postgresql/src/test/regress/sql/float8.sql

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

515 lines
16 KiB
MySQL
Raw Normal View History

--
-- FLOAT8
--
1997-04-05 13:26:55 +02:00
--
-- Build a table for testing
-- (This temporarily hides the table created in test_setup.sql)
--
CREATE TEMP TABLE FLOAT8_TBL(f1 float8);
1997-04-05 13:26:55 +02:00
INSERT INTO FLOAT8_TBL(f1) VALUES (' 0.0 ');
INSERT INTO FLOAT8_TBL(f1) VALUES ('1004.30 ');
INSERT INTO FLOAT8_TBL(f1) VALUES (' -34.84');
1997-04-05 13:26:55 +02:00
INSERT INTO FLOAT8_TBL(f1) VALUES ('1.2345678901234e+200');
INSERT INTO FLOAT8_TBL(f1) VALUES ('1.2345678901234e-200');
-- test for underflow and overflow handling
SELECT '10e400'::float8;
SELECT '-10e400'::float8;
SELECT '10e-400'::float8;
SELECT '-10e-400'::float8;
Change floating-point output format for improved performance. Previously, floating-point output was done by rounding to a specific decimal precision; by default, to 6 or 15 decimal digits (losing information) or as requested using extra_float_digits. Drivers that wanted exact float values, and applications like pg_dump that must preserve values exactly, set extra_float_digits=3 (or sometimes 2 for historical reasons, though this isn't enough for float4). Unfortunately, decimal rounded output is slow enough to become a noticable bottleneck when dealing with large result sets or COPY of large tables when many floating-point values are involved. Floating-point output can be done much faster when the output is not rounded to a specific decimal length, but rather is chosen as the shortest decimal representation that is closer to the original float value than to any other value representable in the same precision. The recently published Ryu algorithm by Ulf Adams is both relatively simple and remarkably fast. Accordingly, change float4out/float8out to output shortest decimal representations if extra_float_digits is greater than 0, and make that the new default. Applications that need rounded output can set extra_float_digits back to 0 or below, and take the resulting performance hit. We make one concession to portability for systems with buggy floating-point input: we do not output decimal values that fall exactly halfway between adjacent representable binary values (which would rely on the reader doing round-to-nearest-even correctly). This is known to be a problem at least for VS2013 on Windows. Our version of the Ryu code originates from https://github.com/ulfjack/ryu/ at commit c9c3fb1979, but with the following (significant) modifications: - Output format is changed to use fixed-point notation for small exponents, as printf would, and also to use lowercase 'e', a minimum of 2 exponent digits, and a mandatory sign on the exponent, to keep the formatting as close as possible to previous output. - The output of exact midpoint values is disabled as noted above. - The integer fast-path code is changed somewhat (since we have fixed-point output and the upstream did not). - Our project style has been largely applied to the code with the exception of C99 declaration-after-statement, which has been retained as an exception to our present policy. - Most of upstream's debugging and conditionals are removed, and we use our own configure tests to determine things like uint128 availability. Changing the float output format obviously affects a number of regression tests. This patch uses an explicit setting of extra_float_digits=0 for test output that is not expected to be exactly reproducible (e.g. due to numerical instability or differing algorithms for transcendental functions). Conversions from floats to numeric are unchanged by this patch. These may appear in index expressions and it is not yet clear whether any change should be made, so that can be left for another day. This patch assumes that the only supported floating point format is now IEEE format, and the documentation is updated to reflect that. Code by me, adapting the work of Ulf Adams and other contributors. References: https://dl.acm.org/citation.cfm?id=3192369 Reviewed-by: Tom Lane, Andres Freund, Donald Dong Discussion: https://postgr.es/m/87r2el1bx6.fsf@news-spur.riddles.org.uk
2019-02-13 16:20:33 +01:00
-- test smallest normalized input
SELECT float8send('2.2250738585072014E-308'::float8);
-- bad input
INSERT INTO FLOAT8_TBL(f1) VALUES ('');
INSERT INTO FLOAT8_TBL(f1) VALUES (' ');
INSERT INTO FLOAT8_TBL(f1) VALUES ('xyz');
INSERT INTO FLOAT8_TBL(f1) VALUES ('5.0.0');
INSERT INTO FLOAT8_TBL(f1) VALUES ('5 . 0');
INSERT INTO FLOAT8_TBL(f1) VALUES ('5. 0');
INSERT INTO FLOAT8_TBL(f1) VALUES (' - 3');
INSERT INTO FLOAT8_TBL(f1) VALUES ('123 5');
-- Also try it with non-error-throwing API
SELECT pg_input_is_valid('34.5', 'float8');
SELECT pg_input_is_valid('xyz', 'float8');
SELECT pg_input_is_valid('1e4000', 'float8');
SELECT * FROM pg_input_error_info('1e4000', 'float8');
-- special inputs
SELECT 'NaN'::float8;
SELECT 'nan'::float8;
SELECT ' NAN '::float8;
SELECT 'infinity'::float8;
SELECT ' -INFINiTY '::float8;
-- bad special inputs
SELECT 'N A N'::float8;
SELECT 'NaN x'::float8;
SELECT ' INFINITY x'::float8;
SELECT 'Infinity'::float8 + 100.0;
SELECT 'Infinity'::float8 / 'Infinity'::float8;
SELECT '42'::float8 / 'Infinity'::float8;
SELECT 'nan'::float8 / 'nan'::float8;
SELECT 'nan'::float8 / '0'::float8;
SELECT 'nan'::numeric::float8;
1997-04-05 13:26:55 +02:00
SELECT * FROM FLOAT8_TBL;
1997-04-05 13:26:55 +02:00
SELECT f.* FROM FLOAT8_TBL f WHERE f.f1 <> '1004.3';
1997-04-05 13:26:55 +02:00
SELECT f.* FROM FLOAT8_TBL f WHERE f.f1 = '1004.3';
1997-04-05 13:26:55 +02:00
SELECT f.* FROM FLOAT8_TBL f WHERE '1004.3' > f.f1;
1997-04-05 13:26:55 +02:00
SELECT f.* FROM FLOAT8_TBL f WHERE f.f1 < '1004.3';
1997-04-05 13:26:55 +02:00
SELECT f.* FROM FLOAT8_TBL f WHERE '1004.3' >= f.f1;
1997-04-05 13:26:55 +02:00
SELECT f.* FROM FLOAT8_TBL f WHERE f.f1 <= '1004.3';
1997-04-05 13:26:55 +02:00
SELECT f.f1, f.f1 * '-10' AS x
1997-04-05 13:26:55 +02:00
FROM FLOAT8_TBL f
WHERE f.f1 > '0.0';
SELECT f.f1, f.f1 + '-10' AS x
1997-04-05 13:26:55 +02:00
FROM FLOAT8_TBL f
WHERE f.f1 > '0.0';
SELECT f.f1, f.f1 / '-10' AS x
1997-04-05 13:26:55 +02:00
FROM FLOAT8_TBL f
WHERE f.f1 > '0.0';
SELECT f.f1, f.f1 - '-10' AS x
1997-04-05 13:26:55 +02:00
FROM FLOAT8_TBL f
WHERE f.f1 > '0.0';
SELECT f.f1 ^ '2.0' AS square_f1
1997-04-05 13:26:55 +02:00
FROM FLOAT8_TBL f where f.f1 = '1004.3';
-- absolute value
SELECT f.f1, @f.f1 AS abs_f1
1997-04-05 13:26:55 +02:00
FROM FLOAT8_TBL f;
-- truncate
SELECT f.f1, trunc(f.f1) AS trunc_f1
1997-04-05 13:26:55 +02:00
FROM FLOAT8_TBL f;
-- round
SELECT f.f1, round(f.f1) AS round_f1
1997-04-05 13:26:55 +02:00
FROM FLOAT8_TBL f;
-- ceil / ceiling
select ceil(f1) as ceil_f1 from float8_tbl f;
select ceiling(f1) as ceiling_f1 from float8_tbl f;
-- floor
select floor(f1) as floor_f1 from float8_tbl f;
-- sign
select sign(f1) as sign_f1 from float8_tbl f;
Change floating-point output format for improved performance. Previously, floating-point output was done by rounding to a specific decimal precision; by default, to 6 or 15 decimal digits (losing information) or as requested using extra_float_digits. Drivers that wanted exact float values, and applications like pg_dump that must preserve values exactly, set extra_float_digits=3 (or sometimes 2 for historical reasons, though this isn't enough for float4). Unfortunately, decimal rounded output is slow enough to become a noticable bottleneck when dealing with large result sets or COPY of large tables when many floating-point values are involved. Floating-point output can be done much faster when the output is not rounded to a specific decimal length, but rather is chosen as the shortest decimal representation that is closer to the original float value than to any other value representable in the same precision. The recently published Ryu algorithm by Ulf Adams is both relatively simple and remarkably fast. Accordingly, change float4out/float8out to output shortest decimal representations if extra_float_digits is greater than 0, and make that the new default. Applications that need rounded output can set extra_float_digits back to 0 or below, and take the resulting performance hit. We make one concession to portability for systems with buggy floating-point input: we do not output decimal values that fall exactly halfway between adjacent representable binary values (which would rely on the reader doing round-to-nearest-even correctly). This is known to be a problem at least for VS2013 on Windows. Our version of the Ryu code originates from https://github.com/ulfjack/ryu/ at commit c9c3fb1979, but with the following (significant) modifications: - Output format is changed to use fixed-point notation for small exponents, as printf would, and also to use lowercase 'e', a minimum of 2 exponent digits, and a mandatory sign on the exponent, to keep the formatting as close as possible to previous output. - The output of exact midpoint values is disabled as noted above. - The integer fast-path code is changed somewhat (since we have fixed-point output and the upstream did not). - Our project style has been largely applied to the code with the exception of C99 declaration-after-statement, which has been retained as an exception to our present policy. - Most of upstream's debugging and conditionals are removed, and we use our own configure tests to determine things like uint128 availability. Changing the float output format obviously affects a number of regression tests. This patch uses an explicit setting of extra_float_digits=0 for test output that is not expected to be exactly reproducible (e.g. due to numerical instability or differing algorithms for transcendental functions). Conversions from floats to numeric are unchanged by this patch. These may appear in index expressions and it is not yet clear whether any change should be made, so that can be left for another day. This patch assumes that the only supported floating point format is now IEEE format, and the documentation is updated to reflect that. Code by me, adapting the work of Ulf Adams and other contributors. References: https://dl.acm.org/citation.cfm?id=3192369 Reviewed-by: Tom Lane, Andres Freund, Donald Dong Discussion: https://postgr.es/m/87r2el1bx6.fsf@news-spur.riddles.org.uk
2019-02-13 16:20:33 +01:00
-- avoid bit-exact output here because operations may not be bit-exact.
SET extra_float_digits = 0;
-- square root
SELECT sqrt(float8 '64') AS eight;
SELECT |/ float8 '64' AS eight;
SELECT f.f1, |/f.f1 AS sqrt_f1
1997-04-05 13:26:55 +02:00
FROM FLOAT8_TBL f
WHERE f.f1 > '0.0';
-- power
SELECT power(float8 '144', float8 '0.5');
SELECT power(float8 'NaN', float8 '0.5');
SELECT power(float8 '144', float8 'NaN');
SELECT power(float8 'NaN', float8 'NaN');
SELECT power(float8 '-1', float8 'NaN');
SELECT power(float8 '1', float8 'NaN');
SELECT power(float8 'NaN', float8 '0');
SELECT power(float8 'inf', float8 '0');
SELECT power(float8 '-inf', float8 '0');
SELECT power(float8 '0', float8 'inf');
SELECT power(float8 '0', float8 '-inf');
SELECT power(float8 '1', float8 'inf');
SELECT power(float8 '1', float8 '-inf');
SELECT power(float8 '-1', float8 'inf');
SELECT power(float8 '-1', float8 '-inf');
SELECT power(float8 '0.1', float8 'inf');
SELECT power(float8 '-0.1', float8 'inf');
SELECT power(float8 '1.1', float8 'inf');
SELECT power(float8 '-1.1', float8 'inf');
SELECT power(float8 '0.1', float8 '-inf');
SELECT power(float8 '-0.1', float8 '-inf');
SELECT power(float8 '1.1', float8 '-inf');
SELECT power(float8 '-1.1', float8 '-inf');
SELECT power(float8 'inf', float8 '-2');
SELECT power(float8 'inf', float8 '2');
SELECT power(float8 'inf', float8 'inf');
SELECT power(float8 'inf', float8 '-inf');
-- Intel's icc misoptimizes the code that controls the sign of this result,
-- even with -mp1. Pending a fix for that, only test for "is it zero".
SELECT power(float8 '-inf', float8 '-2') = '0';
SELECT power(float8 '-inf', float8 '-3');
SELECT power(float8 '-inf', float8 '2');
SELECT power(float8 '-inf', float8 '3');
SELECT power(float8 '-inf', float8 '3.5');
SELECT power(float8 '-inf', float8 'inf');
SELECT power(float8 '-inf', float8 '-inf');
-- take exp of ln(f.f1)
SELECT f.f1, exp(ln(f.f1)) AS exp_ln_f1
1997-04-05 13:26:55 +02:00
FROM FLOAT8_TBL f
WHERE f.f1 > '0.0';
-- check edge cases for exp
SELECT exp('inf'::float8), exp('-inf'::float8), exp('nan'::float8);
-- cube root
SELECT ||/ float8 '27' AS three;
SELECT f.f1, ||/f.f1 AS cbrt_f1 FROM FLOAT8_TBL f;
1997-04-05 13:26:55 +02:00
SELECT * FROM FLOAT8_TBL;
1997-04-05 13:26:55 +02:00
UPDATE FLOAT8_TBL
SET f1 = FLOAT8_TBL.f1 * '-1'
WHERE FLOAT8_TBL.f1 > '0.0';
SELECT f.f1 * '1e200' from FLOAT8_TBL f;
1997-04-05 13:26:55 +02:00
SELECT f.f1 ^ '1e200' from FLOAT8_TBL f;
1997-04-05 13:26:55 +02:00
SELECT 0 ^ 0 + 0 ^ 1 + 0 ^ 0.0 + 0 ^ 0.5;
SELECT ln(f.f1) from FLOAT8_TBL f where f.f1 = '0.0' ;
1997-04-05 13:26:55 +02:00
SELECT ln(f.f1) from FLOAT8_TBL f where f.f1 < '0.0' ;
1997-04-05 13:26:55 +02:00
SELECT exp(f.f1) from FLOAT8_TBL f;
1997-04-05 13:26:55 +02:00
SELECT f.f1 / '0.0' from FLOAT8_TBL f;
1997-04-05 13:26:55 +02:00
SELECT * FROM FLOAT8_TBL;
1997-04-05 13:26:55 +02:00
-- hyperbolic functions
-- we run these with extra_float_digits = 0 too, since different platforms
-- tend to produce results that vary in the last place.
SELECT sinh(float8 '1');
SELECT cosh(float8 '1');
SELECT tanh(float8 '1');
SELECT asinh(float8 '1');
SELECT acosh(float8 '2');
SELECT atanh(float8 '0.5');
-- test Inf/NaN cases for hyperbolic functions
SELECT sinh(float8 'infinity');
SELECT sinh(float8 '-infinity');
SELECT sinh(float8 'nan');
SELECT cosh(float8 'infinity');
SELECT cosh(float8 '-infinity');
SELECT cosh(float8 'nan');
SELECT tanh(float8 'infinity');
SELECT tanh(float8 '-infinity');
SELECT tanh(float8 'nan');
SELECT asinh(float8 'infinity');
SELECT asinh(float8 '-infinity');
SELECT asinh(float8 'nan');
-- acosh(Inf) should be Inf, but some mingw versions produce NaN, so skip test
-- SELECT acosh(float8 'infinity');
SELECT acosh(float8 '-infinity');
SELECT acosh(float8 'nan');
SELECT atanh(float8 'infinity');
SELECT atanh(float8 '-infinity');
SELECT atanh(float8 'nan');
-- error functions
-- we run these with extra_float_digits = -1, to get consistently rounded
-- results on all platforms.
SET extra_float_digits = -1;
SELECT x,
erf(x),
erfc(x)
FROM (VALUES (float8 '-infinity'),
(-28), (-6), (-3.4), (-2.1), (-1.1), (-0.45),
(-1.2e-9), (-2.3e-13), (-1.2e-17), (0),
(1.2e-17), (2.3e-13), (1.2e-9),
(0.45), (1.1), (2.1), (3.4), (6), (28),
(float8 'infinity'), (float8 'nan')) AS t(x);
RESET extra_float_digits;
-- test for over- and underflow
INSERT INTO FLOAT8_TBL(f1) VALUES ('10e400');
INSERT INTO FLOAT8_TBL(f1) VALUES ('-10e400');
INSERT INTO FLOAT8_TBL(f1) VALUES ('10e-400');
INSERT INTO FLOAT8_TBL(f1) VALUES ('-10e-400');
DROP TABLE FLOAT8_TBL;
-- Check the float8 values exported for use by other tests
SELECT * FROM FLOAT8_TBL;
-- test edge-case coercions to integer
SELECT '32767.4'::float8::int2;
SELECT '32767.6'::float8::int2;
SELECT '-32768.4'::float8::int2;
SELECT '-32768.6'::float8::int2;
SELECT '2147483647.4'::float8::int4;
SELECT '2147483647.6'::float8::int4;
SELECT '-2147483648.4'::float8::int4;
SELECT '-2147483648.6'::float8::int4;
SELECT '9223372036854773760'::float8::int8;
SELECT '9223372036854775807'::float8::int8;
SELECT '-9223372036854775808.5'::float8::int8;
SELECT '-9223372036854780000'::float8::int8;
-- test exact cases for trigonometric functions in degrees
SELECT x,
sind(x),
sind(x) IN (-1,-0.5,0,0.5,1) AS sind_exact
FROM (VALUES (0), (30), (90), (150), (180),
(210), (270), (330), (360)) AS t(x);
SELECT x,
cosd(x),
cosd(x) IN (-1,-0.5,0,0.5,1) AS cosd_exact
FROM (VALUES (0), (60), (90), (120), (180),
(240), (270), (300), (360)) AS t(x);
SELECT x,
tand(x),
tand(x) IN ('-Infinity'::float8,-1,0,
1,'Infinity'::float8) AS tand_exact,
cotd(x),
cotd(x) IN ('-Infinity'::float8,-1,0,
1,'Infinity'::float8) AS cotd_exact
FROM (VALUES (0), (45), (90), (135), (180),
(225), (270), (315), (360)) AS t(x);
SELECT x,
asind(x),
asind(x) IN (-90,-30,0,30,90) AS asind_exact,
acosd(x),
acosd(x) IN (0,60,90,120,180) AS acosd_exact
FROM (VALUES (-1), (-0.5), (0), (0.5), (1)) AS t(x);
SELECT x,
atand(x),
atand(x) IN (-90,-45,0,45,90) AS atand_exact
FROM (VALUES ('-Infinity'::float8), (-1), (0), (1),
('Infinity'::float8)) AS t(x);
SELECT x, y,
atan2d(y, x),
atan2d(y, x) IN (-90,0,90,180) AS atan2d_exact
FROM (SELECT 10*cosd(a), 10*sind(a)
FROM generate_series(0, 360, 90) AS t(a)) AS t(x,y);
Change floating-point output format for improved performance. Previously, floating-point output was done by rounding to a specific decimal precision; by default, to 6 or 15 decimal digits (losing information) or as requested using extra_float_digits. Drivers that wanted exact float values, and applications like pg_dump that must preserve values exactly, set extra_float_digits=3 (or sometimes 2 for historical reasons, though this isn't enough for float4). Unfortunately, decimal rounded output is slow enough to become a noticable bottleneck when dealing with large result sets or COPY of large tables when many floating-point values are involved. Floating-point output can be done much faster when the output is not rounded to a specific decimal length, but rather is chosen as the shortest decimal representation that is closer to the original float value than to any other value representable in the same precision. The recently published Ryu algorithm by Ulf Adams is both relatively simple and remarkably fast. Accordingly, change float4out/float8out to output shortest decimal representations if extra_float_digits is greater than 0, and make that the new default. Applications that need rounded output can set extra_float_digits back to 0 or below, and take the resulting performance hit. We make one concession to portability for systems with buggy floating-point input: we do not output decimal values that fall exactly halfway between adjacent representable binary values (which would rely on the reader doing round-to-nearest-even correctly). This is known to be a problem at least for VS2013 on Windows. Our version of the Ryu code originates from https://github.com/ulfjack/ryu/ at commit c9c3fb1979, but with the following (significant) modifications: - Output format is changed to use fixed-point notation for small exponents, as printf would, and also to use lowercase 'e', a minimum of 2 exponent digits, and a mandatory sign on the exponent, to keep the formatting as close as possible to previous output. - The output of exact midpoint values is disabled as noted above. - The integer fast-path code is changed somewhat (since we have fixed-point output and the upstream did not). - Our project style has been largely applied to the code with the exception of C99 declaration-after-statement, which has been retained as an exception to our present policy. - Most of upstream's debugging and conditionals are removed, and we use our own configure tests to determine things like uint128 availability. Changing the float output format obviously affects a number of regression tests. This patch uses an explicit setting of extra_float_digits=0 for test output that is not expected to be exactly reproducible (e.g. due to numerical instability or differing algorithms for transcendental functions). Conversions from floats to numeric are unchanged by this patch. These may appear in index expressions and it is not yet clear whether any change should be made, so that can be left for another day. This patch assumes that the only supported floating point format is now IEEE format, and the documentation is updated to reflect that. Code by me, adapting the work of Ulf Adams and other contributors. References: https://dl.acm.org/citation.cfm?id=3192369 Reviewed-by: Tom Lane, Andres Freund, Donald Dong Discussion: https://postgr.es/m/87r2el1bx6.fsf@news-spur.riddles.org.uk
2019-02-13 16:20:33 +01:00
--
-- test output (and round-trip safety) of various values.
-- To ensure we're testing what we think we're testing, start with
-- float values specified by bit patterns (as a useful side effect,
-- this means we'll fail on non-IEEE platforms).
create type xfloat8;
create function xfloat8in(cstring) returns xfloat8 immutable strict
language internal as 'int8in';
create function xfloat8out(xfloat8) returns cstring immutable strict
language internal as 'int8out';
create type xfloat8 (input = xfloat8in, output = xfloat8out, like = float8);
create cast (xfloat8 as float8) without function;
create cast (float8 as xfloat8) without function;
create cast (xfloat8 as bigint) without function;
create cast (bigint as xfloat8) without function;
-- float8: seeeeeee eeeeeeee eeeeeeee mmmmmmmm mmmmmmmm(x4)
-- we don't care to assume the platform's strtod() handles subnormals
-- correctly; those are "use at your own risk". However we do test
-- subnormal outputs, since those are under our control.
with testdata(bits) as (values
-- small subnormals
(x'0000000000000001'),
(x'0000000000000002'), (x'0000000000000003'),
(x'0000000000001000'), (x'0000000100000000'),
(x'0000010000000000'), (x'0000010100000000'),
(x'0000400000000000'), (x'0000400100000000'),
(x'0000800000000000'), (x'0000800000000001'),
-- these values taken from upstream testsuite
(x'00000000000f4240'),
(x'00000000016e3600'),
(x'0000008cdcdea440'),
-- borderline between subnormal and normal
(x'000ffffffffffff0'), (x'000ffffffffffff1'),
(x'000ffffffffffffe'), (x'000fffffffffffff'))
select float8send(flt) as ibits,
flt
from (select bits::bigint::xfloat8::float8 as flt
from testdata
offset 0) s;
-- round-trip tests
with testdata(bits) as (values
(x'0000000000000000'),
-- smallest normal values
(x'0010000000000000'), (x'0010000000000001'),
(x'0010000000000002'), (x'0018000000000000'),
--
(x'3ddb7cdfd9d7bdba'), (x'3ddb7cdfd9d7bdbb'), (x'3ddb7cdfd9d7bdbc'),
(x'3e112e0be826d694'), (x'3e112e0be826d695'), (x'3e112e0be826d696'),
(x'3e45798ee2308c39'), (x'3e45798ee2308c3a'), (x'3e45798ee2308c3b'),
(x'3e7ad7f29abcaf47'), (x'3e7ad7f29abcaf48'), (x'3e7ad7f29abcaf49'),
(x'3eb0c6f7a0b5ed8c'), (x'3eb0c6f7a0b5ed8d'), (x'3eb0c6f7a0b5ed8e'),
(x'3ee4f8b588e368ef'), (x'3ee4f8b588e368f0'), (x'3ee4f8b588e368f1'),
(x'3f1a36e2eb1c432c'), (x'3f1a36e2eb1c432d'), (x'3f1a36e2eb1c432e'),
(x'3f50624dd2f1a9fb'), (x'3f50624dd2f1a9fc'), (x'3f50624dd2f1a9fd'),
(x'3f847ae147ae147a'), (x'3f847ae147ae147b'), (x'3f847ae147ae147c'),
(x'3fb9999999999999'), (x'3fb999999999999a'), (x'3fb999999999999b'),
-- values very close to 1
(x'3feffffffffffff0'), (x'3feffffffffffff1'), (x'3feffffffffffff2'),
(x'3feffffffffffff3'), (x'3feffffffffffff4'), (x'3feffffffffffff5'),
(x'3feffffffffffff6'), (x'3feffffffffffff7'), (x'3feffffffffffff8'),
(x'3feffffffffffff9'), (x'3feffffffffffffa'), (x'3feffffffffffffb'),
(x'3feffffffffffffc'), (x'3feffffffffffffd'), (x'3feffffffffffffe'),
(x'3fefffffffffffff'),
(x'3ff0000000000000'),
(x'3ff0000000000001'), (x'3ff0000000000002'), (x'3ff0000000000003'),
(x'3ff0000000000004'), (x'3ff0000000000005'), (x'3ff0000000000006'),
(x'3ff0000000000007'), (x'3ff0000000000008'), (x'3ff0000000000009'),
--
(x'3ff921fb54442d18'),
(x'4005bf0a8b14576a'),
(x'400921fb54442d18'),
--
(x'4023ffffffffffff'), (x'4024000000000000'), (x'4024000000000001'),
(x'4058ffffffffffff'), (x'4059000000000000'), (x'4059000000000001'),
(x'408f3fffffffffff'), (x'408f400000000000'), (x'408f400000000001'),
(x'40c387ffffffffff'), (x'40c3880000000000'), (x'40c3880000000001'),
(x'40f869ffffffffff'), (x'40f86a0000000000'), (x'40f86a0000000001'),
(x'412e847fffffffff'), (x'412e848000000000'), (x'412e848000000001'),
(x'416312cfffffffff'), (x'416312d000000000'), (x'416312d000000001'),
(x'4197d783ffffffff'), (x'4197d78400000000'), (x'4197d78400000001'),
(x'41cdcd64ffffffff'), (x'41cdcd6500000000'), (x'41cdcd6500000001'),
(x'4202a05f1fffffff'), (x'4202a05f20000000'), (x'4202a05f20000001'),
(x'42374876e7ffffff'), (x'42374876e8000000'), (x'42374876e8000001'),
(x'426d1a94a1ffffff'), (x'426d1a94a2000000'), (x'426d1a94a2000001'),
(x'42a2309ce53fffff'), (x'42a2309ce5400000'), (x'42a2309ce5400001'),
(x'42d6bcc41e8fffff'), (x'42d6bcc41e900000'), (x'42d6bcc41e900001'),
(x'430c6bf52633ffff'), (x'430c6bf526340000'), (x'430c6bf526340001'),
(x'4341c37937e07fff'), (x'4341c37937e08000'), (x'4341c37937e08001'),
(x'4376345785d89fff'), (x'4376345785d8a000'), (x'4376345785d8a001'),
(x'43abc16d674ec7ff'), (x'43abc16d674ec800'), (x'43abc16d674ec801'),
(x'43e158e460913cff'), (x'43e158e460913d00'), (x'43e158e460913d01'),
(x'4415af1d78b58c3f'), (x'4415af1d78b58c40'), (x'4415af1d78b58c41'),
(x'444b1ae4d6e2ef4f'), (x'444b1ae4d6e2ef50'), (x'444b1ae4d6e2ef51'),
(x'4480f0cf064dd591'), (x'4480f0cf064dd592'), (x'4480f0cf064dd593'),
(x'44b52d02c7e14af5'), (x'44b52d02c7e14af6'), (x'44b52d02c7e14af7'),
(x'44ea784379d99db3'), (x'44ea784379d99db4'), (x'44ea784379d99db5'),
(x'45208b2a2c280290'), (x'45208b2a2c280291'), (x'45208b2a2c280292'),
--
(x'7feffffffffffffe'), (x'7fefffffffffffff'),
-- round to even tests (+ve)
(x'4350000000000002'),
(x'4350000000002e06'),
(x'4352000000000003'),
(x'4352000000000004'),
(x'4358000000000003'),
(x'4358000000000004'),
(x'435f000000000020'),
-- round to even tests (-ve)
(x'c350000000000002'),
(x'c350000000002e06'),
(x'c352000000000003'),
(x'c352000000000004'),
(x'c358000000000003'),
(x'c358000000000004'),
(x'c35f000000000020'),
-- exercise fixed-point memmoves
(x'42dc12218377de66'),
(x'42a674e79c5fe51f'),
(x'4271f71fb04cb74c'),
(x'423cbe991a145879'),
(x'4206fee0e1a9e061'),
(x'41d26580b487e6b4'),
(x'419d6f34540ca453'),
(x'41678c29dcd6e9dc'),
(x'4132d687e3df217d'),
(x'40fe240c9fcb68c8'),
(x'40c81cd6e63c53d3'),
(x'40934a4584fd0fdc'),
(x'405edd3c07fb4c93'),
(x'4028b0fcd32f7076'),
(x'3ff3c0ca428c59f8'),
-- these cases come from the upstream's testsuite
-- LotsOfTrailingZeros)
(x'3e60000000000000'),
-- Regression
(x'c352bd2668e077c4'),
(x'434018601510c000'),
(x'43d055dc36f24000'),
(x'43e052961c6f8000'),
(x'3ff3c0ca2a5b1d5d'),
-- LooksLikePow5
(x'4830f0cf064dd592'),
(x'4840f0cf064dd592'),
(x'4850f0cf064dd592'),
-- OutputLength
(x'3ff3333333333333'),
(x'3ff3ae147ae147ae'),
(x'3ff3be76c8b43958'),
(x'3ff3c083126e978d'),
(x'3ff3c0c1fc8f3238'),
(x'3ff3c0c9539b8887'),
(x'3ff3c0ca2a5b1d5d'),
(x'3ff3c0ca4283de1b'),
(x'3ff3c0ca43db770a'),
(x'3ff3c0ca428abd53'),
(x'3ff3c0ca428c1d2b'),
(x'3ff3c0ca428c51f2'),
(x'3ff3c0ca428c58fc'),
(x'3ff3c0ca428c59dd'),
(x'3ff3c0ca428c59f8'),
(x'3ff3c0ca428c59fb'),
-- 32-bit chunking
(x'40112e0be8047a7d'),
(x'40112e0be815a889'),
(x'40112e0be826d695'),
(x'40112e0be83804a1'),
(x'40112e0be84932ad'),
-- MinMaxShift
(x'0040000000000000'),
(x'007fffffffffffff'),
(x'0290000000000000'),
(x'029fffffffffffff'),
(x'4350000000000000'),
(x'435fffffffffffff'),
(x'1330000000000000'),
(x'133fffffffffffff'),
(x'3a6fa7161a4d6e0c')
)
select float8send(flt) as ibits,
flt,
flt::text::float8 as r_flt,
float8send(flt::text::float8) as obits,
float8send(flt::text::float8) = float8send(flt) as correct
from (select bits::bigint::xfloat8::float8 as flt
from testdata
offset 0) s;
-- clean up, lest opr_sanity complain
drop type xfloat8 cascade;