId,
languageOwner);
/* dependency on extension */
recordDependencyOnCurrentExtension(&myself, is_update);
addrs = new_object_addresses();
/* dependency on the PL handler function */
ObjectAddressSet(referenced, ProcedureRelationId, handlerOid);
add_exact_object_address(&referenced, addrs);
/* dependency on the inline handler function, if any */
if (OidIsValid(inlineOid))
{
ObjectAddressSet(referenced, ProcedureRelationId, inlineOid);
add_exact_object_address(&referenced, addrs);
}
/* dependency on the validator function, if any */
if (OidIsValid(valOid))
{
ObjectAddressSet(referenced, ProcedureRelationId, valOid);
add_exact_object_address(&referenced, addrs);
}
record_object_address_dependencies(&myself, addrs, DEPENDENCY_NORMAL);
free_object_addresses(addrs);
/* Post creation hook for new procedural language */
InvokeObjectPostCreateHook(LanguageRelationId, myself.objectId, 0);
table_close(rel, RowExclusiveLock);
return myself;
}
/*
* get_language_oid - given a language name, look up the OID
*
* If missing_ok is false, throw an error if language name not found. If
* true, just return InvalidOid.
*/
Oid
get_language_oid(const char *langname, bool missing_ok)
{
Oid oid;
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
oid = GetSysCacheOid1(LANGNAME, Anum_pg_language_oid,
CStringGetDatum(langname));
if (!OidIsValid(oid) && !missing_ok)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("language \"%s\" does not exist", langname)));
return oid;
}