postgresql/src/backend/commands/subscriptioncmds.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

2348 lines
71 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* subscriptioncmds.c
* subscription catalog manipulation functions
*
* Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/commands/subscriptioncmds.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "access/table.h"
#include "access/xact.h"
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
#include "catalog/catalog.h"
#include "catalog/dependency.h"
#include "catalog/indexing.h"
#include "catalog/namespace.h"
#include "catalog/objectaccess.h"
#include "catalog/objectaddress.h"
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
#include "catalog/pg_authid_d.h"
#include "catalog/pg_database_d.h"
#include "catalog/pg_subscription.h"
#include "catalog/pg_subscription_rel.h"
#include "catalog/pg_type.h"
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
#include "commands/dbcommands.h"
#include "commands/defrem.h"
#include "commands/event_trigger.h"
#include "commands/subscriptioncmds.h"
#include "executor/executor.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "pgstat.h"
#include "replication/logicallauncher.h"
#include "replication/logicalworker.h"
#include "replication/origin.h"
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
#include "replication/slot.h"
#include "replication/walreceiver.h"
#include "replication/walsender.h"
#include "replication/worker_internal.h"
#include "storage/lmgr.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/guc.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/pg_lsn.h"
#include "utils/syscache.h"
/*
* Options that can be specified by the user in CREATE/ALTER SUBSCRIPTION
* command.
*/
#define SUBOPT_CONNECT 0x00000001
#define SUBOPT_ENABLED 0x00000002
#define SUBOPT_CREATE_SLOT 0x00000004
#define SUBOPT_SLOT_NAME 0x00000008
#define SUBOPT_COPY_DATA 0x00000010
#define SUBOPT_SYNCHRONOUS_COMMIT 0x00000020
#define SUBOPT_REFRESH 0x00000040
#define SUBOPT_BINARY 0x00000080
#define SUBOPT_STREAMING 0x00000100
Add support for prepared transactions to built-in logical replication. To add support for streaming transactions at prepare time into the built-in logical replication, we need to do the following things: * Modify the output plugin (pgoutput) to implement the new two-phase API callbacks, by leveraging the extended replication protocol. * Modify the replication apply worker, to properly handle two-phase transactions by replaying them on prepare. * Add a new SUBSCRIPTION option "two_phase" to allow users to enable two-phase transactions. We enable the two_phase once the initial data sync is over. We however must explicitly disable replication of two-phase transactions during replication slot creation, even if the plugin supports it. We don't need to replicate the changes accumulated during this phase, and moreover, we don't have a replication connection open so we don't know where to send the data anyway. The streaming option is not allowed with this new two_phase option. This can be done as a separate patch. We don't allow to toggle two_phase option of a subscription because it can lead to an inconsistent replica. For the same reason, we don't allow to refresh the publication once the two_phase is enabled for a subscription unless copy_data option is false. Author: Peter Smith, Ajin Cherian and Amit Kapila based on previous work by Nikhil Sontakke and Stas Kelvich Reviewed-by: Amit Kapila, Sawada Masahiko, Vignesh C, Dilip Kumar, Takamichi Osumi, Greg Nancarrow Tested-By: Haiying Tang Discussion: https://postgr.es/m/02DA5F5E-CECE-4D9C-8B4B-418077E2C010@postgrespro.ru Discussion: https://postgr.es/m/CAA4eK1+opiV4aFTmWWUF9h_32=HfPOW9vZASHarT0UA5oBrtGw@mail.gmail.com
2021-07-14 04:03:50 +02:00
#define SUBOPT_TWOPHASE_COMMIT 0x00000200
#define SUBOPT_DISABLE_ON_ERR 0x00000400
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
#define SUBOPT_PASSWORD_REQUIRED 0x00000800
#define SUBOPT_RUN_AS_OWNER 0x00001000
#define SUBOPT_LSN 0x00002000
#define SUBOPT_ORIGIN 0x00004000
/* check if the 'val' has 'bits' set */
#define IsSet(val, bits) (((val) & (bits)) == (bits))
/*
* Structure to hold a bitmap representing the user-provided CREATE/ALTER
* SUBSCRIPTION command options and the parsed/default values of each of them.
*/
typedef struct SubOpts
{
bits32 specified_opts;
char *slot_name;
char *synchronous_commit;
bool connect;
bool enabled;
bool create_slot;
bool copy_data;
bool refresh;
bool binary;
Perform apply of large transactions by parallel workers. Currently, for large transactions, the publisher sends the data in multiple streams (changes divided into chunks depending upon logical_decoding_work_mem), and then on the subscriber-side, the apply worker writes the changes into temporary files and once it receives the commit, it reads from those files and applies the entire transaction. To improve the performance of such transactions, we can instead allow them to be applied via parallel workers. In this approach, we assign a new parallel apply worker (if available) as soon as the xact's first stream is received and the leader apply worker will send changes to this new worker via shared memory. The parallel apply worker will directly apply the change instead of writing it to temporary files. However, if the leader apply worker times out while attempting to send a message to the parallel apply worker, it will switch to "partial serialize" mode - in this mode, the leader serializes all remaining changes to a file and notifies the parallel apply workers to read and apply them at the end of the transaction. We use a non-blocking way to send the messages from the leader apply worker to the parallel apply to avoid deadlocks. We keep this parallel apply assigned till the transaction commit is received and also wait for the worker to finish at commit. This preserves commit ordering and avoid writing to and reading from files in most cases. We still need to spill if there is no worker available. This patch also extends the SUBSCRIPTION 'streaming' parameter so that the user can control whether to apply the streaming transaction in a parallel apply worker or spill the change to disk. The user can set the streaming parameter to 'on/off', or 'parallel'. The parameter value 'parallel' means the streaming will be applied via a parallel apply worker, if available. The parameter value 'on' means the streaming transaction will be spilled to disk. The default value is 'off' (same as current behaviour). In addition, the patch extends the logical replication STREAM_ABORT message so that abort_lsn and abort_time can also be sent which can be used to update the replication origin in parallel apply worker when the streaming transaction is aborted. Because this message extension is needed to support parallel streaming, parallel streaming is not supported for publications on servers < PG16. Author: Hou Zhijie, Wang wei, Amit Kapila with design inputs from Sawada Masahiko Reviewed-by: Sawada Masahiko, Peter Smith, Dilip Kumar, Shi yu, Kuroda Hayato, Shveta Mallik Discussion: https://postgr.es/m/CAA4eK1+wyN6zpaHUkCLorEWNx75MG0xhMwcFhvjqm2KURZEAGw@mail.gmail.com
2023-01-09 02:30:39 +01:00
char streaming;
Add support for prepared transactions to built-in logical replication. To add support for streaming transactions at prepare time into the built-in logical replication, we need to do the following things: * Modify the output plugin (pgoutput) to implement the new two-phase API callbacks, by leveraging the extended replication protocol. * Modify the replication apply worker, to properly handle two-phase transactions by replaying them on prepare. * Add a new SUBSCRIPTION option "two_phase" to allow users to enable two-phase transactions. We enable the two_phase once the initial data sync is over. We however must explicitly disable replication of two-phase transactions during replication slot creation, even if the plugin supports it. We don't need to replicate the changes accumulated during this phase, and moreover, we don't have a replication connection open so we don't know where to send the data anyway. The streaming option is not allowed with this new two_phase option. This can be done as a separate patch. We don't allow to toggle two_phase option of a subscription because it can lead to an inconsistent replica. For the same reason, we don't allow to refresh the publication once the two_phase is enabled for a subscription unless copy_data option is false. Author: Peter Smith, Ajin Cherian and Amit Kapila based on previous work by Nikhil Sontakke and Stas Kelvich Reviewed-by: Amit Kapila, Sawada Masahiko, Vignesh C, Dilip Kumar, Takamichi Osumi, Greg Nancarrow Tested-By: Haiying Tang Discussion: https://postgr.es/m/02DA5F5E-CECE-4D9C-8B4B-418077E2C010@postgrespro.ru Discussion: https://postgr.es/m/CAA4eK1+opiV4aFTmWWUF9h_32=HfPOW9vZASHarT0UA5oBrtGw@mail.gmail.com
2021-07-14 04:03:50 +02:00
bool twophase;
bool disableonerr;
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
bool passwordrequired;
bool runasowner;
2022-07-21 05:17:38 +02:00
char *origin;
XLogRecPtr lsn;
} SubOpts;
static List *fetch_table_list(WalReceiverConn *wrconn, List *publications);
static void check_publications_origin(WalReceiverConn *wrconn,
List *publications, bool copydata,
char *origin, Oid *subrel_local_oids,
int subrel_count, char *subname);
static void check_duplicates_in_publist(List *publist, Datum *datums);
static List *merge_publications(List *oldpublist, List *newpublist, bool addpub, const char *subname);
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
static void ReportSlotConnectionError(List *rstates, Oid subid, char *slotname, char *err);
/*
* Common option parsing function for CREATE and ALTER SUBSCRIPTION commands.
*
* Since not all options can be specified in both commands, this function
* will report an error if mutually exclusive options are specified.
*/
static void
parse_subscription_options(ParseState *pstate, List *stmt_options,
bits32 supported_opts, SubOpts *opts)
{
ListCell *lc;
2017-05-15 19:59:58 +02:00
/* Start out with cleared opts. */
memset(opts, 0, sizeof(SubOpts));
/* caller must expect some option */
Assert(supported_opts != 0);
/* If connect option is supported, these others also need to be. */
Assert(!IsSet(supported_opts, SUBOPT_CONNECT) ||
IsSet(supported_opts, SUBOPT_ENABLED | SUBOPT_CREATE_SLOT |
SUBOPT_COPY_DATA));
2022-07-21 05:17:38 +02:00
/* Set default values for the supported options. */
if (IsSet(supported_opts, SUBOPT_CONNECT))
opts->connect = true;
if (IsSet(supported_opts, SUBOPT_ENABLED))
opts->enabled = true;
if (IsSet(supported_opts, SUBOPT_CREATE_SLOT))
opts->create_slot = true;
if (IsSet(supported_opts, SUBOPT_COPY_DATA))
opts->copy_data = true;
if (IsSet(supported_opts, SUBOPT_REFRESH))
opts->refresh = true;
if (IsSet(supported_opts, SUBOPT_BINARY))
opts->binary = false;
if (IsSet(supported_opts, SUBOPT_STREAMING))
Perform apply of large transactions by parallel workers. Currently, for large transactions, the publisher sends the data in multiple streams (changes divided into chunks depending upon logical_decoding_work_mem), and then on the subscriber-side, the apply worker writes the changes into temporary files and once it receives the commit, it reads from those files and applies the entire transaction. To improve the performance of such transactions, we can instead allow them to be applied via parallel workers. In this approach, we assign a new parallel apply worker (if available) as soon as the xact's first stream is received and the leader apply worker will send changes to this new worker via shared memory. The parallel apply worker will directly apply the change instead of writing it to temporary files. However, if the leader apply worker times out while attempting to send a message to the parallel apply worker, it will switch to "partial serialize" mode - in this mode, the leader serializes all remaining changes to a file and notifies the parallel apply workers to read and apply them at the end of the transaction. We use a non-blocking way to send the messages from the leader apply worker to the parallel apply to avoid deadlocks. We keep this parallel apply assigned till the transaction commit is received and also wait for the worker to finish at commit. This preserves commit ordering and avoid writing to and reading from files in most cases. We still need to spill if there is no worker available. This patch also extends the SUBSCRIPTION 'streaming' parameter so that the user can control whether to apply the streaming transaction in a parallel apply worker or spill the change to disk. The user can set the streaming parameter to 'on/off', or 'parallel'. The parameter value 'parallel' means the streaming will be applied via a parallel apply worker, if available. The parameter value 'on' means the streaming transaction will be spilled to disk. The default value is 'off' (same as current behaviour). In addition, the patch extends the logical replication STREAM_ABORT message so that abort_lsn and abort_time can also be sent which can be used to update the replication origin in parallel apply worker when the streaming transaction is aborted. Because this message extension is needed to support parallel streaming, parallel streaming is not supported for publications on servers < PG16. Author: Hou Zhijie, Wang wei, Amit Kapila with design inputs from Sawada Masahiko Reviewed-by: Sawada Masahiko, Peter Smith, Dilip Kumar, Shi yu, Kuroda Hayato, Shveta Mallik Discussion: https://postgr.es/m/CAA4eK1+wyN6zpaHUkCLorEWNx75MG0xhMwcFhvjqm2KURZEAGw@mail.gmail.com
2023-01-09 02:30:39 +01:00
opts->streaming = LOGICALREP_STREAM_OFF;
Add support for prepared transactions to built-in logical replication. To add support for streaming transactions at prepare time into the built-in logical replication, we need to do the following things: * Modify the output plugin (pgoutput) to implement the new two-phase API callbacks, by leveraging the extended replication protocol. * Modify the replication apply worker, to properly handle two-phase transactions by replaying them on prepare. * Add a new SUBSCRIPTION option "two_phase" to allow users to enable two-phase transactions. We enable the two_phase once the initial data sync is over. We however must explicitly disable replication of two-phase transactions during replication slot creation, even if the plugin supports it. We don't need to replicate the changes accumulated during this phase, and moreover, we don't have a replication connection open so we don't know where to send the data anyway. The streaming option is not allowed with this new two_phase option. This can be done as a separate patch. We don't allow to toggle two_phase option of a subscription because it can lead to an inconsistent replica. For the same reason, we don't allow to refresh the publication once the two_phase is enabled for a subscription unless copy_data option is false. Author: Peter Smith, Ajin Cherian and Amit Kapila based on previous work by Nikhil Sontakke and Stas Kelvich Reviewed-by: Amit Kapila, Sawada Masahiko, Vignesh C, Dilip Kumar, Takamichi Osumi, Greg Nancarrow Tested-By: Haiying Tang Discussion: https://postgr.es/m/02DA5F5E-CECE-4D9C-8B4B-418077E2C010@postgrespro.ru Discussion: https://postgr.es/m/CAA4eK1+opiV4aFTmWWUF9h_32=HfPOW9vZASHarT0UA5oBrtGw@mail.gmail.com
2021-07-14 04:03:50 +02:00
if (IsSet(supported_opts, SUBOPT_TWOPHASE_COMMIT))
opts->twophase = false;
if (IsSet(supported_opts, SUBOPT_DISABLE_ON_ERR))
opts->disableonerr = false;
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
if (IsSet(supported_opts, SUBOPT_PASSWORD_REQUIRED))
opts->passwordrequired = true;
if (IsSet(supported_opts, SUBOPT_RUN_AS_OWNER))
opts->runasowner = false;
2022-07-21 05:17:38 +02:00
if (IsSet(supported_opts, SUBOPT_ORIGIN))
opts->origin = pstrdup(LOGICALREP_ORIGIN_ANY);
/* Parse options */
foreach(lc, stmt_options)
{
DefElem *defel = (DefElem *) lfirst(lc);
if (IsSet(supported_opts, SUBOPT_CONNECT) &&
strcmp(defel->defname, "connect") == 0)
{
if (IsSet(opts->specified_opts, SUBOPT_CONNECT))
errorConflictingDefElem(defel, pstate);
opts->specified_opts |= SUBOPT_CONNECT;
opts->connect = defGetBoolean(defel);
}
else if (IsSet(supported_opts, SUBOPT_ENABLED) &&
strcmp(defel->defname, "enabled") == 0)
{
if (IsSet(opts->specified_opts, SUBOPT_ENABLED))
errorConflictingDefElem(defel, pstate);
opts->specified_opts |= SUBOPT_ENABLED;
opts->enabled = defGetBoolean(defel);
}
else if (IsSet(supported_opts, SUBOPT_CREATE_SLOT) &&
strcmp(defel->defname, "create_slot") == 0)
{
if (IsSet(opts->specified_opts, SUBOPT_CREATE_SLOT))
errorConflictingDefElem(defel, pstate);
opts->specified_opts |= SUBOPT_CREATE_SLOT;
opts->create_slot = defGetBoolean(defel);
}
else if (IsSet(supported_opts, SUBOPT_SLOT_NAME) &&
strcmp(defel->defname, "slot_name") == 0)
{
if (IsSet(opts->specified_opts, SUBOPT_SLOT_NAME))
errorConflictingDefElem(defel, pstate);
opts->specified_opts |= SUBOPT_SLOT_NAME;
opts->slot_name = defGetString(defel);
/* Setting slot_name = NONE is treated as no slot name. */
if (strcmp(opts->slot_name, "none") == 0)
opts->slot_name = NULL;
else
ReplicationSlotValidateName(opts->slot_name, ERROR);
}
else if (IsSet(supported_opts, SUBOPT_COPY_DATA) &&
strcmp(defel->defname, "copy_data") == 0)
{
if (IsSet(opts->specified_opts, SUBOPT_COPY_DATA))
errorConflictingDefElem(defel, pstate);
opts->specified_opts |= SUBOPT_COPY_DATA;
opts->copy_data = defGetBoolean(defel);
}
else if (IsSet(supported_opts, SUBOPT_SYNCHRONOUS_COMMIT) &&
strcmp(defel->defname, "synchronous_commit") == 0)
{
if (IsSet(opts->specified_opts, SUBOPT_SYNCHRONOUS_COMMIT))
errorConflictingDefElem(defel, pstate);
opts->specified_opts |= SUBOPT_SYNCHRONOUS_COMMIT;
opts->synchronous_commit = defGetString(defel);
/* Test if the given value is valid for synchronous_commit GUC. */
(void) set_config_option("synchronous_commit", opts->synchronous_commit,
PGC_BACKEND, PGC_S_TEST, GUC_ACTION_SET,
false, 0, false);
}
else if (IsSet(supported_opts, SUBOPT_REFRESH) &&
strcmp(defel->defname, "refresh") == 0)
{
if (IsSet(opts->specified_opts, SUBOPT_REFRESH))
errorConflictingDefElem(defel, pstate);
opts->specified_opts |= SUBOPT_REFRESH;
opts->refresh = defGetBoolean(defel);
}
else if (IsSet(supported_opts, SUBOPT_BINARY) &&
strcmp(defel->defname, "binary") == 0)
{
if (IsSet(opts->specified_opts, SUBOPT_BINARY))
errorConflictingDefElem(defel, pstate);
opts->specified_opts |= SUBOPT_BINARY;
opts->binary = defGetBoolean(defel);
}
else if (IsSet(supported_opts, SUBOPT_STREAMING) &&
strcmp(defel->defname, "streaming") == 0)
{
if (IsSet(opts->specified_opts, SUBOPT_STREAMING))
errorConflictingDefElem(defel, pstate);
opts->specified_opts |= SUBOPT_STREAMING;
Perform apply of large transactions by parallel workers. Currently, for large transactions, the publisher sends the data in multiple streams (changes divided into chunks depending upon logical_decoding_work_mem), and then on the subscriber-side, the apply worker writes the changes into temporary files and once it receives the commit, it reads from those files and applies the entire transaction. To improve the performance of such transactions, we can instead allow them to be applied via parallel workers. In this approach, we assign a new parallel apply worker (if available) as soon as the xact's first stream is received and the leader apply worker will send changes to this new worker via shared memory. The parallel apply worker will directly apply the change instead of writing it to temporary files. However, if the leader apply worker times out while attempting to send a message to the parallel apply worker, it will switch to "partial serialize" mode - in this mode, the leader serializes all remaining changes to a file and notifies the parallel apply workers to read and apply them at the end of the transaction. We use a non-blocking way to send the messages from the leader apply worker to the parallel apply to avoid deadlocks. We keep this parallel apply assigned till the transaction commit is received and also wait for the worker to finish at commit. This preserves commit ordering and avoid writing to and reading from files in most cases. We still need to spill if there is no worker available. This patch also extends the SUBSCRIPTION 'streaming' parameter so that the user can control whether to apply the streaming transaction in a parallel apply worker or spill the change to disk. The user can set the streaming parameter to 'on/off', or 'parallel'. The parameter value 'parallel' means the streaming will be applied via a parallel apply worker, if available. The parameter value 'on' means the streaming transaction will be spilled to disk. The default value is 'off' (same as current behaviour). In addition, the patch extends the logical replication STREAM_ABORT message so that abort_lsn and abort_time can also be sent which can be used to update the replication origin in parallel apply worker when the streaming transaction is aborted. Because this message extension is needed to support parallel streaming, parallel streaming is not supported for publications on servers < PG16. Author: Hou Zhijie, Wang wei, Amit Kapila with design inputs from Sawada Masahiko Reviewed-by: Sawada Masahiko, Peter Smith, Dilip Kumar, Shi yu, Kuroda Hayato, Shveta Mallik Discussion: https://postgr.es/m/CAA4eK1+wyN6zpaHUkCLorEWNx75MG0xhMwcFhvjqm2KURZEAGw@mail.gmail.com
2023-01-09 02:30:39 +01:00
opts->streaming = defGetStreamingMode(defel);
}
Add support for prepared transactions to built-in logical replication. To add support for streaming transactions at prepare time into the built-in logical replication, we need to do the following things: * Modify the output plugin (pgoutput) to implement the new two-phase API callbacks, by leveraging the extended replication protocol. * Modify the replication apply worker, to properly handle two-phase transactions by replaying them on prepare. * Add a new SUBSCRIPTION option "two_phase" to allow users to enable two-phase transactions. We enable the two_phase once the initial data sync is over. We however must explicitly disable replication of two-phase transactions during replication slot creation, even if the plugin supports it. We don't need to replicate the changes accumulated during this phase, and moreover, we don't have a replication connection open so we don't know where to send the data anyway. The streaming option is not allowed with this new two_phase option. This can be done as a separate patch. We don't allow to toggle two_phase option of a subscription because it can lead to an inconsistent replica. For the same reason, we don't allow to refresh the publication once the two_phase is enabled for a subscription unless copy_data option is false. Author: Peter Smith, Ajin Cherian and Amit Kapila based on previous work by Nikhil Sontakke and Stas Kelvich Reviewed-by: Amit Kapila, Sawada Masahiko, Vignesh C, Dilip Kumar, Takamichi Osumi, Greg Nancarrow Tested-By: Haiying Tang Discussion: https://postgr.es/m/02DA5F5E-CECE-4D9C-8B4B-418077E2C010@postgrespro.ru Discussion: https://postgr.es/m/CAA4eK1+opiV4aFTmWWUF9h_32=HfPOW9vZASHarT0UA5oBrtGw@mail.gmail.com
2021-07-14 04:03:50 +02:00
else if (strcmp(defel->defname, "two_phase") == 0)
{
/*
* Do not allow toggling of two_phase option. Doing so could cause
* missing of transactions and lead to an inconsistent replica.
* See comments atop worker.c
*
* Note: Unsupported twophase indicates that this call originated
* from AlterSubscription.
*/
if (!IsSet(supported_opts, SUBOPT_TWOPHASE_COMMIT))
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("unrecognized subscription parameter: \"%s\"", defel->defname)));
if (IsSet(opts->specified_opts, SUBOPT_TWOPHASE_COMMIT))
errorConflictingDefElem(defel, pstate);
Add support for prepared transactions to built-in logical replication. To add support for streaming transactions at prepare time into the built-in logical replication, we need to do the following things: * Modify the output plugin (pgoutput) to implement the new two-phase API callbacks, by leveraging the extended replication protocol. * Modify the replication apply worker, to properly handle two-phase transactions by replaying them on prepare. * Add a new SUBSCRIPTION option "two_phase" to allow users to enable two-phase transactions. We enable the two_phase once the initial data sync is over. We however must explicitly disable replication of two-phase transactions during replication slot creation, even if the plugin supports it. We don't need to replicate the changes accumulated during this phase, and moreover, we don't have a replication connection open so we don't know where to send the data anyway. The streaming option is not allowed with this new two_phase option. This can be done as a separate patch. We don't allow to toggle two_phase option of a subscription because it can lead to an inconsistent replica. For the same reason, we don't allow to refresh the publication once the two_phase is enabled for a subscription unless copy_data option is false. Author: Peter Smith, Ajin Cherian and Amit Kapila based on previous work by Nikhil Sontakke and Stas Kelvich Reviewed-by: Amit Kapila, Sawada Masahiko, Vignesh C, Dilip Kumar, Takamichi Osumi, Greg Nancarrow Tested-By: Haiying Tang Discussion: https://postgr.es/m/02DA5F5E-CECE-4D9C-8B4B-418077E2C010@postgrespro.ru Discussion: https://postgr.es/m/CAA4eK1+opiV4aFTmWWUF9h_32=HfPOW9vZASHarT0UA5oBrtGw@mail.gmail.com
2021-07-14 04:03:50 +02:00
opts->specified_opts |= SUBOPT_TWOPHASE_COMMIT;
opts->twophase = defGetBoolean(defel);
}
else if (IsSet(supported_opts, SUBOPT_DISABLE_ON_ERR) &&
strcmp(defel->defname, "disable_on_error") == 0)
{
if (IsSet(opts->specified_opts, SUBOPT_DISABLE_ON_ERR))
errorConflictingDefElem(defel, pstate);
opts->specified_opts |= SUBOPT_DISABLE_ON_ERR;
opts->disableonerr = defGetBoolean(defel);
}
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
else if (IsSet(supported_opts, SUBOPT_PASSWORD_REQUIRED) &&
strcmp(defel->defname, "password_required") == 0)
{
if (IsSet(opts->specified_opts, SUBOPT_PASSWORD_REQUIRED))
errorConflictingDefElem(defel, pstate);
opts->specified_opts |= SUBOPT_PASSWORD_REQUIRED;
opts->passwordrequired = defGetBoolean(defel);
}
else if (IsSet(supported_opts, SUBOPT_RUN_AS_OWNER) &&
strcmp(defel->defname, "run_as_owner") == 0)
{
if (IsSet(opts->specified_opts, SUBOPT_RUN_AS_OWNER))
errorConflictingDefElem(defel, pstate);
opts->specified_opts |= SUBOPT_RUN_AS_OWNER;
opts->runasowner = defGetBoolean(defel);
}
2022-07-21 05:17:38 +02:00
else if (IsSet(supported_opts, SUBOPT_ORIGIN) &&
strcmp(defel->defname, "origin") == 0)
{
if (IsSet(opts->specified_opts, SUBOPT_ORIGIN))
errorConflictingDefElem(defel, pstate);
opts->specified_opts |= SUBOPT_ORIGIN;
pfree(opts->origin);
/*
* Even though the "origin" parameter allows only "none" and "any"
* values, it is implemented as a string type so that the
* parameter can be extended in future versions to support
* filtering using origin names specified by the user.
*/
opts->origin = defGetString(defel);
if ((pg_strcasecmp(opts->origin, LOGICALREP_ORIGIN_NONE) != 0) &&
(pg_strcasecmp(opts->origin, LOGICALREP_ORIGIN_ANY) != 0))
ereport(ERROR,
errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("unrecognized origin value: \"%s\"", opts->origin));
}
else if (IsSet(supported_opts, SUBOPT_LSN) &&
strcmp(defel->defname, "lsn") == 0)
{
char *lsn_str = defGetString(defel);
XLogRecPtr lsn;
if (IsSet(opts->specified_opts, SUBOPT_LSN))
errorConflictingDefElem(defel, pstate);
/* Setting lsn = NONE is treated as resetting LSN */
if (strcmp(lsn_str, "none") == 0)
lsn = InvalidXLogRecPtr;
else
{
/* Parse the argument as LSN */
lsn = DatumGetLSN(DirectFunctionCall1(pg_lsn_in,
CStringGetDatum(lsn_str)));
if (XLogRecPtrIsInvalid(lsn))
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid WAL location (LSN): %s", lsn_str)));
}
opts->specified_opts |= SUBOPT_LSN;
opts->lsn = lsn;
}
else
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("unrecognized subscription parameter: \"%s\"", defel->defname)));
}
/*
* We've been explicitly asked to not connect, that requires some
* additional processing.
*/
if (!opts->connect && IsSet(supported_opts, SUBOPT_CONNECT))
{
/* Check for incompatible options from the user. */
if (opts->enabled &&
IsSet(opts->specified_opts, SUBOPT_ENABLED))
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
/*- translator: both %s are strings of the form "option = value" */
errmsg("%s and %s are mutually exclusive options",
"connect = false", "enabled = true")));
if (opts->create_slot &&
IsSet(opts->specified_opts, SUBOPT_CREATE_SLOT))
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("%s and %s are mutually exclusive options",
"connect = false", "create_slot = true")));
if (opts->copy_data &&
IsSet(opts->specified_opts, SUBOPT_COPY_DATA))
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("%s and %s are mutually exclusive options",
"connect = false", "copy_data = true")));
/* Change the defaults of other options. */
opts->enabled = false;
opts->create_slot = false;
opts->copy_data = false;
}
/*
* Do additional checking for disallowed combination when slot_name = NONE
* was used.
*/
if (!opts->slot_name &&
IsSet(opts->specified_opts, SUBOPT_SLOT_NAME))
{
if (opts->enabled)
{
if (IsSet(opts->specified_opts, SUBOPT_ENABLED))
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
/*- translator: both %s are strings of the form "option = value" */
errmsg("%s and %s are mutually exclusive options",
"slot_name = NONE", "enabled = true")));
else
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
/*- translator: both %s are strings of the form "option = value" */
errmsg("subscription with %s must also set %s",
"slot_name = NONE", "enabled = false")));
}
if (opts->create_slot)
{
if (IsSet(opts->specified_opts, SUBOPT_CREATE_SLOT))
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
/*- translator: both %s are strings of the form "option = value" */
errmsg("%s and %s are mutually exclusive options",
"slot_name = NONE", "create_slot = true")));
else
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
/*- translator: both %s are strings of the form "option = value" */
errmsg("subscription with %s must also set %s",
"slot_name = NONE", "create_slot = false")));
}
}
}
/*
* Add publication names from the list to a string.
*/
static void
get_publications_str(List *publications, StringInfo dest, bool quote_literal)
{
ListCell *lc;
bool first = true;
Assert(publications != NIL);
foreach(lc, publications)
{
char *pubname = strVal(lfirst(lc));
if (first)
first = false;
else
appendStringInfoString(dest, ", ");
if (quote_literal)
appendStringInfoString(dest, quote_literal_cstr(pubname));
else
{
appendStringInfoChar(dest, '"');
appendStringInfoString(dest, pubname);
appendStringInfoChar(dest, '"');
}
}
}
/*
2022-09-16 16:37:53 +02:00
* Check that the specified publications are present on the publisher.
*/
static void
check_publications(WalReceiverConn *wrconn, List *publications)
{
WalRcvExecResult *res;
StringInfo cmd;
TupleTableSlot *slot;
List *publicationsCopy = NIL;
Oid tableRow[1] = {TEXTOID};
cmd = makeStringInfo();
appendStringInfoString(cmd, "SELECT t.pubname FROM\n"
" pg_catalog.pg_publication t WHERE\n"
" t.pubname IN (");
get_publications_str(publications, cmd, true);
appendStringInfoChar(cmd, ')');
res = walrcv_exec(wrconn, cmd->data, 1, tableRow);
pfree(cmd->data);
pfree(cmd);
if (res->status != WALRCV_OK_TUPLES)
ereport(ERROR,
2022-09-25 00:38:35 +02:00
errmsg("could not receive list of publications from the publisher: %s",
res->err));
publicationsCopy = list_copy(publications);
/* Process publication(s). */
slot = MakeSingleTupleTableSlot(res->tupledesc, &TTSOpsMinimalTuple);
while (tuplestore_gettupleslot(res->tuplestore, true, false, slot))
{
char *pubname;
bool isnull;
pubname = TextDatumGetCString(slot_getattr(slot, 1, &isnull));
Assert(!isnull);
/* Delete the publication present in publisher from the list. */
publicationsCopy = list_delete(publicationsCopy, makeString(pubname));
ExecClearTuple(slot);
}
ExecDropSingleTupleTableSlot(slot);
walrcv_clear_result(res);
if (list_length(publicationsCopy))
{
/* Prepare the list of non-existent publication(s) for error message. */
StringInfo pubnames = makeStringInfo();
get_publications_str(publicationsCopy, pubnames, false);
ereport(WARNING,
errcode(ERRCODE_UNDEFINED_OBJECT),
2022-09-16 16:37:53 +02:00
errmsg_plural("publication %s does not exist on the publisher",
"publications %s do not exist on the publisher",
list_length(publicationsCopy),
pubnames->data));
}
}
/*
* Auxiliary function to build a text array out of a list of String nodes.
*/
static Datum
publicationListToArray(List *publist)
{
ArrayType *arr;
Datum *datums;
MemoryContext memcxt;
MemoryContext oldcxt;
/* Create memory context for temporary allocations. */
memcxt = AllocSetContextCreate(CurrentMemoryContext,
"publicationListToArray to array",
Rethink MemoryContext creation to improve performance. This patch makes a number of interrelated changes to reduce the overhead involved in creating/deleting memory contexts. The key ideas are: * Include the AllocSetContext header of an aset.c context in its first malloc request, rather than allocating it separately in TopMemoryContext. This means that we now always create an initial or "keeper" block in an aset, even if it never receives any allocation requests. * Create freelists in which we can save and recycle recently-destroyed asets (this idea is due to Robert Haas). * In the common case where the name of a context is a constant string, just store a pointer to it in the context header, rather than copying the string. The first change eliminates a palloc/pfree cycle per context, and also avoids bloat in TopMemoryContext, at the price that creating a context now involves a malloc/free cycle even if the context never receives any allocations. That would be a loser for some common usage patterns, but recycling short-lived contexts via the freelist eliminates that pain. Avoiding copying constant strings not only saves strlen() and strcpy() overhead, but is an essential part of the freelist optimization because it makes the context header size constant. Currently we make no attempt to use the freelist for contexts with non-constant names. (Perhaps someday we'll need to think harder about that, but in current usage, most contexts with custom names are long-lived anyway.) The freelist management in this initial commit is pretty simplistic, and we might want to refine it later --- but in common workloads that will never matter because the freelists will never get full anyway. To create a context with a non-constant name, one is now required to call AllocSetContextCreateExtended and specify the MEMCONTEXT_COPY_NAME option. AllocSetContextCreate becomes a wrapper macro, and it includes a test that will complain about non-string-literal context name parameters on gcc and similar compilers. An unfortunate side effect of making AllocSetContextCreate a macro is that one is now *required* to use the size parameter abstraction macros (ALLOCSET_DEFAULT_SIZES and friends) with it; the pre-9.6 habit of writing out individual size parameters no longer works unless you switch to AllocSetContextCreateExtended. Internally to the memory-context-related modules, the context creation APIs are simplified, removing the rather baroque original design whereby a context-type module called mcxt.c which then called back into the context-type module. That saved a bit of code duplication, but not much, and it prevented context-type modules from exercising control over the allocation of context headers. In passing, I converted the test-and-elog validation of aset size parameters into Asserts to save a few more cycles. The original thought was that callers might compute size parameters on the fly, but in practice nobody does that, so it's useless to expend cycles on checking those numbers in production builds. Also, mark the memory context method-pointer structs "const", just for cleanliness. Discussion: https://postgr.es/m/2264.1512870796@sss.pgh.pa.us
2017-12-13 19:55:12 +01:00
ALLOCSET_DEFAULT_SIZES);
oldcxt = MemoryContextSwitchTo(memcxt);
datums = (Datum *) palloc(sizeof(Datum) * list_length(publist));
check_duplicates_in_publist(publist, datums);
MemoryContextSwitchTo(oldcxt);
arr = construct_array_builtin(datums, list_length(publist), TEXTOID);
MemoryContextDelete(memcxt);
return PointerGetDatum(arr);
}
/*
* Create new subscription.
*/
ObjectAddress
CreateSubscription(ParseState *pstate, CreateSubscriptionStmt *stmt,
bool isTopLevel)
{
Relation rel;
ObjectAddress myself;
Oid subid;
bool nulls[Natts_pg_subscription];
Datum values[Natts_pg_subscription];
Oid owner = GetUserId();
HeapTuple tup;
char *conninfo;
char originname[NAMEDATALEN];
List *publications;
bits32 supported_opts;
SubOpts opts = {0};
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
AclResult aclresult;
/*
* Parse and check options.
*
* Connection and publication should not be specified here.
*/
supported_opts = (SUBOPT_CONNECT | SUBOPT_ENABLED | SUBOPT_CREATE_SLOT |
SUBOPT_SLOT_NAME | SUBOPT_COPY_DATA |
SUBOPT_SYNCHRONOUS_COMMIT | SUBOPT_BINARY |
SUBOPT_STREAMING | SUBOPT_TWOPHASE_COMMIT |
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
SUBOPT_DISABLE_ON_ERR | SUBOPT_PASSWORD_REQUIRED |
SUBOPT_RUN_AS_OWNER | SUBOPT_ORIGIN);
parse_subscription_options(pstate, stmt->options, supported_opts, &opts);
/*
* Since creating a replication slot is not transactional, rolling back
* the transaction leaves the created replication slot. So we cannot run
* CREATE SUBSCRIPTION inside a transaction block if creating a
* replication slot.
*/
if (opts.create_slot)
PreventInTransactionBlock(isTopLevel, "CREATE SUBSCRIPTION ... WITH (create_slot = true)");
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
/*
* We don't want to allow unprivileged users to be able to trigger
* attempts to access arbitrary network destinations, so require the user
* to have been specifically authorized to create subscriptions.
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
*/
if (!has_privs_of_role(owner, ROLE_PG_CREATE_SUBSCRIPTION))
ereport(ERROR,
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
errmsg("permission denied to create subscription"),
errdetail("Only roles with privileges of the \"%s\" role may create subscriptions.",
"pg_create_subscription")));
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
/*
* Since a subscription is a database object, we also check for CREATE
* permission on the database.
*/
aclresult = object_aclcheck(DatabaseRelationId, MyDatabaseId,
owner, ACL_CREATE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, OBJECT_DATABASE,
get_database_name(MyDatabaseId));
/*
* Non-superusers are required to set a password for authentication, and
* that password must be used by the target server, but the superuser can
* exempt a subscription from this requirement.
*/
if (!opts.passwordrequired && !superuser_arg(owner))
ereport(ERROR,
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
errmsg("password_required=false is superuser-only"),
errhint("Subscriptions with the password_required option set to false may only be created or modified by the superuser.")));
Add an enforcement mechanism for global object names in regression tests. In commit 18555b132 we tentatively established a rule that regression tests should use names containing "regression" for databases, and names starting with "regress_" for all other globally-visible object names, so as to circumscribe the side-effects that "make installcheck" could have on an existing installation. This commit adds a simple enforcement mechanism for that rule: if the code is compiled with ENFORCE_REGRESSION_TEST_NAME_RESTRICTIONS defined, it will emit a warning (not an error) whenever a database, role, tablespace, subscription, or replication origin name is created that doesn't obey the rule. Running one or more buildfarm members with that symbol defined should be enough to catch new violations, at least in the regular regression tests. Most TAP tests wouldn't notice such warnings, but that's actually fine because TAP tests don't execute against an existing server anyway. Since it's already the case that running src/test/modules/ tests in installcheck mode is deprecated, we can use that as a home for tests that seem unsafe to run against an existing server, such as tests that might have side-effects on existing roles. Document that (though this commit doesn't in itself make it any less safe than before). Update regress.sgml to define these restrictions more clearly, and to clean up assorted lack-of-up-to-date-ness in its descriptions of the available regression tests. Discussion: https://postgr.es/m/16638.1468620817@sss.pgh.pa.us
2019-06-29 17:34:00 +02:00
/*
* If built with appropriate switch, whine when regression-testing
* conventions for subscription names are violated.
*/
#ifdef ENFORCE_REGRESSION_TEST_NAME_RESTRICTIONS
if (strncmp(stmt->subname, "regress_", 8) != 0)
elog(WARNING, "subscriptions created by regression test cases should have names starting with \"regress_\"");
#endif
rel = table_open(SubscriptionRelationId, RowExclusiveLock);
/* Check if name is used */
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
subid = GetSysCacheOid2(SUBSCRIPTIONNAME, Anum_pg_subscription_oid,
MyDatabaseId, CStringGetDatum(stmt->subname));
if (OidIsValid(subid))
{
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_OBJECT),
errmsg("subscription \"%s\" already exists",
stmt->subname)));
}
if (!IsSet(opts.specified_opts, SUBOPT_SLOT_NAME) &&
opts.slot_name == NULL)
opts.slot_name = stmt->subname;
/* The default for synchronous_commit of subscriptions is off. */
if (opts.synchronous_commit == NULL)
opts.synchronous_commit = "off";
conninfo = stmt->conninfo;
publications = stmt->publication;
/* Load the library providing us libpq calls. */
load_file("libpqwalreceiver", false);
/* Check the connection info string. */
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
walrcv_check_conninfo(conninfo, opts.passwordrequired && !superuser());
/* Everything ok, form a new tuple. */
memset(values, 0, sizeof(values));
memset(nulls, false, sizeof(nulls));
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
subid = GetNewOidWithIndex(rel, SubscriptionObjectIndexId,
Anum_pg_subscription_oid);
values[Anum_pg_subscription_oid - 1] = ObjectIdGetDatum(subid);
values[Anum_pg_subscription_subdbid - 1] = ObjectIdGetDatum(MyDatabaseId);
values[Anum_pg_subscription_subskiplsn - 1] = LSNGetDatum(InvalidXLogRecPtr);
values[Anum_pg_subscription_subname - 1] =
DirectFunctionCall1(namein, CStringGetDatum(stmt->subname));
values[Anum_pg_subscription_subowner - 1] = ObjectIdGetDatum(owner);
values[Anum_pg_subscription_subenabled - 1] = BoolGetDatum(opts.enabled);
values[Anum_pg_subscription_subbinary - 1] = BoolGetDatum(opts.binary);
Perform apply of large transactions by parallel workers. Currently, for large transactions, the publisher sends the data in multiple streams (changes divided into chunks depending upon logical_decoding_work_mem), and then on the subscriber-side, the apply worker writes the changes into temporary files and once it receives the commit, it reads from those files and applies the entire transaction. To improve the performance of such transactions, we can instead allow them to be applied via parallel workers. In this approach, we assign a new parallel apply worker (if available) as soon as the xact's first stream is received and the leader apply worker will send changes to this new worker via shared memory. The parallel apply worker will directly apply the change instead of writing it to temporary files. However, if the leader apply worker times out while attempting to send a message to the parallel apply worker, it will switch to "partial serialize" mode - in this mode, the leader serializes all remaining changes to a file and notifies the parallel apply workers to read and apply them at the end of the transaction. We use a non-blocking way to send the messages from the leader apply worker to the parallel apply to avoid deadlocks. We keep this parallel apply assigned till the transaction commit is received and also wait for the worker to finish at commit. This preserves commit ordering and avoid writing to and reading from files in most cases. We still need to spill if there is no worker available. This patch also extends the SUBSCRIPTION 'streaming' parameter so that the user can control whether to apply the streaming transaction in a parallel apply worker or spill the change to disk. The user can set the streaming parameter to 'on/off', or 'parallel'. The parameter value 'parallel' means the streaming will be applied via a parallel apply worker, if available. The parameter value 'on' means the streaming transaction will be spilled to disk. The default value is 'off' (same as current behaviour). In addition, the patch extends the logical replication STREAM_ABORT message so that abort_lsn and abort_time can also be sent which can be used to update the replication origin in parallel apply worker when the streaming transaction is aborted. Because this message extension is needed to support parallel streaming, parallel streaming is not supported for publications on servers < PG16. Author: Hou Zhijie, Wang wei, Amit Kapila with design inputs from Sawada Masahiko Reviewed-by: Sawada Masahiko, Peter Smith, Dilip Kumar, Shi yu, Kuroda Hayato, Shveta Mallik Discussion: https://postgr.es/m/CAA4eK1+wyN6zpaHUkCLorEWNx75MG0xhMwcFhvjqm2KURZEAGw@mail.gmail.com
2023-01-09 02:30:39 +01:00
values[Anum_pg_subscription_substream - 1] = CharGetDatum(opts.streaming);
Add support for prepared transactions to built-in logical replication. To add support for streaming transactions at prepare time into the built-in logical replication, we need to do the following things: * Modify the output plugin (pgoutput) to implement the new two-phase API callbacks, by leveraging the extended replication protocol. * Modify the replication apply worker, to properly handle two-phase transactions by replaying them on prepare. * Add a new SUBSCRIPTION option "two_phase" to allow users to enable two-phase transactions. We enable the two_phase once the initial data sync is over. We however must explicitly disable replication of two-phase transactions during replication slot creation, even if the plugin supports it. We don't need to replicate the changes accumulated during this phase, and moreover, we don't have a replication connection open so we don't know where to send the data anyway. The streaming option is not allowed with this new two_phase option. This can be done as a separate patch. We don't allow to toggle two_phase option of a subscription because it can lead to an inconsistent replica. For the same reason, we don't allow to refresh the publication once the two_phase is enabled for a subscription unless copy_data option is false. Author: Peter Smith, Ajin Cherian and Amit Kapila based on previous work by Nikhil Sontakke and Stas Kelvich Reviewed-by: Amit Kapila, Sawada Masahiko, Vignesh C, Dilip Kumar, Takamichi Osumi, Greg Nancarrow Tested-By: Haiying Tang Discussion: https://postgr.es/m/02DA5F5E-CECE-4D9C-8B4B-418077E2C010@postgrespro.ru Discussion: https://postgr.es/m/CAA4eK1+opiV4aFTmWWUF9h_32=HfPOW9vZASHarT0UA5oBrtGw@mail.gmail.com
2021-07-14 04:03:50 +02:00
values[Anum_pg_subscription_subtwophasestate - 1] =
CharGetDatum(opts.twophase ?
LOGICALREP_TWOPHASE_STATE_PENDING :
LOGICALREP_TWOPHASE_STATE_DISABLED);
values[Anum_pg_subscription_subdisableonerr - 1] = BoolGetDatum(opts.disableonerr);
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
values[Anum_pg_subscription_subpasswordrequired - 1] = BoolGetDatum(opts.passwordrequired);
values[Anum_pg_subscription_subrunasowner - 1] = BoolGetDatum(opts.runasowner);
values[Anum_pg_subscription_subconninfo - 1] =
CStringGetTextDatum(conninfo);
if (opts.slot_name)
values[Anum_pg_subscription_subslotname - 1] =
DirectFunctionCall1(namein, CStringGetDatum(opts.slot_name));
else
nulls[Anum_pg_subscription_subslotname - 1] = true;
values[Anum_pg_subscription_subsynccommit - 1] =
CStringGetTextDatum(opts.synchronous_commit);
values[Anum_pg_subscription_subpublications - 1] =
publicationListToArray(publications);
2022-07-21 05:17:38 +02:00
values[Anum_pg_subscription_suborigin - 1] =
CStringGetTextDatum(opts.origin);
tup = heap_form_tuple(RelationGetDescr(rel), values, nulls);
/* Insert tuple into catalog. */
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
CatalogTupleInsert(rel, tup);
heap_freetuple(tup);
recordDependencyOnOwner(SubscriptionRelationId, subid, owner);
ReplicationOriginNameForLogicalRep(subid, InvalidOid, originname, sizeof(originname));
replorigin_create(originname);
/*
* Connect to remote side to execute requested commands and fetch table
* info.
*/
if (opts.connect)
{
char *err;
WalReceiverConn *wrconn;
List *tables;
ListCell *lc;
char table_state;
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
bool must_use_password;
/* Try to connect to the publisher. */
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
must_use_password = !superuser_arg(owner) && opts.passwordrequired;
wrconn = walrcv_connect(conninfo, true, must_use_password,
stmt->subname, &err);
if (!wrconn)
ereport(ERROR,
(errcode(ERRCODE_CONNECTION_FAILURE),
errmsg("could not connect to the publisher: %s", err)));
PG_TRY();
{
check_publications(wrconn, publications);
check_publications_origin(wrconn, publications, opts.copy_data,
opts.origin, NULL, 0, stmt->subname);
/*
* Set sync state based on if we were asked to do data copy or
* not.
*/
table_state = opts.copy_data ? SUBREL_STATE_INIT : SUBREL_STATE_READY;
/*
* Get the table list from publisher and build local table status
* info.
*/
tables = fetch_table_list(wrconn, publications);
foreach(lc, tables)
{
RangeVar *rv = (RangeVar *) lfirst(lc);
Oid relid;
relid = RangeVarGetRelid(rv, AccessShareLock, false);
/* Check for supported relkind. */
CheckSubscriptionRelkind(get_rel_relkind(relid),
rv->schemaname, rv->relname);
AddSubscriptionRelState(subid, relid, table_state,
InvalidXLogRecPtr);
}
/*
* If requested, create permanent slot for the subscription. We
* won't use the initial snapshot for anything, so no need to
* export it.
*/
if (opts.create_slot)
{
Add support for prepared transactions to built-in logical replication. To add support for streaming transactions at prepare time into the built-in logical replication, we need to do the following things: * Modify the output plugin (pgoutput) to implement the new two-phase API callbacks, by leveraging the extended replication protocol. * Modify the replication apply worker, to properly handle two-phase transactions by replaying them on prepare. * Add a new SUBSCRIPTION option "two_phase" to allow users to enable two-phase transactions. We enable the two_phase once the initial data sync is over. We however must explicitly disable replication of two-phase transactions during replication slot creation, even if the plugin supports it. We don't need to replicate the changes accumulated during this phase, and moreover, we don't have a replication connection open so we don't know where to send the data anyway. The streaming option is not allowed with this new two_phase option. This can be done as a separate patch. We don't allow to toggle two_phase option of a subscription because it can lead to an inconsistent replica. For the same reason, we don't allow to refresh the publication once the two_phase is enabled for a subscription unless copy_data option is false. Author: Peter Smith, Ajin Cherian and Amit Kapila based on previous work by Nikhil Sontakke and Stas Kelvich Reviewed-by: Amit Kapila, Sawada Masahiko, Vignesh C, Dilip Kumar, Takamichi Osumi, Greg Nancarrow Tested-By: Haiying Tang Discussion: https://postgr.es/m/02DA5F5E-CECE-4D9C-8B4B-418077E2C010@postgrespro.ru Discussion: https://postgr.es/m/CAA4eK1+opiV4aFTmWWUF9h_32=HfPOW9vZASHarT0UA5oBrtGw@mail.gmail.com
2021-07-14 04:03:50 +02:00
bool twophase_enabled = false;
Assert(opts.slot_name);
Add support for prepared transactions to built-in logical replication. To add support for streaming transactions at prepare time into the built-in logical replication, we need to do the following things: * Modify the output plugin (pgoutput) to implement the new two-phase API callbacks, by leveraging the extended replication protocol. * Modify the replication apply worker, to properly handle two-phase transactions by replaying them on prepare. * Add a new SUBSCRIPTION option "two_phase" to allow users to enable two-phase transactions. We enable the two_phase once the initial data sync is over. We however must explicitly disable replication of two-phase transactions during replication slot creation, even if the plugin supports it. We don't need to replicate the changes accumulated during this phase, and moreover, we don't have a replication connection open so we don't know where to send the data anyway. The streaming option is not allowed with this new two_phase option. This can be done as a separate patch. We don't allow to toggle two_phase option of a subscription because it can lead to an inconsistent replica. For the same reason, we don't allow to refresh the publication once the two_phase is enabled for a subscription unless copy_data option is false. Author: Peter Smith, Ajin Cherian and Amit Kapila based on previous work by Nikhil Sontakke and Stas Kelvich Reviewed-by: Amit Kapila, Sawada Masahiko, Vignesh C, Dilip Kumar, Takamichi Osumi, Greg Nancarrow Tested-By: Haiying Tang Discussion: https://postgr.es/m/02DA5F5E-CECE-4D9C-8B4B-418077E2C010@postgrespro.ru Discussion: https://postgr.es/m/CAA4eK1+opiV4aFTmWWUF9h_32=HfPOW9vZASHarT0UA5oBrtGw@mail.gmail.com
2021-07-14 04:03:50 +02:00
/*
* Even if two_phase is set, don't create the slot with
* two-phase enabled. Will enable it once all the tables are
* synced and ready. This avoids race-conditions like prepared
* transactions being skipped due to changes not being applied
* due to checks in should_apply_changes_for_rel() when
* tablesync for the corresponding tables are in progress. See
* comments atop worker.c.
*
* Note that if tables were specified but copy_data is false
* then it is safe to enable two_phase up-front because those
* tables are already initially in READY state. When the
* subscription has no tables, we leave the twophase state as
* PENDING, to allow ALTER SUBSCRIPTION ... REFRESH
Add support for prepared transactions to built-in logical replication. To add support for streaming transactions at prepare time into the built-in logical replication, we need to do the following things: * Modify the output plugin (pgoutput) to implement the new two-phase API callbacks, by leveraging the extended replication protocol. * Modify the replication apply worker, to properly handle two-phase transactions by replaying them on prepare. * Add a new SUBSCRIPTION option "two_phase" to allow users to enable two-phase transactions. We enable the two_phase once the initial data sync is over. We however must explicitly disable replication of two-phase transactions during replication slot creation, even if the plugin supports it. We don't need to replicate the changes accumulated during this phase, and moreover, we don't have a replication connection open so we don't know where to send the data anyway. The streaming option is not allowed with this new two_phase option. This can be done as a separate patch. We don't allow to toggle two_phase option of a subscription because it can lead to an inconsistent replica. For the same reason, we don't allow to refresh the publication once the two_phase is enabled for a subscription unless copy_data option is false. Author: Peter Smith, Ajin Cherian and Amit Kapila based on previous work by Nikhil Sontakke and Stas Kelvich Reviewed-by: Amit Kapila, Sawada Masahiko, Vignesh C, Dilip Kumar, Takamichi Osumi, Greg Nancarrow Tested-By: Haiying Tang Discussion: https://postgr.es/m/02DA5F5E-CECE-4D9C-8B4B-418077E2C010@postgrespro.ru Discussion: https://postgr.es/m/CAA4eK1+opiV4aFTmWWUF9h_32=HfPOW9vZASHarT0UA5oBrtGw@mail.gmail.com
2021-07-14 04:03:50 +02:00
* PUBLICATION to work.
*/
if (opts.twophase && !opts.copy_data && tables != NIL)
Add support for prepared transactions to built-in logical replication. To add support for streaming transactions at prepare time into the built-in logical replication, we need to do the following things: * Modify the output plugin (pgoutput) to implement the new two-phase API callbacks, by leveraging the extended replication protocol. * Modify the replication apply worker, to properly handle two-phase transactions by replaying them on prepare. * Add a new SUBSCRIPTION option "two_phase" to allow users to enable two-phase transactions. We enable the two_phase once the initial data sync is over. We however must explicitly disable replication of two-phase transactions during replication slot creation, even if the plugin supports it. We don't need to replicate the changes accumulated during this phase, and moreover, we don't have a replication connection open so we don't know where to send the data anyway. The streaming option is not allowed with this new two_phase option. This can be done as a separate patch. We don't allow to toggle two_phase option of a subscription because it can lead to an inconsistent replica. For the same reason, we don't allow to refresh the publication once the two_phase is enabled for a subscription unless copy_data option is false. Author: Peter Smith, Ajin Cherian and Amit Kapila based on previous work by Nikhil Sontakke and Stas Kelvich Reviewed-by: Amit Kapila, Sawada Masahiko, Vignesh C, Dilip Kumar, Takamichi Osumi, Greg Nancarrow Tested-By: Haiying Tang Discussion: https://postgr.es/m/02DA5F5E-CECE-4D9C-8B4B-418077E2C010@postgrespro.ru Discussion: https://postgr.es/m/CAA4eK1+opiV4aFTmWWUF9h_32=HfPOW9vZASHarT0UA5oBrtGw@mail.gmail.com
2021-07-14 04:03:50 +02:00
twophase_enabled = true;
walrcv_create_slot(wrconn, opts.slot_name, false, twophase_enabled,
CRS_NOEXPORT_SNAPSHOT, NULL);
Add support for prepared transactions to built-in logical replication. To add support for streaming transactions at prepare time into the built-in logical replication, we need to do the following things: * Modify the output plugin (pgoutput) to implement the new two-phase API callbacks, by leveraging the extended replication protocol. * Modify the replication apply worker, to properly handle two-phase transactions by replaying them on prepare. * Add a new SUBSCRIPTION option "two_phase" to allow users to enable two-phase transactions. We enable the two_phase once the initial data sync is over. We however must explicitly disable replication of two-phase transactions during replication slot creation, even if the plugin supports it. We don't need to replicate the changes accumulated during this phase, and moreover, we don't have a replication connection open so we don't know where to send the data anyway. The streaming option is not allowed with this new two_phase option. This can be done as a separate patch. We don't allow to toggle two_phase option of a subscription because it can lead to an inconsistent replica. For the same reason, we don't allow to refresh the publication once the two_phase is enabled for a subscription unless copy_data option is false. Author: Peter Smith, Ajin Cherian and Amit Kapila based on previous work by Nikhil Sontakke and Stas Kelvich Reviewed-by: Amit Kapila, Sawada Masahiko, Vignesh C, Dilip Kumar, Takamichi Osumi, Greg Nancarrow Tested-By: Haiying Tang Discussion: https://postgr.es/m/02DA5F5E-CECE-4D9C-8B4B-418077E2C010@postgrespro.ru Discussion: https://postgr.es/m/CAA4eK1+opiV4aFTmWWUF9h_32=HfPOW9vZASHarT0UA5oBrtGw@mail.gmail.com
2021-07-14 04:03:50 +02:00
if (twophase_enabled)
UpdateTwoPhaseState(subid, LOGICALREP_TWOPHASE_STATE_ENABLED);
ereport(NOTICE,
(errmsg("created replication slot \"%s\" on publisher",
opts.slot_name)));
}
}
PG_FINALLY();
{
walrcv_disconnect(wrconn);
}
PG_END_TRY();
}
else
ereport(WARNING,
(errmsg("subscription was created, but is not connected"),
errhint("To initiate replication, you must manually create the replication slot, enable the subscription, and refresh the subscription.")));
table_close(rel, RowExclusiveLock);
pgstat: scaffolding for transactional stats creation / drop. One problematic part of the current statistics collector design is that there is no reliable way of getting rid of statistics entries. Because of that pgstat_vacuum_stat() (called by [auto-]vacuum) matches all stats for the current database with the catalog contents and tries to drop now-superfluous entries. That's quite expensive. What's worse, it doesn't work on physical replicas, despite physical replicas collection statistics entries. This commit introduces infrastructure to create / drop statistics entries transactionally, together with the underlying catalog objects (functions, relations, subscriptions). pgstat_xact.c maintains a list of stats entries created / dropped transactionally in the current transaction. To ensure the removal of statistics entries is durable dropped statistics entries are included in commit / abort (and prepare) records, which also ensures that stats entries are dropped on standbys. Statistics entries created separately from creating the underlying catalog object (e.g. when stats were previously lost due to an immediate restart) are *not* WAL logged. However that can only happen outside of the transaction creating the catalog object, so it does not lead to "leaked" statistics entries. For this to work, functions creating / dropping functions / relations / subscriptions need to call into pgstat. For subscriptions this was already done when dropping subscriptions, via pgstat_report_subscription_drop() (now renamed to pgstat_drop_subscription()). This commit does not actually drop stats yet, it just provides the infrastructure. It is however a largely independent piece of infrastructure, so committing it separately makes sense. Bumps XLOG_PAGE_MAGIC. Author: Andres Freund <andres@anarazel.de> Reviewed-By: Thomas Munro <thomas.munro@gmail.com> Reviewed-By: Kyotaro Horiguchi <horikyota.ntt@gmail.com> Discussion: https://postgr.es/m/20220303021600.hs34ghqcw6zcokdh@alap3.anarazel.de
2022-04-07 03:22:22 +02:00
pgstat_create_subscription(subid);
if (opts.enabled)
ApplyLauncherWakeupAtCommit();
ObjectAddressSet(myself, SubscriptionRelationId, subid);
InvokeObjectPostCreateHook(SubscriptionRelationId, subid, 0);
return myself;
}
static void
AlterSubscription_refresh(Subscription *sub, bool copy_data,
List *validate_publications)
{
char *err;
List *pubrel_names;
List *subrel_states;
Oid *subrel_local_oids;
Oid *pubrel_local_oids;
ListCell *lc;
int off;
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
int remove_rel_len;
int subrel_count;
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
Relation rel = NULL;
typedef struct SubRemoveRels
{
Oid relid;
char state;
} SubRemoveRels;
SubRemoveRels *sub_remove_rels;
WalReceiverConn *wrconn;
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
bool must_use_password;
/* Load the library providing us libpq calls. */
load_file("libpqwalreceiver", false);
/* Try to connect to the publisher. */
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
must_use_password = !superuser_arg(sub->owner) && sub->passwordrequired;
wrconn = walrcv_connect(sub->conninfo, true, must_use_password,
sub->name, &err);
if (!wrconn)
ereport(ERROR,
(errcode(ERRCODE_CONNECTION_FAILURE),
errmsg("could not connect to the publisher: %s", err)));
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
PG_TRY();
{
if (validate_publications)
check_publications(wrconn, validate_publications);
/* Get the table list from publisher. */
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
pubrel_names = fetch_table_list(wrconn, sub->publications);
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
/* Get local table list. */
subrel_states = GetSubscriptionRelations(sub->oid, false);
subrel_count = list_length(subrel_states);
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
/*
* Build qsorted array of local table oids for faster lookup. This can
* potentially contain all tables in the database so speed of lookup
* is important.
*/
subrel_local_oids = palloc(subrel_count * sizeof(Oid));
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
off = 0;
foreach(lc, subrel_states)
{
SubscriptionRelState *relstate = (SubscriptionRelState *) lfirst(lc);
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
subrel_local_oids[off++] = relstate->relid;
}
qsort(subrel_local_oids, subrel_count,
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
sizeof(Oid), oid_cmp);
check_publications_origin(wrconn, sub->publications, copy_data,
sub->origin, subrel_local_oids,
subrel_count, sub->name);
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
/*
* Rels that we want to remove from subscription and drop any slots
* and origins corresponding to them.
*/
sub_remove_rels = palloc(subrel_count * sizeof(SubRemoveRels));
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
/*
* Walk over the remote tables and try to match them to locally known
* tables. If the table is not known locally create a new state for
* it.
*
* Also builds array of local oids of remote tables for the next step.
*/
off = 0;
pubrel_local_oids = palloc(list_length(pubrel_names) * sizeof(Oid));
foreach(lc, pubrel_names)
{
RangeVar *rv = (RangeVar *) lfirst(lc);
Oid relid;
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
relid = RangeVarGetRelid(rv, AccessShareLock, false);
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
/* Check for supported relkind. */
CheckSubscriptionRelkind(get_rel_relkind(relid),
rv->schemaname, rv->relname);
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
pubrel_local_oids[off++] = relid;
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
if (!bsearch(&relid, subrel_local_oids,
subrel_count, sizeof(Oid), oid_cmp))
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
{
AddSubscriptionRelState(sub->oid, relid,
copy_data ? SUBREL_STATE_INIT : SUBREL_STATE_READY,
InvalidXLogRecPtr);
ereport(DEBUG1,
(errmsg_internal("table \"%s.%s\" added to subscription \"%s\"",
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
rv->schemaname, rv->relname, sub->name)));
}
}
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
/*
* Next remove state for tables we should not care about anymore using
* the data we collected above
*/
qsort(pubrel_local_oids, list_length(pubrel_names),
sizeof(Oid), oid_cmp);
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
remove_rel_len = 0;
for (off = 0; off < subrel_count; off++)
{
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
Oid relid = subrel_local_oids[off];
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
if (!bsearch(&relid, pubrel_local_oids,
list_length(pubrel_names), sizeof(Oid), oid_cmp))
{
char state;
XLogRecPtr statelsn;
/*
* Lock pg_subscription_rel with AccessExclusiveLock to
* prevent any race conditions with the apply worker
* re-launching workers at the same time this code is trying
* to remove those tables.
*
* Even if new worker for this particular rel is restarted it
* won't be able to make any progress as we hold exclusive
* lock on pg_subscription_rel till the transaction end. It
* will simply exit as there is no corresponding rel entry.
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
*
* This locking also ensures that the state of rels won't
* change till we are done with this refresh operation.
*/
if (!rel)
rel = table_open(SubscriptionRelRelationId, AccessExclusiveLock);
/* Last known rel state. */
state = GetSubscriptionRelState(sub->oid, relid, &statelsn);
sub_remove_rels[remove_rel_len].relid = relid;
sub_remove_rels[remove_rel_len++].state = state;
RemoveSubscriptionRel(sub->oid, relid);
logicalrep_worker_stop(sub->oid, relid);
/*
* For READY state, we would have already dropped the
* tablesync origin.
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
*/
if (state != SUBREL_STATE_READY)
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
{
char originname[NAMEDATALEN];
/*
* Drop the tablesync's origin tracking if exists.
*
* It is possible that the origin is not yet created for
* tablesync worker, this can happen for the states before
* SUBREL_STATE_FINISHEDCOPY. The tablesync worker or
* apply worker can also concurrently try to drop the
* origin and by this time the origin might be already
* removed. For these reasons, passing missing_ok = true.
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
*/
ReplicationOriginNameForLogicalRep(sub->oid, relid, originname,
sizeof(originname));
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
replorigin_drop_by_name(originname, true, false);
}
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
ereport(DEBUG1,
(errmsg_internal("table \"%s.%s\" removed from subscription \"%s\"",
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
get_namespace_name(get_rel_namespace(relid)),
get_rel_name(relid),
sub->name)));
}
}
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
/*
* Drop the tablesync slots associated with removed tables. This has
* to be at the end because otherwise if there is an error while doing
* the database operations we won't be able to rollback dropped slots.
*/
for (off = 0; off < remove_rel_len; off++)
{
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
if (sub_remove_rels[off].state != SUBREL_STATE_READY &&
sub_remove_rels[off].state != SUBREL_STATE_SYNCDONE)
{
char syncslotname[NAMEDATALEN] = {0};
/*
* For READY/SYNCDONE states we know the tablesync slot has
* already been dropped by the tablesync worker.
*
* For other states, there is no certainty, maybe the slot
* does not exist yet. Also, if we fail after removing some of
* the slots, next time, it will again try to drop already
* dropped slots and fail. For these reasons, we allow
* missing_ok = true for the drop.
*/
ReplicationSlotNameForTablesync(sub->oid, sub_remove_rels[off].relid,
syncslotname, sizeof(syncslotname));
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
ReplicationSlotDropAtPubNode(wrconn, syncslotname, true);
}
}
}
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
PG_FINALLY();
{
walrcv_disconnect(wrconn);
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
}
PG_END_TRY();
if (rel)
table_close(rel, NoLock);
}
/*
* Alter the existing subscription.
*/
ObjectAddress
AlterSubscription(ParseState *pstate, AlterSubscriptionStmt *stmt,
bool isTopLevel)
{
Relation rel;
ObjectAddress myself;
bool nulls[Natts_pg_subscription];
bool replaces[Natts_pg_subscription];
Datum values[Natts_pg_subscription];
HeapTuple tup;
Oid subid;
bool update_tuple = false;
Subscription *sub;
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
Form_pg_subscription form;
bits32 supported_opts;
SubOpts opts = {0};
rel = table_open(SubscriptionRelationId, RowExclusiveLock);
/* Fetch the existing tuple. */
tup = SearchSysCacheCopy2(SUBSCRIPTIONNAME, MyDatabaseId,
CStringGetDatum(stmt->subname));
if (!HeapTupleIsValid(tup))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("subscription \"%s\" does not exist",
stmt->subname)));
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
form = (Form_pg_subscription) GETSTRUCT(tup);
subid = form->oid;
/* must be owner */
if (!object_ownercheck(SubscriptionRelationId, subid, GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, OBJECT_SUBSCRIPTION,
stmt->subname);
sub = GetSubscription(subid, false);
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
/*
* Don't allow non-superuser modification of a subscription with
* password_required=false.
*/
if (!sub->passwordrequired && !superuser())
ereport(ERROR,
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
errmsg("password_required=false is superuser-only"),
errhint("Subscriptions with the password_required option set to false may only be created or modified by the superuser.")));
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
/* Lock the subscription so nobody else can do anything with it. */
LockSharedObject(SubscriptionRelationId, subid, 0, AccessExclusiveLock);
/* Form a new tuple. */
memset(values, 0, sizeof(values));
memset(nulls, false, sizeof(nulls));
memset(replaces, false, sizeof(replaces));
switch (stmt->kind)
{
case ALTER_SUBSCRIPTION_OPTIONS:
{
supported_opts = (SUBOPT_SLOT_NAME |
SUBOPT_SYNCHRONOUS_COMMIT | SUBOPT_BINARY |
2022-07-21 05:17:38 +02:00
SUBOPT_STREAMING | SUBOPT_DISABLE_ON_ERR |
SUBOPT_PASSWORD_REQUIRED |
SUBOPT_RUN_AS_OWNER | SUBOPT_ORIGIN);
parse_subscription_options(pstate, stmt->options,
supported_opts, &opts);
if (IsSet(opts.specified_opts, SUBOPT_SLOT_NAME))
{
/*
* The subscription must be disabled to allow slot_name as
* 'none', otherwise, the apply worker will repeatedly try
* to stream the data using that slot_name which neither
* exists on the publisher nor the user will be allowed to
* create it.
*/
if (sub->enabled && !opts.slot_name)
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("cannot set %s for enabled subscription",
"slot_name = NONE")));
if (opts.slot_name)
values[Anum_pg_subscription_subslotname - 1] =
DirectFunctionCall1(namein, CStringGetDatum(opts.slot_name));
else
nulls[Anum_pg_subscription_subslotname - 1] = true;
replaces[Anum_pg_subscription_subslotname - 1] = true;
}
if (opts.synchronous_commit)
{
values[Anum_pg_subscription_subsynccommit - 1] =
CStringGetTextDatum(opts.synchronous_commit);
replaces[Anum_pg_subscription_subsynccommit - 1] = true;
}
if (IsSet(opts.specified_opts, SUBOPT_BINARY))
{
values[Anum_pg_subscription_subbinary - 1] =
BoolGetDatum(opts.binary);
replaces[Anum_pg_subscription_subbinary - 1] = true;
}
if (IsSet(opts.specified_opts, SUBOPT_STREAMING))
{
values[Anum_pg_subscription_substream - 1] =
Perform apply of large transactions by parallel workers. Currently, for large transactions, the publisher sends the data in multiple streams (changes divided into chunks depending upon logical_decoding_work_mem), and then on the subscriber-side, the apply worker writes the changes into temporary files and once it receives the commit, it reads from those files and applies the entire transaction. To improve the performance of such transactions, we can instead allow them to be applied via parallel workers. In this approach, we assign a new parallel apply worker (if available) as soon as the xact's first stream is received and the leader apply worker will send changes to this new worker via shared memory. The parallel apply worker will directly apply the change instead of writing it to temporary files. However, if the leader apply worker times out while attempting to send a message to the parallel apply worker, it will switch to "partial serialize" mode - in this mode, the leader serializes all remaining changes to a file and notifies the parallel apply workers to read and apply them at the end of the transaction. We use a non-blocking way to send the messages from the leader apply worker to the parallel apply to avoid deadlocks. We keep this parallel apply assigned till the transaction commit is received and also wait for the worker to finish at commit. This preserves commit ordering and avoid writing to and reading from files in most cases. We still need to spill if there is no worker available. This patch also extends the SUBSCRIPTION 'streaming' parameter so that the user can control whether to apply the streaming transaction in a parallel apply worker or spill the change to disk. The user can set the streaming parameter to 'on/off', or 'parallel'. The parameter value 'parallel' means the streaming will be applied via a parallel apply worker, if available. The parameter value 'on' means the streaming transaction will be spilled to disk. The default value is 'off' (same as current behaviour). In addition, the patch extends the logical replication STREAM_ABORT message so that abort_lsn and abort_time can also be sent which can be used to update the replication origin in parallel apply worker when the streaming transaction is aborted. Because this message extension is needed to support parallel streaming, parallel streaming is not supported for publications on servers < PG16. Author: Hou Zhijie, Wang wei, Amit Kapila with design inputs from Sawada Masahiko Reviewed-by: Sawada Masahiko, Peter Smith, Dilip Kumar, Shi yu, Kuroda Hayato, Shveta Mallik Discussion: https://postgr.es/m/CAA4eK1+wyN6zpaHUkCLorEWNx75MG0xhMwcFhvjqm2KURZEAGw@mail.gmail.com
2023-01-09 02:30:39 +01:00
CharGetDatum(opts.streaming);
replaces[Anum_pg_subscription_substream - 1] = true;
}
if (IsSet(opts.specified_opts, SUBOPT_DISABLE_ON_ERR))
{
values[Anum_pg_subscription_subdisableonerr - 1]
= BoolGetDatum(opts.disableonerr);
replaces[Anum_pg_subscription_subdisableonerr - 1]
= true;
}
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
if (IsSet(opts.specified_opts, SUBOPT_PASSWORD_REQUIRED))
{
/* Non-superuser may not disable password_required. */
if (!opts.passwordrequired && !superuser())
ereport(ERROR,
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
errmsg("password_required=false is superuser-only"),
errhint("Subscriptions with the password_required option set to false may only be created or modified by the superuser.")));
values[Anum_pg_subscription_subpasswordrequired - 1]
= BoolGetDatum(opts.passwordrequired);
replaces[Anum_pg_subscription_subpasswordrequired - 1]
= true;
}
2022-07-21 05:17:38 +02:00
if (IsSet(opts.specified_opts, SUBOPT_ORIGIN))
{
values[Anum_pg_subscription_suborigin - 1] =
CStringGetTextDatum(opts.origin);
replaces[Anum_pg_subscription_suborigin - 1] = true;
}
update_tuple = true;
break;
}
case ALTER_SUBSCRIPTION_ENABLED:
{
parse_subscription_options(pstate, stmt->options,
SUBOPT_ENABLED, &opts);
Assert(IsSet(opts.specified_opts, SUBOPT_ENABLED));
if (!sub->slotname && opts.enabled)
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("cannot enable subscription that does not have a slot name")));
values[Anum_pg_subscription_subenabled - 1] =
BoolGetDatum(opts.enabled);
replaces[Anum_pg_subscription_subenabled - 1] = true;
if (opts.enabled)
ApplyLauncherWakeupAtCommit();
update_tuple = true;
break;
}
case ALTER_SUBSCRIPTION_CONNECTION:
/* Load the library providing us libpq calls. */
load_file("libpqwalreceiver", false);
/* Check the connection info string. */
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
walrcv_check_conninfo(stmt->conninfo,
sub->passwordrequired && !superuser_arg(sub->owner));
values[Anum_pg_subscription_subconninfo - 1] =
CStringGetTextDatum(stmt->conninfo);
replaces[Anum_pg_subscription_subconninfo - 1] = true;
update_tuple = true;
break;
case ALTER_SUBSCRIPTION_SET_PUBLICATION:
{
supported_opts = SUBOPT_COPY_DATA | SUBOPT_REFRESH;
parse_subscription_options(pstate, stmt->options,
supported_opts, &opts);
values[Anum_pg_subscription_subpublications - 1] =
publicationListToArray(stmt->publication);
replaces[Anum_pg_subscription_subpublications - 1] = true;
update_tuple = true;
/* Refresh if user asked us to. */
if (opts.refresh)
{
if (!sub->enabled)
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("ALTER SUBSCRIPTION with refresh is not allowed for disabled subscriptions"),
errhint("Use ALTER SUBSCRIPTION ... SET PUBLICATION ... WITH (refresh = false).")));
Add support for prepared transactions to built-in logical replication. To add support for streaming transactions at prepare time into the built-in logical replication, we need to do the following things: * Modify the output plugin (pgoutput) to implement the new two-phase API callbacks, by leveraging the extended replication protocol. * Modify the replication apply worker, to properly handle two-phase transactions by replaying them on prepare. * Add a new SUBSCRIPTION option "two_phase" to allow users to enable two-phase transactions. We enable the two_phase once the initial data sync is over. We however must explicitly disable replication of two-phase transactions during replication slot creation, even if the plugin supports it. We don't need to replicate the changes accumulated during this phase, and moreover, we don't have a replication connection open so we don't know where to send the data anyway. The streaming option is not allowed with this new two_phase option. This can be done as a separate patch. We don't allow to toggle two_phase option of a subscription because it can lead to an inconsistent replica. For the same reason, we don't allow to refresh the publication once the two_phase is enabled for a subscription unless copy_data option is false. Author: Peter Smith, Ajin Cherian and Amit Kapila based on previous work by Nikhil Sontakke and Stas Kelvich Reviewed-by: Amit Kapila, Sawada Masahiko, Vignesh C, Dilip Kumar, Takamichi Osumi, Greg Nancarrow Tested-By: Haiying Tang Discussion: https://postgr.es/m/02DA5F5E-CECE-4D9C-8B4B-418077E2C010@postgrespro.ru Discussion: https://postgr.es/m/CAA4eK1+opiV4aFTmWWUF9h_32=HfPOW9vZASHarT0UA5oBrtGw@mail.gmail.com
2021-07-14 04:03:50 +02:00
/*
* See ALTER_SUBSCRIPTION_REFRESH for details why this is
* not allowed.
*/
if (sub->twophasestate == LOGICALREP_TWOPHASE_STATE_ENABLED && opts.copy_data)
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
Add support for prepared transactions to built-in logical replication. To add support for streaming transactions at prepare time into the built-in logical replication, we need to do the following things: * Modify the output plugin (pgoutput) to implement the new two-phase API callbacks, by leveraging the extended replication protocol. * Modify the replication apply worker, to properly handle two-phase transactions by replaying them on prepare. * Add a new SUBSCRIPTION option "two_phase" to allow users to enable two-phase transactions. We enable the two_phase once the initial data sync is over. We however must explicitly disable replication of two-phase transactions during replication slot creation, even if the plugin supports it. We don't need to replicate the changes accumulated during this phase, and moreover, we don't have a replication connection open so we don't know where to send the data anyway. The streaming option is not allowed with this new two_phase option. This can be done as a separate patch. We don't allow to toggle two_phase option of a subscription because it can lead to an inconsistent replica. For the same reason, we don't allow to refresh the publication once the two_phase is enabled for a subscription unless copy_data option is false. Author: Peter Smith, Ajin Cherian and Amit Kapila based on previous work by Nikhil Sontakke and Stas Kelvich Reviewed-by: Amit Kapila, Sawada Masahiko, Vignesh C, Dilip Kumar, Takamichi Osumi, Greg Nancarrow Tested-By: Haiying Tang Discussion: https://postgr.es/m/02DA5F5E-CECE-4D9C-8B4B-418077E2C010@postgrespro.ru Discussion: https://postgr.es/m/CAA4eK1+opiV4aFTmWWUF9h_32=HfPOW9vZASHarT0UA5oBrtGw@mail.gmail.com
2021-07-14 04:03:50 +02:00
errmsg("ALTER SUBSCRIPTION with refresh and copy_data is not allowed when two_phase is enabled"),
errhint("Use ALTER SUBSCRIPTION ... SET PUBLICATION with refresh = false, or with copy_data = false, or use DROP/CREATE SUBSCRIPTION.")));
Add support for prepared transactions to built-in logical replication. To add support for streaming transactions at prepare time into the built-in logical replication, we need to do the following things: * Modify the output plugin (pgoutput) to implement the new two-phase API callbacks, by leveraging the extended replication protocol. * Modify the replication apply worker, to properly handle two-phase transactions by replaying them on prepare. * Add a new SUBSCRIPTION option "two_phase" to allow users to enable two-phase transactions. We enable the two_phase once the initial data sync is over. We however must explicitly disable replication of two-phase transactions during replication slot creation, even if the plugin supports it. We don't need to replicate the changes accumulated during this phase, and moreover, we don't have a replication connection open so we don't know where to send the data anyway. The streaming option is not allowed with this new two_phase option. This can be done as a separate patch. We don't allow to toggle two_phase option of a subscription because it can lead to an inconsistent replica. For the same reason, we don't allow to refresh the publication once the two_phase is enabled for a subscription unless copy_data option is false. Author: Peter Smith, Ajin Cherian and Amit Kapila based on previous work by Nikhil Sontakke and Stas Kelvich Reviewed-by: Amit Kapila, Sawada Masahiko, Vignesh C, Dilip Kumar, Takamichi Osumi, Greg Nancarrow Tested-By: Haiying Tang Discussion: https://postgr.es/m/02DA5F5E-CECE-4D9C-8B4B-418077E2C010@postgrespro.ru Discussion: https://postgr.es/m/CAA4eK1+opiV4aFTmWWUF9h_32=HfPOW9vZASHarT0UA5oBrtGw@mail.gmail.com
2021-07-14 04:03:50 +02:00
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
PreventInTransactionBlock(isTopLevel, "ALTER SUBSCRIPTION with refresh");
/* Make sure refresh sees the new list of publications. */
sub->publications = stmt->publication;
AlterSubscription_refresh(sub, opts.copy_data,
stmt->publication);
}
break;
}
case ALTER_SUBSCRIPTION_ADD_PUBLICATION:
case ALTER_SUBSCRIPTION_DROP_PUBLICATION:
{
List *publist;
bool isadd = stmt->kind == ALTER_SUBSCRIPTION_ADD_PUBLICATION;
supported_opts = SUBOPT_REFRESH | SUBOPT_COPY_DATA;
parse_subscription_options(pstate, stmt->options,
supported_opts, &opts);
publist = merge_publications(sub->publications, stmt->publication, isadd, stmt->subname);
values[Anum_pg_subscription_subpublications - 1] =
publicationListToArray(publist);
replaces[Anum_pg_subscription_subpublications - 1] = true;
update_tuple = true;
/* Refresh if user asked us to. */
if (opts.refresh)
{
/* We only need to validate user specified publications. */
List *validate_publications = (isadd) ? stmt->publication : NULL;
if (!sub->enabled)
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("ALTER SUBSCRIPTION with refresh is not allowed for disabled subscriptions"),
/* translator: %s is an SQL ALTER command */
errhint("Use %s instead.",
isadd ?
"ALTER SUBSCRIPTION ... ADD PUBLICATION ... WITH (refresh = false)" :
"ALTER SUBSCRIPTION ... DROP PUBLICATION ... WITH (refresh = false)")));
Add support for prepared transactions to built-in logical replication. To add support for streaming transactions at prepare time into the built-in logical replication, we need to do the following things: * Modify the output plugin (pgoutput) to implement the new two-phase API callbacks, by leveraging the extended replication protocol. * Modify the replication apply worker, to properly handle two-phase transactions by replaying them on prepare. * Add a new SUBSCRIPTION option "two_phase" to allow users to enable two-phase transactions. We enable the two_phase once the initial data sync is over. We however must explicitly disable replication of two-phase transactions during replication slot creation, even if the plugin supports it. We don't need to replicate the changes accumulated during this phase, and moreover, we don't have a replication connection open so we don't know where to send the data anyway. The streaming option is not allowed with this new two_phase option. This can be done as a separate patch. We don't allow to toggle two_phase option of a subscription because it can lead to an inconsistent replica. For the same reason, we don't allow to refresh the publication once the two_phase is enabled for a subscription unless copy_data option is false. Author: Peter Smith, Ajin Cherian and Amit Kapila based on previous work by Nikhil Sontakke and Stas Kelvich Reviewed-by: Amit Kapila, Sawada Masahiko, Vignesh C, Dilip Kumar, Takamichi Osumi, Greg Nancarrow Tested-By: Haiying Tang Discussion: https://postgr.es/m/02DA5F5E-CECE-4D9C-8B4B-418077E2C010@postgrespro.ru Discussion: https://postgr.es/m/CAA4eK1+opiV4aFTmWWUF9h_32=HfPOW9vZASHarT0UA5oBrtGw@mail.gmail.com
2021-07-14 04:03:50 +02:00
/*
* See ALTER_SUBSCRIPTION_REFRESH for details why this is
* not allowed.
*/
if (sub->twophasestate == LOGICALREP_TWOPHASE_STATE_ENABLED && opts.copy_data)
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
Add support for prepared transactions to built-in logical replication. To add support for streaming transactions at prepare time into the built-in logical replication, we need to do the following things: * Modify the output plugin (pgoutput) to implement the new two-phase API callbacks, by leveraging the extended replication protocol. * Modify the replication apply worker, to properly handle two-phase transactions by replaying them on prepare. * Add a new SUBSCRIPTION option "two_phase" to allow users to enable two-phase transactions. We enable the two_phase once the initial data sync is over. We however must explicitly disable replication of two-phase transactions during replication slot creation, even if the plugin supports it. We don't need to replicate the changes accumulated during this phase, and moreover, we don't have a replication connection open so we don't know where to send the data anyway. The streaming option is not allowed with this new two_phase option. This can be done as a separate patch. We don't allow to toggle two_phase option of a subscription because it can lead to an inconsistent replica. For the same reason, we don't allow to refresh the publication once the two_phase is enabled for a subscription unless copy_data option is false. Author: Peter Smith, Ajin Cherian and Amit Kapila based on previous work by Nikhil Sontakke and Stas Kelvich Reviewed-by: Amit Kapila, Sawada Masahiko, Vignesh C, Dilip Kumar, Takamichi Osumi, Greg Nancarrow Tested-By: Haiying Tang Discussion: https://postgr.es/m/02DA5F5E-CECE-4D9C-8B4B-418077E2C010@postgrespro.ru Discussion: https://postgr.es/m/CAA4eK1+opiV4aFTmWWUF9h_32=HfPOW9vZASHarT0UA5oBrtGw@mail.gmail.com
2021-07-14 04:03:50 +02:00
errmsg("ALTER SUBSCRIPTION with refresh and copy_data is not allowed when two_phase is enabled"),
/* translator: %s is an SQL ALTER command */
errhint("Use %s with refresh = false, or with copy_data = false, or use DROP/CREATE SUBSCRIPTION.",
isadd ?
"ALTER SUBSCRIPTION ... ADD PUBLICATION" :
"ALTER SUBSCRIPTION ... DROP PUBLICATION")));
Add support for prepared transactions to built-in logical replication. To add support for streaming transactions at prepare time into the built-in logical replication, we need to do the following things: * Modify the output plugin (pgoutput) to implement the new two-phase API callbacks, by leveraging the extended replication protocol. * Modify the replication apply worker, to properly handle two-phase transactions by replaying them on prepare. * Add a new SUBSCRIPTION option "two_phase" to allow users to enable two-phase transactions. We enable the two_phase once the initial data sync is over. We however must explicitly disable replication of two-phase transactions during replication slot creation, even if the plugin supports it. We don't need to replicate the changes accumulated during this phase, and moreover, we don't have a replication connection open so we don't know where to send the data anyway. The streaming option is not allowed with this new two_phase option. This can be done as a separate patch. We don't allow to toggle two_phase option of a subscription because it can lead to an inconsistent replica. For the same reason, we don't allow to refresh the publication once the two_phase is enabled for a subscription unless copy_data option is false. Author: Peter Smith, Ajin Cherian and Amit Kapila based on previous work by Nikhil Sontakke and Stas Kelvich Reviewed-by: Amit Kapila, Sawada Masahiko, Vignesh C, Dilip Kumar, Takamichi Osumi, Greg Nancarrow Tested-By: Haiying Tang Discussion: https://postgr.es/m/02DA5F5E-CECE-4D9C-8B4B-418077E2C010@postgrespro.ru Discussion: https://postgr.es/m/CAA4eK1+opiV4aFTmWWUF9h_32=HfPOW9vZASHarT0UA5oBrtGw@mail.gmail.com
2021-07-14 04:03:50 +02:00
PreventInTransactionBlock(isTopLevel, "ALTER SUBSCRIPTION with refresh");
/* Refresh the new list of publications. */
sub->publications = publist;
AlterSubscription_refresh(sub, opts.copy_data,
validate_publications);
}
break;
}
case ALTER_SUBSCRIPTION_REFRESH:
{
if (!sub->enabled)
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("ALTER SUBSCRIPTION ... REFRESH is not allowed for disabled subscriptions")));
parse_subscription_options(pstate, stmt->options,
SUBOPT_COPY_DATA, &opts);
Add support for prepared transactions to built-in logical replication. To add support for streaming transactions at prepare time into the built-in logical replication, we need to do the following things: * Modify the output plugin (pgoutput) to implement the new two-phase API callbacks, by leveraging the extended replication protocol. * Modify the replication apply worker, to properly handle two-phase transactions by replaying them on prepare. * Add a new SUBSCRIPTION option "two_phase" to allow users to enable two-phase transactions. We enable the two_phase once the initial data sync is over. We however must explicitly disable replication of two-phase transactions during replication slot creation, even if the plugin supports it. We don't need to replicate the changes accumulated during this phase, and moreover, we don't have a replication connection open so we don't know where to send the data anyway. The streaming option is not allowed with this new two_phase option. This can be done as a separate patch. We don't allow to toggle two_phase option of a subscription because it can lead to an inconsistent replica. For the same reason, we don't allow to refresh the publication once the two_phase is enabled for a subscription unless copy_data option is false. Author: Peter Smith, Ajin Cherian and Amit Kapila based on previous work by Nikhil Sontakke and Stas Kelvich Reviewed-by: Amit Kapila, Sawada Masahiko, Vignesh C, Dilip Kumar, Takamichi Osumi, Greg Nancarrow Tested-By: Haiying Tang Discussion: https://postgr.es/m/02DA5F5E-CECE-4D9C-8B4B-418077E2C010@postgrespro.ru Discussion: https://postgr.es/m/CAA4eK1+opiV4aFTmWWUF9h_32=HfPOW9vZASHarT0UA5oBrtGw@mail.gmail.com
2021-07-14 04:03:50 +02:00
/*
* The subscription option "two_phase" requires that
* replication has passed the initial table synchronization
* phase before the two_phase becomes properly enabled.
*
* But, having reached this two-phase commit "enabled" state
* we must not allow any subsequent table initialization to
* occur. So the ALTER SUBSCRIPTION ... REFRESH is disallowed
* when the user had requested two_phase = on mode.
*
* The exception to this restriction is when copy_data =
* false, because when copy_data is false the tablesync will
* start already in READY state and will exit directly without
* doing anything.
*
* For more details see comments atop worker.c.
*/
if (sub->twophasestate == LOGICALREP_TWOPHASE_STATE_ENABLED && opts.copy_data)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("ALTER SUBSCRIPTION ... REFRESH with copy_data is not allowed when two_phase is enabled"),
errhint("Use ALTER SUBSCRIPTION ... REFRESH with copy_data = false, or use DROP/CREATE SUBSCRIPTION.")));
Add support for prepared transactions to built-in logical replication. To add support for streaming transactions at prepare time into the built-in logical replication, we need to do the following things: * Modify the output plugin (pgoutput) to implement the new two-phase API callbacks, by leveraging the extended replication protocol. * Modify the replication apply worker, to properly handle two-phase transactions by replaying them on prepare. * Add a new SUBSCRIPTION option "two_phase" to allow users to enable two-phase transactions. We enable the two_phase once the initial data sync is over. We however must explicitly disable replication of two-phase transactions during replication slot creation, even if the plugin supports it. We don't need to replicate the changes accumulated during this phase, and moreover, we don't have a replication connection open so we don't know where to send the data anyway. The streaming option is not allowed with this new two_phase option. This can be done as a separate patch. We don't allow to toggle two_phase option of a subscription because it can lead to an inconsistent replica. For the same reason, we don't allow to refresh the publication once the two_phase is enabled for a subscription unless copy_data option is false. Author: Peter Smith, Ajin Cherian and Amit Kapila based on previous work by Nikhil Sontakke and Stas Kelvich Reviewed-by: Amit Kapila, Sawada Masahiko, Vignesh C, Dilip Kumar, Takamichi Osumi, Greg Nancarrow Tested-By: Haiying Tang Discussion: https://postgr.es/m/02DA5F5E-CECE-4D9C-8B4B-418077E2C010@postgrespro.ru Discussion: https://postgr.es/m/CAA4eK1+opiV4aFTmWWUF9h_32=HfPOW9vZASHarT0UA5oBrtGw@mail.gmail.com
2021-07-14 04:03:50 +02:00
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
PreventInTransactionBlock(isTopLevel, "ALTER SUBSCRIPTION ... REFRESH");
AlterSubscription_refresh(sub, opts.copy_data, NULL);
break;
}
case ALTER_SUBSCRIPTION_SKIP:
{
parse_subscription_options(pstate, stmt->options, SUBOPT_LSN, &opts);
/* ALTER SUBSCRIPTION ... SKIP supports only LSN option */
Assert(IsSet(opts.specified_opts, SUBOPT_LSN));
/*
* If the user sets subskiplsn, we do a sanity check to make
* sure that the specified LSN is a probable value.
*/
if (!XLogRecPtrIsInvalid(opts.lsn))
{
RepOriginId originid;
char originname[NAMEDATALEN];
XLogRecPtr remote_lsn;
ReplicationOriginNameForLogicalRep(subid, InvalidOid,
originname, sizeof(originname));
originid = replorigin_by_name(originname, false);
remote_lsn = replorigin_get_progress(originid, false);
/* Check the given LSN is at least a future LSN */
if (!XLogRecPtrIsInvalid(remote_lsn) && opts.lsn < remote_lsn)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("skip WAL location (LSN %X/%X) must be greater than origin LSN %X/%X",
LSN_FORMAT_ARGS(opts.lsn),
LSN_FORMAT_ARGS(remote_lsn))));
}
values[Anum_pg_subscription_subskiplsn - 1] = LSNGetDatum(opts.lsn);
replaces[Anum_pg_subscription_subskiplsn - 1] = true;
update_tuple = true;
break;
}
default:
elog(ERROR, "unrecognized ALTER SUBSCRIPTION kind %d",
stmt->kind);
}
/* Update the catalog if needed. */
if (update_tuple)
{
tup = heap_modify_tuple(tup, RelationGetDescr(rel), values, nulls,
replaces);
CatalogTupleUpdate(rel, &tup->t_self, tup);
heap_freetuple(tup);
}
table_close(rel, RowExclusiveLock);
ObjectAddressSet(myself, SubscriptionRelationId, subid);
InvokeObjectPostAlterHook(SubscriptionRelationId, subid, 0);
/* Wake up related replication workers to handle this change quickly. */
LogicalRepWorkersWakeupAtCommit(subid);
return myself;
}
/*
* Drop a subscription
*/
void
DropSubscription(DropSubscriptionStmt *stmt, bool isTopLevel)
{
Relation rel;
ObjectAddress myself;
HeapTuple tup;
Oid subid;
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
Oid subowner;
Datum datum;
bool isnull;
char *subname;
char *conninfo;
char *slotname;
List *subworkers;
ListCell *lc;
char originname[NAMEDATALEN];
char *err = NULL;
WalReceiverConn *wrconn;
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
Form_pg_subscription form;
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
List *rstates;
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
bool must_use_password;
/*
* Lock pg_subscription with AccessExclusiveLock to ensure that the
* launcher doesn't restart new worker during dropping the subscription
*/
rel = table_open(SubscriptionRelationId, AccessExclusiveLock);
tup = SearchSysCache2(SUBSCRIPTIONNAME, MyDatabaseId,
CStringGetDatum(stmt->subname));
if (!HeapTupleIsValid(tup))
{
table_close(rel, NoLock);
if (!stmt->missing_ok)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("subscription \"%s\" does not exist",
stmt->subname)));
else
ereport(NOTICE,
(errmsg("subscription \"%s\" does not exist, skipping",
stmt->subname)));
return;
}
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
form = (Form_pg_subscription) GETSTRUCT(tup);
subid = form->oid;
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
subowner = form->subowner;
must_use_password = !superuser_arg(subowner) && form->subpasswordrequired;
/* must be owner */
if (!object_ownercheck(SubscriptionRelationId, subid, GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, OBJECT_SUBSCRIPTION,
stmt->subname);
/* DROP hook for the subscription being removed */
InvokeObjectDropHook(SubscriptionRelationId, subid, 0);
/*
* Lock the subscription so nobody else can do anything with it (including
* the replication workers).
*/
LockSharedObject(SubscriptionRelationId, subid, 0, AccessExclusiveLock);
/* Get subname */
datum = SysCacheGetAttrNotNull(SUBSCRIPTIONOID, tup,
Anum_pg_subscription_subname);
subname = pstrdup(NameStr(*DatumGetName(datum)));
/* Get conninfo */
datum = SysCacheGetAttrNotNull(SUBSCRIPTIONOID, tup,
Anum_pg_subscription_subconninfo);
conninfo = TextDatumGetCString(datum);
/* Get slotname */
datum = SysCacheGetAttr(SUBSCRIPTIONOID, tup,
Anum_pg_subscription_subslotname, &isnull);
if (!isnull)
slotname = pstrdup(NameStr(*DatumGetName(datum)));
else
slotname = NULL;
/*
* Since dropping a replication slot is not transactional, the replication
* slot stays dropped even if the transaction rolls back. So we cannot
* run DROP SUBSCRIPTION inside a transaction block if dropping the
* replication slot. Also, in this case, we report a message for dropping
* the subscription to the cumulative stats system.
*
* XXX The command name should really be something like "DROP SUBSCRIPTION
* of a subscription that is associated with a replication slot", but we
* don't have the proper facilities for that.
*/
if (slotname)
PreventInTransactionBlock(isTopLevel, "DROP SUBSCRIPTION");
ObjectAddressSet(myself, SubscriptionRelationId, subid);
EventTriggerSQLDropAddObject(&myself, true, true);
/* Remove the tuple from catalog. */
CatalogTupleDelete(rel, &tup->t_self);
ReleaseSysCache(tup);
/*
* Stop all the subscription workers immediately.
*
* This is necessary if we are dropping the replication slot, so that the
* slot becomes accessible.
*
* It is also necessary if the subscription is disabled and was disabled
* in the same transaction. Then the workers haven't seen the disabling
* yet and will still be running, leading to hangs later when we want to
* drop the replication origin. If the subscription was disabled before
* this transaction, then there shouldn't be any workers left, so this
* won't make a difference.
*
* New workers won't be started because we hold an exclusive lock on the
* subscription till the end of the transaction.
*/
LWLockAcquire(LogicalRepWorkerLock, LW_SHARED);
subworkers = logicalrep_workers_find(subid, false);
LWLockRelease(LogicalRepWorkerLock);
foreach(lc, subworkers)
{
LogicalRepWorker *w = (LogicalRepWorker *) lfirst(lc);
2017-08-14 23:29:33 +02:00
logicalrep_worker_stop(w->subid, w->relid);
}
list_free(subworkers);
/*
* Remove the no-longer-useful entry in the launcher's table of apply
* worker start times.
*
* If this transaction rolls back, the launcher might restart a failed
* apply worker before wal_retrieve_retry_interval milliseconds have
* elapsed, but that's pretty harmless.
*/
ApplyLauncherForgetWorkerStartTime(subid);
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
/*
* Cleanup of tablesync replication origins.
*
* Any READY-state relations would already have dealt with clean-ups.
*
* Note that the state can't change because we have already stopped both
* the apply and tablesync workers and they can't restart because of
* exclusive lock on the subscription.
*/
rstates = GetSubscriptionRelations(subid, true);
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
foreach(lc, rstates)
{
SubscriptionRelState *rstate = (SubscriptionRelState *) lfirst(lc);
Oid relid = rstate->relid;
/* Only cleanup resources of tablesync workers */
if (!OidIsValid(relid))
continue;
/*
* Drop the tablesync's origin tracking if exists.
*
* It is possible that the origin is not yet created for tablesync
* worker so passing missing_ok = true. This can happen for the states
* before SUBREL_STATE_FINISHEDCOPY.
*/
ReplicationOriginNameForLogicalRep(subid, relid, originname,
sizeof(originname));
replorigin_drop_by_name(originname, true, false);
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
}
/* Clean up dependencies */
deleteSharedDependencyRecordsFor(SubscriptionRelationId, subid, 0);
/* Remove any associated relation synchronization states. */
RemoveSubscriptionRel(subid, InvalidOid);
/* Remove the origin tracking if exists. */
ReplicationOriginNameForLogicalRep(subid, InvalidOid, originname, sizeof(originname));
replorigin_drop_by_name(originname, true, false);
/*
* If there is no slot associated with the subscription, we can finish
* here.
*/
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
if (!slotname && rstates == NIL)
{
table_close(rel, NoLock);
return;
}
/*
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
* Try to acquire the connection necessary for dropping slots.
*
* Note: If the slotname is NONE/NULL then we allow the command to finish
* and users need to manually cleanup the apply and tablesync worker slots
* later.
*
* This has to be at the end because otherwise if there is an error while
* doing the database operations we won't be able to rollback dropped
* slot.
*/
load_file("libpqwalreceiver", false);
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
wrconn = walrcv_connect(conninfo, true, must_use_password,
subname, &err);
if (wrconn == NULL)
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
{
if (!slotname)
{
/* be tidy */
list_free(rstates);
table_close(rel, NoLock);
return;
}
else
{
ReportSlotConnectionError(rstates, subid, slotname, err);
}
}
PG_TRY();
{
foreach(lc, rstates)
{
SubscriptionRelState *rstate = (SubscriptionRelState *) lfirst(lc);
Oid relid = rstate->relid;
/* Only cleanup resources of tablesync workers */
if (!OidIsValid(relid))
continue;
/*
* Drop the tablesync slots associated with removed tables.
*
* For SYNCDONE/READY states, the tablesync slot is known to have
* already been dropped by the tablesync worker.
*
* For other states, there is no certainty, maybe the slot does
* not exist yet. Also, if we fail after removing some of the
* slots, next time, it will again try to drop already dropped
* slots and fail. For these reasons, we allow missing_ok = true
* for the drop.
*/
if (rstate->state != SUBREL_STATE_SYNCDONE)
{
char syncslotname[NAMEDATALEN] = {0};
ReplicationSlotNameForTablesync(subid, relid, syncslotname,
sizeof(syncslotname));
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
ReplicationSlotDropAtPubNode(wrconn, syncslotname, true);
}
}
list_free(rstates);
/*
* If there is a slot associated with the subscription, then drop the
* replication slot at the publisher.
*/
if (slotname)
ReplicationSlotDropAtPubNode(wrconn, slotname, false);
}
PG_FINALLY();
{
walrcv_disconnect(wrconn);
}
PG_END_TRY();
/*
* Tell the cumulative stats system that the subscription is getting
* dropped.
*/
pgstat_drop_subscription(subid);
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
table_close(rel, NoLock);
}
/*
* Drop the replication slot at the publisher node using the replication
* connection.
*
* missing_ok - if true then only issue a LOG message if the slot doesn't
* exist.
*/
void
ReplicationSlotDropAtPubNode(WalReceiverConn *wrconn, char *slotname, bool missing_ok)
{
StringInfoData cmd;
Assert(wrconn);
load_file("libpqwalreceiver", false);
initStringInfo(&cmd);
appendStringInfo(&cmd, "DROP_REPLICATION_SLOT %s WAIT", quote_identifier(slotname));
PG_TRY();
{
WalRcvExecResult *res;
res = walrcv_exec(wrconn, cmd.data, 0, NULL);
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
if (res->status == WALRCV_OK_COMMAND)
{
/* NOTICE. Success. */
ereport(NOTICE,
(errmsg("dropped replication slot \"%s\" on publisher",
slotname)));
}
else if (res->status == WALRCV_ERROR &&
missing_ok &&
res->sqlstate == ERRCODE_UNDEFINED_OBJECT)
{
/* LOG. Error, but missing_ok = true. */
ereport(LOG,
(errmsg("could not drop replication slot \"%s\" on publisher: %s",
slotname, res->err)));
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
}
else
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
{
/* ERROR. */
ereport(ERROR,
(errcode(ERRCODE_CONNECTION_FAILURE),
errmsg("could not drop replication slot \"%s\" on publisher: %s",
slotname, res->err)));
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
}
walrcv_clear_result(res);
}
PG_FINALLY();
{
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
pfree(cmd.data);
}
PG_END_TRY();
}
/*
* Internal workhorse for changing a subscription owner
*/
static void
AlterSubscriptionOwner_internal(Relation rel, HeapTuple tup, Oid newOwnerId)
{
Form_pg_subscription form;
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
AclResult aclresult;
form = (Form_pg_subscription) GETSTRUCT(tup);
if (form->subowner == newOwnerId)
return;
if (!object_ownercheck(SubscriptionRelationId, form->oid, GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, OBJECT_SUBSCRIPTION,
NameStr(form->subname));
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
/*
* Don't allow non-superuser modification of a subscription with
* password_required=false.
*/
if (!form->subpasswordrequired && !superuser())
ereport(ERROR,
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
errmsg("password_required=false is superuser-only"),
errhint("Subscriptions with the password_required option set to false may only be created or modified by the superuser.")));
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
/* Must be able to become new owner */
check_can_set_role(GetUserId(), newOwnerId);
/*
* current owner must have CREATE on database
*
* This is consistent with how ALTER SCHEMA ... OWNER TO works, but some
* other object types behave differently (e.g. you can't give a table to a
* user who lacks CREATE privileges on a schema).
Add new predefined role pg_create_subscription. This role can be granted to non-superusers to allow them to issue CREATE SUBSCRIPTION. The non-superuser must additionally have CREATE permissions on the database in which the subscription is to be created. Most forms of ALTER SUBSCRIPTION, including ALTER SUBSCRIPTION .. SKIP, now require only that the role performing the operation own the subscription, or inherit the privileges of the owner. However, to use ALTER SUBSCRIPTION ... RENAME or ALTER SUBSCRIPTION ... OWNER TO, you also need CREATE permission on the database. This is similar to what we do for schemas. To change the owner of a schema, you must also have permission to SET ROLE to the new owner, similar to what we do for other object types. Non-superusers are required to specify a password for authentication and the remote side must use the password, similar to what is required for postgres_fdw and dblink. A superuser who wants a non-superuser to own a subscription that does not rely on password authentication may set the new password_required=false property on that subscription. A non-superuser may not set password_required=false and may not modify a subscription that already has password_required=false. This new password_required subscription property works much like the eponymous postgres_fdw property. In both cases, the actual semantics are that a password is not required if either (1) the property is set to false or (2) the relevant user is the superuser. Patch by me, reviewed by Andres Freund, Jeff Davis, Mark Dilger, and Stephen Frost (but some of those people did not fully endorse all of the decisions that the patch makes). Discussion: http://postgr.es/m/CA+TgmoaDH=0Xj7OBiQnsHTKcF2c4L+=gzPBUKSJLh8zed2_+Dg@mail.gmail.com
2023-03-30 17:37:19 +02:00
*/
aclresult = object_aclcheck(DatabaseRelationId, MyDatabaseId,
GetUserId(), ACL_CREATE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, OBJECT_DATABASE,
get_database_name(MyDatabaseId));
form->subowner = newOwnerId;
CatalogTupleUpdate(rel, &tup->t_self, tup);
/* Update owner dependency reference */
changeDependencyOnOwner(SubscriptionRelationId,
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
form->oid,
newOwnerId);
InvokeObjectPostAlterHook(SubscriptionRelationId,
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
form->oid, 0);
/* Wake up related background processes to handle this change quickly. */
ApplyLauncherWakeupAtCommit();
LogicalRepWorkersWakeupAtCommit(form->oid);
}
/*
* Change subscription owner -- by name
*/
ObjectAddress
AlterSubscriptionOwner(const char *name, Oid newOwnerId)
{
Oid subid;
HeapTuple tup;
Relation rel;
ObjectAddress address;
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
Form_pg_subscription form;
rel = table_open(SubscriptionRelationId, RowExclusiveLock);
tup = SearchSysCacheCopy2(SUBSCRIPTIONNAME, MyDatabaseId,
CStringGetDatum(name));
if (!HeapTupleIsValid(tup))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("subscription \"%s\" does not exist", name)));
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
form = (Form_pg_subscription) GETSTRUCT(tup);
subid = form->oid;
AlterSubscriptionOwner_internal(rel, tup, newOwnerId);
ObjectAddressSet(address, SubscriptionRelationId, subid);
heap_freetuple(tup);
table_close(rel, RowExclusiveLock);
return address;
}
/*
* Change subscription owner -- by OID
*/
void
AlterSubscriptionOwner_oid(Oid subid, Oid newOwnerId)
{
HeapTuple tup;
Relation rel;
rel = table_open(SubscriptionRelationId, RowExclusiveLock);
tup = SearchSysCacheCopy1(SUBSCRIPTIONOID, ObjectIdGetDatum(subid));
if (!HeapTupleIsValid(tup))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("subscription with OID %u does not exist", subid)));
AlterSubscriptionOwner_internal(rel, tup, newOwnerId);
heap_freetuple(tup);
table_close(rel, RowExclusiveLock);
}
/*
* Check and log a warning if the publisher has subscribed to the same table
* from some other publisher. This check is required only if "copy_data = true"
* and "origin = none" for CREATE SUBSCRIPTION and
* ALTER SUBSCRIPTION ... REFRESH statements to notify the user that data
* having origin might have been copied.
*
* This check need not be performed on the tables that are already added
* because incremental sync for those tables will happen through WAL and the
* origin of the data can be identified from the WAL records.
*
* subrel_local_oids contains the list of relation oids that are already
* present on the subscriber.
*/
static void
check_publications_origin(WalReceiverConn *wrconn, List *publications,
bool copydata, char *origin, Oid *subrel_local_oids,
int subrel_count, char *subname)
{
WalRcvExecResult *res;
StringInfoData cmd;
TupleTableSlot *slot;
Oid tableRow[1] = {TEXTOID};
List *publist = NIL;
int i;
if (!copydata || !origin ||
(pg_strcasecmp(origin, LOGICALREP_ORIGIN_NONE) != 0))
return;
initStringInfo(&cmd);
appendStringInfoString(&cmd,
"SELECT DISTINCT P.pubname AS pubname\n"
"FROM pg_publication P,\n"
" LATERAL pg_get_publication_tables(P.pubname) GPT\n"
" JOIN pg_subscription_rel PS ON (GPT.relid = PS.srrelid),\n"
" pg_class C JOIN pg_namespace N ON (N.oid = C.relnamespace)\n"
"WHERE C.oid = GPT.relid AND P.pubname IN (");
get_publications_str(publications, &cmd, true);
appendStringInfoString(&cmd, ")\n");
/*
* In case of ALTER SUBSCRIPTION ... REFRESH, subrel_local_oids contains
* the list of relation oids that are already present on the subscriber.
* This check should be skipped for these tables.
*/
for (i = 0; i < subrel_count; i++)
{
Oid relid = subrel_local_oids[i];
char *schemaname = get_namespace_name(get_rel_namespace(relid));
char *tablename = get_rel_name(relid);
appendStringInfo(&cmd, "AND NOT (N.nspname = '%s' AND C.relname = '%s')\n",
schemaname, tablename);
}
res = walrcv_exec(wrconn, cmd.data, 1, tableRow);
pfree(cmd.data);
if (res->status != WALRCV_OK_TUPLES)
ereport(ERROR,
(errcode(ERRCODE_CONNECTION_FAILURE),
errmsg("could not receive list of replicated tables from the publisher: %s",
res->err)));
/* Process tables. */
slot = MakeSingleTupleTableSlot(res->tupledesc, &TTSOpsMinimalTuple);
while (tuplestore_gettupleslot(res->tuplestore, true, false, slot))
{
char *pubname;
bool isnull;
pubname = TextDatumGetCString(slot_getattr(slot, 1, &isnull));
Assert(!isnull);
ExecClearTuple(slot);
publist = list_append_unique(publist, makeString(pubname));
}
/*
* Log a warning if the publisher has subscribed to the same table from
* some other publisher. We cannot know the origin of data during the
* initial sync. Data origins can be found only from the WAL by looking at
* the origin id.
*
* XXX: For simplicity, we don't check whether the table has any data or
* not. If the table doesn't have any data then we don't need to
* distinguish between data having origin and data not having origin so we
* can avoid logging a warning in that case.
*/
if (publist)
{
StringInfo pubnames = makeStringInfo();
/* Prepare the list of publication(s) for warning message. */
get_publications_str(publist, pubnames, false);
ereport(WARNING,
errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("subscription \"%s\" requested copy_data with origin = NONE but might copy data that had a different origin",
subname),
errdetail_plural("Subscribed publication %s is subscribing to other publications.",
"Subscribed publications %s are subscribing to other publications.",
list_length(publist), pubnames->data),
errhint("Verify that initial data copied from the publisher tables did not come from other origins."));
}
ExecDropSingleTupleTableSlot(slot);
walrcv_clear_result(res);
}
/*
* Get the list of tables which belong to specified publications on the
* publisher connection.
*
* Note that we don't support the case where the column list is different for
* the same table in different publications to avoid sending unwanted column
* information for some of the rows. This can happen when both the column
* list and row filter are specified for different publications.
*/
static List *
fetch_table_list(WalReceiverConn *wrconn, List *publications)
{
WalRcvExecResult *res;
StringInfoData cmd;
TupleTableSlot *slot;
Oid tableRow[3] = {TEXTOID, TEXTOID, InvalidOid};
List *tablelist = NIL;
int server_version = walrcv_server_version(wrconn);
bool check_columnlist = (server_version >= 150000);
initStringInfo(&cmd);
/* Get the list of tables from the publisher. */
if (server_version >= 160000)
{
StringInfoData pub_names;
tableRow[2] = INT2VECTOROID;
initStringInfo(&pub_names);
get_publications_str(publications, &pub_names, true);
/*
* From version 16, we allowed passing multiple publications to the
* function pg_get_publication_tables. This helped to filter out the
* partition table whose ancestor is also published in this
* publication array.
*
* Join pg_get_publication_tables with pg_publication to exclude
* non-existing publications.
*
* Note that attrs are always stored in sorted order so we don't need
* to worry if different publications have specified them in a
* different order. See publication_translate_columns.
*/
appendStringInfo(&cmd, "SELECT DISTINCT n.nspname, c.relname, gpt.attrs\n"
" FROM pg_class c\n"
" JOIN pg_namespace n ON n.oid = c.relnamespace\n"
" JOIN ( SELECT (pg_get_publication_tables(VARIADIC array_agg(pubname::text))).*\n"
" FROM pg_publication\n"
" WHERE pubname IN ( %s )) AS gpt\n"
" ON gpt.relid = c.oid\n",
pub_names.data);
pfree(pub_names.data);
}
else
{
tableRow[2] = NAMEARRAYOID;
appendStringInfoString(&cmd, "SELECT DISTINCT t.schemaname, t.tablename \n");
/* Get column lists for each relation if the publisher supports it */
if (check_columnlist)
appendStringInfoString(&cmd, ", t.attnames\n");
appendStringInfoString(&cmd, "FROM pg_catalog.pg_publication_tables t\n"
" WHERE t.pubname IN (");
get_publications_str(publications, &cmd, true);
appendStringInfoChar(&cmd, ')');
}
res = walrcv_exec(wrconn, cmd.data, check_columnlist ? 3 : 2, tableRow);
pfree(cmd.data);
if (res->status != WALRCV_OK_TUPLES)
ereport(ERROR,
(errcode(ERRCODE_CONNECTION_FAILURE),
errmsg("could not receive list of replicated tables from the publisher: %s",
res->err)));
/* Process tables. */
Introduce notion of different types of slots (without implementing them). Upcoming work intends to allow pluggable ways to introduce new ways of storing table data. Accessing those table access methods from the executor requires TupleTableSlots to be carry tuples in the native format of such storage methods; otherwise there'll be a significant conversion overhead. Different access methods will require different data to store tuples efficiently (just like virtual, minimal, heap already require fields in TupleTableSlot). To allow that without requiring additional pointer indirections, we want to have different structs (embedding TupleTableSlot) for different types of slots. Thus different types of slots are needed, which requires adapting creators of slots. The slot that most efficiently can represent a type of tuple in an executor node will often depend on the type of slot a child node uses. Therefore we need to track the type of slot is returned by nodes, so parent slots can create slots based on that. Relatedly, JIT compilation of tuple deforming needs to know which type of slot a certain expression refers to, so it can create an appropriate deforming function for the type of tuple in the slot. But not all nodes will only return one type of slot, e.g. an append node will potentially return different types of slots for each of its subplans. Therefore add function that allows to query the type of a node's result slot, and whether it'll always be the same type (whether it's fixed). This can be queried using ExecGetResultSlotOps(). The scan, result, inner, outer type of slots are automatically inferred from ExecInitScanTupleSlot(), ExecInitResultSlot(), left/right subtrees respectively. If that's not correct for a node, that can be overwritten using new fields in PlanState. This commit does not introduce the actually abstracted implementation of different kind of TupleTableSlots, that will be left for a followup commit. The different types of slots introduced will, for now, still use the same backing implementation. While this already partially invalidates the big comment in tuptable.h, it seems to make more sense to update it later, when the different TupleTableSlot implementations actually exist. Author: Ashutosh Bapat and Andres Freund, with changes by Amit Khandekar Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-16 07:00:30 +01:00
slot = MakeSingleTupleTableSlot(res->tupledesc, &TTSOpsMinimalTuple);
while (tuplestore_gettupleslot(res->tuplestore, true, false, slot))
{
char *nspname;
char *relname;
bool isnull;
RangeVar *rv;
nspname = TextDatumGetCString(slot_getattr(slot, 1, &isnull));
Assert(!isnull);
relname = TextDatumGetCString(slot_getattr(slot, 2, &isnull));
Assert(!isnull);
rv = makeRangeVar(nspname, relname, -1);
if (check_columnlist && list_member(tablelist, rv))
ereport(ERROR,
errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot use different column lists for table \"%s.%s\" in different publications",
nspname, relname));
else
tablelist = lappend(tablelist, rv);
ExecClearTuple(slot);
}
ExecDropSingleTupleTableSlot(slot);
walrcv_clear_result(res);
return tablelist;
}
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
/*
* This is to report the connection failure while dropping replication slots.
* Here, we report the WARNING for all tablesync slots so that user can drop
* them manually, if required.
*/
static void
ReportSlotConnectionError(List *rstates, Oid subid, char *slotname, char *err)
{
ListCell *lc;
foreach(lc, rstates)
{
SubscriptionRelState *rstate = (SubscriptionRelState *) lfirst(lc);
Oid relid = rstate->relid;
/* Only cleanup resources of tablesync workers */
if (!OidIsValid(relid))
continue;
/*
* Caller needs to ensure that relstate doesn't change underneath us.
* See DropSubscription where we get the relstates.
*/
if (rstate->state != SUBREL_STATE_SYNCDONE)
{
char syncslotname[NAMEDATALEN] = {0};
ReplicationSlotNameForTablesync(subid, relid, syncslotname,
sizeof(syncslotname));
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
elog(WARNING, "could not drop tablesync replication slot \"%s\"",
syncslotname);
}
}
ereport(ERROR,
(errcode(ERRCODE_CONNECTION_FAILURE),
errmsg("could not connect to publisher when attempting to drop replication slot \"%s\": %s",
slotname, err),
Allow multiple xacts during table sync in logical replication. For the initial table data synchronization in logical replication, we use a single transaction to copy the entire table and then synchronize the position in the stream with the main apply worker. There are multiple downsides of this approach: (a) We have to perform the entire copy operation again if there is any error (network breakdown, error in the database operation, etc.) while we synchronize the WAL position between tablesync worker and apply worker; this will be onerous especially for large copies, (b) Using a single transaction in the synchronization-phase (where we can receive WAL from multiple transactions) will have the risk of exceeding the CID limit, (c) The slot will hold the WAL till the entire sync is complete because we never commit till the end. This patch solves all the above downsides by allowing multiple transactions during the tablesync phase. The initial copy is done in a single transaction and after that, we commit each transaction as we receive. To allow recovery after any error or crash, we use a permanent slot and origin to track the progress. The slot and origin will be removed once we finish the synchronization of the table. We also remove slot and origin of tablesync workers if the user performs DROP SUBSCRIPTION .. or ALTER SUBSCRIPTION .. REFERESH and some of the table syncs are still not finished. The commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... SET PUBLICATION ... with refresh option as true cannot be executed inside a transaction block because they can now drop the slots for which we have no provision to rollback. This will also open up the path for logical replication of 2PC transactions on the subscriber side. Previously, we can't do that because of the requirement of maintaining a single transaction in tablesync workers. Bump catalog version due to change of state in the catalog (pg_subscription_rel). Author: Peter Smith, Amit Kapila, and Takamichi Osumi Reviewed-by: Ajin Cherian, Petr Jelinek, Hou Zhijie and Amit Kapila Discussion: https://postgr.es/m/CAA4eK1KHJxaZS-fod-0fey=0tq3=Gkn4ho=8N4-5HWiCfu0H1A@mail.gmail.com
2021-02-12 03:11:51 +01:00
/* translator: %s is an SQL ALTER command */
errhint("Use %s to disassociate the subscription from the slot.",
"ALTER SUBSCRIPTION ... SET (slot_name = NONE)")));
}
/*
* Check for duplicates in the given list of publications and error out if
* found one. Add publications to datums as text datums, if datums is not
* NULL.
*/
static void
check_duplicates_in_publist(List *publist, Datum *datums)
{
ListCell *cell;
int j = 0;
foreach(cell, publist)
{
char *name = strVal(lfirst(cell));
ListCell *pcell;
foreach(pcell, publist)
{
char *pname = strVal(lfirst(pcell));
if (pcell == cell)
break;
if (strcmp(name, pname) == 0)
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_OBJECT),
errmsg("publication name \"%s\" used more than once",
pname)));
}
if (datums)
datums[j++] = CStringGetTextDatum(name);
}
}
/*
* Merge current subscription's publications and user-specified publications
* from ADD/DROP PUBLICATIONS.
*
* If addpub is true, we will add the list of publications into oldpublist.
* Otherwise, we will delete the list of publications from oldpublist. The
* returned list is a copy, oldpublist itself is not changed.
*
* subname is the subscription name, for error messages.
*/
static List *
merge_publications(List *oldpublist, List *newpublist, bool addpub, const char *subname)
{
ListCell *lc;
oldpublist = list_copy(oldpublist);
check_duplicates_in_publist(newpublist, NULL);
foreach(lc, newpublist)
{
char *name = strVal(lfirst(lc));
ListCell *lc2;
bool found = false;
foreach(lc2, oldpublist)
{
char *pubname = strVal(lfirst(lc2));
if (strcmp(name, pubname) == 0)
{
found = true;
if (addpub)
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_OBJECT),
errmsg("publication \"%s\" is already in subscription \"%s\"",
name, subname)));
else
oldpublist = foreach_delete_current(oldpublist, lc2);
break;
}
}
if (addpub && !found)
oldpublist = lappend(oldpublist, makeString(name));
else if (!addpub && !found)
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("publication \"%s\" is not in subscription \"%s\"",
name, subname)));
}
/*
* XXX Probably no strong reason for this, but for now it's to make ALTER
* SUBSCRIPTION ... DROP PUBLICATION consistent with SET PUBLICATION.
*/
if (!oldpublist)
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("cannot drop all the publications from a subscription")));
return oldpublist;
}
Perform apply of large transactions by parallel workers. Currently, for large transactions, the publisher sends the data in multiple streams (changes divided into chunks depending upon logical_decoding_work_mem), and then on the subscriber-side, the apply worker writes the changes into temporary files and once it receives the commit, it reads from those files and applies the entire transaction. To improve the performance of such transactions, we can instead allow them to be applied via parallel workers. In this approach, we assign a new parallel apply worker (if available) as soon as the xact's first stream is received and the leader apply worker will send changes to this new worker via shared memory. The parallel apply worker will directly apply the change instead of writing it to temporary files. However, if the leader apply worker times out while attempting to send a message to the parallel apply worker, it will switch to "partial serialize" mode - in this mode, the leader serializes all remaining changes to a file and notifies the parallel apply workers to read and apply them at the end of the transaction. We use a non-blocking way to send the messages from the leader apply worker to the parallel apply to avoid deadlocks. We keep this parallel apply assigned till the transaction commit is received and also wait for the worker to finish at commit. This preserves commit ordering and avoid writing to and reading from files in most cases. We still need to spill if there is no worker available. This patch also extends the SUBSCRIPTION 'streaming' parameter so that the user can control whether to apply the streaming transaction in a parallel apply worker or spill the change to disk. The user can set the streaming parameter to 'on/off', or 'parallel'. The parameter value 'parallel' means the streaming will be applied via a parallel apply worker, if available. The parameter value 'on' means the streaming transaction will be spilled to disk. The default value is 'off' (same as current behaviour). In addition, the patch extends the logical replication STREAM_ABORT message so that abort_lsn and abort_time can also be sent which can be used to update the replication origin in parallel apply worker when the streaming transaction is aborted. Because this message extension is needed to support parallel streaming, parallel streaming is not supported for publications on servers < PG16. Author: Hou Zhijie, Wang wei, Amit Kapila with design inputs from Sawada Masahiko Reviewed-by: Sawada Masahiko, Peter Smith, Dilip Kumar, Shi yu, Kuroda Hayato, Shveta Mallik Discussion: https://postgr.es/m/CAA4eK1+wyN6zpaHUkCLorEWNx75MG0xhMwcFhvjqm2KURZEAGw@mail.gmail.com
2023-01-09 02:30:39 +01:00
/*
* Extract the streaming mode value from a DefElem. This is like
* defGetBoolean() but also accepts the special value of "parallel".
*/
char
defGetStreamingMode(DefElem *def)
{
/*
* If no parameter value given, assume "true" is meant.
*/
if (!def->arg)
return LOGICALREP_STREAM_ON;
/*
* Allow 0, 1, "false", "true", "off", "on" or "parallel".
*/
switch (nodeTag(def->arg))
{
case T_Integer:
switch (intVal(def->arg))
{
case 0:
return LOGICALREP_STREAM_OFF;
case 1:
return LOGICALREP_STREAM_ON;
default:
/* otherwise, error out below */
break;
}
break;
default:
{
char *sval = defGetString(def);
/*
* The set of strings accepted here should match up with the
* grammar's opt_boolean_or_string production.
*/
if (pg_strcasecmp(sval, "false") == 0 ||
pg_strcasecmp(sval, "off") == 0)
return LOGICALREP_STREAM_OFF;
if (pg_strcasecmp(sval, "true") == 0 ||
pg_strcasecmp(sval, "on") == 0)
return LOGICALREP_STREAM_ON;
if (pg_strcasecmp(sval, "parallel") == 0)
return LOGICALREP_STREAM_PARALLEL;
}
break;
}
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("%s requires a Boolean value or \"parallel\"",
def->defname)));
return LOGICALREP_STREAM_OFF; /* keep compiler quiet */
}