postgresql/contrib/pgrowlocks/pgrowlocks.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

277 lines
7.8 KiB
C
Raw Normal View History

/*
2010-09-20 22:08:53 +02:00
* contrib/pgrowlocks/pgrowlocks.c
*
* Copyright (c) 2005-2006 Tatsuo Ishii
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose, without fee, and without a
* written agreement is hereby granted, provided that the above
* copyright notice and this paragraph and the following two
* paragraphs appear in all copies.
*
* IN NO EVENT SHALL THE AUTHOR BE LIABLE TO ANY PARTY FOR DIRECT,
* INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
* LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
* DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*
* THE AUTHOR SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS
* IS" BASIS, AND THE AUTHOR HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE,
* SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*/
#include "postgres.h"
2019-01-15 00:54:18 +01:00
#include "access/heapam.h"
#include "access/multixact.h"
#include "access/relscan.h"
tableam: Add and use scan APIs. Too allow table accesses to be not directly dependent on heap, several new abstractions are needed. Specifically: 1) Heap scans need to be generalized into table scans. Do this by introducing TableScanDesc, which will be the "base class" for individual AMs. This contains the AM independent fields from HeapScanDesc. The previous heap_{beginscan,rescan,endscan} et al. have been replaced with a table_ version. There's no direct replacement for heap_getnext(), as that returned a HeapTuple, which is undesirable for a other AMs. Instead there's table_scan_getnextslot(). But note that heap_getnext() lives on, it's still used widely to access catalog tables. This is achieved by new scan_begin, scan_end, scan_rescan, scan_getnextslot callbacks. 2) The portion of parallel scans that's shared between backends need to be able to do so without the user doing per-AM work. To achieve that new parallelscan_{estimate, initialize, reinitialize} callbacks are introduced, which operate on a new ParallelTableScanDesc, which again can be subclassed by AMs. As it is likely that several AMs are going to be block oriented, block oriented callbacks that can be shared between such AMs are provided and used by heap. table_block_parallelscan_{estimate, intiialize, reinitialize} as callbacks, and table_block_parallelscan_{nextpage, init} for use in AMs. These operate on a ParallelBlockTableScanDesc. 3) Index scans need to be able to access tables to return a tuple, and there needs to be state across individual accesses to the heap to store state like buffers. That's now handled by introducing a sort-of-scan IndexFetchTable, which again is intended to be subclassed by individual AMs (for heap IndexFetchHeap). The relevant callbacks for an AM are index_fetch_{end, begin, reset} to create the necessary state, and index_fetch_tuple to retrieve an indexed tuple. Note that index_fetch_tuple implementations need to be smarter than just blindly fetching the tuples for AMs that have optimizations similar to heap's HOT - the currently alive tuple in the update chain needs to be fetched if appropriate. Similar to table_scan_getnextslot(), it's undesirable to continue to return HeapTuples. Thus index_fetch_heap (might want to rename that later) now accepts a slot as an argument. Core code doesn't have a lot of call sites performing index scans without going through the systable_* API (in contrast to loads of heap_getnext calls and working directly with HeapTuples). Index scans now store the result of a search in IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the target is not generally a HeapTuple anymore that seems cleaner. To be able to sensible adapt code to use the above, two further callbacks have been introduced: a) slot_callbacks returns a TupleTableSlotOps* suitable for creating slots capable of holding a tuple of the AMs type. table_slot_callbacks() and table_slot_create() are based upon that, but have additional logic to deal with views, foreign tables, etc. While this change could have been done separately, nearly all the call sites that needed to be adapted for the rest of this commit also would have been needed to be adapted for table_slot_callbacks(), making separation not worthwhile. b) tuple_satisfies_snapshot checks whether the tuple in a slot is currently visible according to a snapshot. That's required as a few places now don't have a buffer + HeapTuple around, but a slot (which in heap's case internally has that information). Additionally a few infrastructure changes were needed: I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now internally uses a slot to keep track of tuples. While systable_getnext() still returns HeapTuples, and will so for the foreseeable future, the index API (see 1) above) now only deals with slots. The remainder, and largest part, of this commit is then adjusting all scans in postgres to use the new APIs. Author: Andres Freund, Haribabu Kommi, Alvaro Herrera Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
2019-03-11 20:46:41 +01:00
#include "access/tableam.h"
#include "access/xact.h"
#include "catalog/namespace.h"
#include "catalog/pg_am_d.h"
#include "catalog/pg_authid.h"
#include "funcapi.h"
#include "miscadmin.h"
#include "storage/bufmgr.h"
#include "storage/procarray.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/rel.h"
#include "utils/snapmgr.h"
#include "utils/varlena.h"
PG_MODULE_MAGIC;
PG_FUNCTION_INFO_V1(pgrowlocks);
/* ----------
* pgrowlocks:
* returns tids of rows being locked
* ----------
*/
#define NCHARS 32
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
#define Atnum_tid 0
#define Atnum_xmax 1
#define Atnum_ismulti 2
#define Atnum_xids 3
#define Atnum_modes 4
#define Atnum_pids 5
Datum
pgrowlocks(PG_FUNCTION_ARGS)
{
text *relname = PG_GETARG_TEXT_PP(0);
ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
AttInMetadata *attinmeta;
Relation rel;
RangeVar *relrv;
TableScanDesc scan;
HeapScanDesc hscan;
HeapTuple tuple;
AclResult aclresult;
char **values;
InitMaterializedSRF(fcinfo, 0);
/* Access the table */
relrv = makeRangeVarFromNameList(textToQualifiedNameList(relname));
rel = relation_openrv(relrv, AccessShareLock);
if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is a partitioned table",
RelationGetRelationName(rel)),
errdetail("Partitioned tables do not contain rows.")));
else if (rel->rd_rel->relkind != RELKIND_RELATION)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a table",
RelationGetRelationName(rel))));
else if (rel->rd_rel->relam != HEAP_TABLE_AM_OID)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("only heap AM is supported")));
/*
* check permissions: must have SELECT on table or be in
* pg_stat_scan_tables
*/
aclresult = pg_class_aclcheck(RelationGetRelid(rel), GetUserId(),
ACL_SELECT);
if (aclresult != ACLCHECK_OK)
aclresult = has_privs_of_role(GetUserId(), ROLE_PG_STAT_SCAN_TABLES) ? ACLCHECK_OK : ACLCHECK_NO_PRIV;
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, get_relkind_objtype(rel->rd_rel->relkind),
RelationGetRelationName(rel));
/* Scan the relation */
scan = table_beginscan(rel, GetActiveSnapshot(), 0, NULL);
hscan = (HeapScanDesc) scan;
attinmeta = TupleDescGetAttInMetadata(rsinfo->setDesc);
values = (char **) palloc(rsinfo->setDesc->natts * sizeof(char *));
while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
{
tableam: Add tuple_{insert, delete, update, lock} and use. This adds new, required, table AM callbacks for insert/delete/update and lock_tuple. To be able to reasonably use those, the EvalPlanQual mechanism had to be adapted, moving more logic into the AM. Previously both delete/update/lock call-sites and the EPQ mechanism had to have awareness of the specific tuple format to be able to fetch the latest version of a tuple. Obviously that needs to be abstracted away. To do so, move the logic that find the latest row version into the AM. lock_tuple has a new flag argument, TUPLE_LOCK_FLAG_FIND_LAST_VERSION, that forces it to lock the last version, rather than the current one. It'd have been possible to do so via a separate callback as well, but finding the last version usually also necessitates locking the newest version, making it sensible to combine the two. This replaces the previous use of EvalPlanQualFetch(). Additionally HeapTupleUpdated, which previously signaled either a concurrent update or delete, is now split into two, to avoid callers needing AM specific knowledge to differentiate. The move of finding the latest row version into tuple_lock means that encountering a row concurrently moved into another partition will now raise an error about "tuple to be locked" rather than "tuple to be updated/deleted" - which is accurate, as that always happens when locking rows. While possible slightly less helpful for users, it seems like an acceptable trade-off. As part of this commit HTSU_Result has been renamed to TM_Result, and its members been expanded to differentiated between updating and deleting. HeapUpdateFailureData has been renamed to TM_FailureData. The interface to speculative insertion is changed so nodeModifyTable.c does not have to set the speculative token itself anymore. Instead there's a version of tuple_insert, tuple_insert_speculative, that performs the speculative insertion (without requiring a flag to signal that fact), and the speculative insertion is either made permanent with table_complete_speculative(succeeded = true) or aborted with succeeded = false). Note that multi_insert is not yet routed through tableam, nor is COPY. Changing multi_insert requires changes to copy.c that are large enough to better be done separately. Similarly, although simpler, CREATE TABLE AS and CREATE MATERIALIZED VIEW are also only going to be adjusted in a later commit. Author: Andres Freund and Haribabu Kommi Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de https://postgr.es/m/20190313003903.nwvrxi7rw3ywhdel@alap3.anarazel.de https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
2019-03-24 03:55:57 +01:00
TM_Result htsu;
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
TransactionId xmax;
uint16 infomask;
/* must hold a buffer lock to call HeapTupleSatisfiesUpdate */
tableam: Add and use scan APIs. Too allow table accesses to be not directly dependent on heap, several new abstractions are needed. Specifically: 1) Heap scans need to be generalized into table scans. Do this by introducing TableScanDesc, which will be the "base class" for individual AMs. This contains the AM independent fields from HeapScanDesc. The previous heap_{beginscan,rescan,endscan} et al. have been replaced with a table_ version. There's no direct replacement for heap_getnext(), as that returned a HeapTuple, which is undesirable for a other AMs. Instead there's table_scan_getnextslot(). But note that heap_getnext() lives on, it's still used widely to access catalog tables. This is achieved by new scan_begin, scan_end, scan_rescan, scan_getnextslot callbacks. 2) The portion of parallel scans that's shared between backends need to be able to do so without the user doing per-AM work. To achieve that new parallelscan_{estimate, initialize, reinitialize} callbacks are introduced, which operate on a new ParallelTableScanDesc, which again can be subclassed by AMs. As it is likely that several AMs are going to be block oriented, block oriented callbacks that can be shared between such AMs are provided and used by heap. table_block_parallelscan_{estimate, intiialize, reinitialize} as callbacks, and table_block_parallelscan_{nextpage, init} for use in AMs. These operate on a ParallelBlockTableScanDesc. 3) Index scans need to be able to access tables to return a tuple, and there needs to be state across individual accesses to the heap to store state like buffers. That's now handled by introducing a sort-of-scan IndexFetchTable, which again is intended to be subclassed by individual AMs (for heap IndexFetchHeap). The relevant callbacks for an AM are index_fetch_{end, begin, reset} to create the necessary state, and index_fetch_tuple to retrieve an indexed tuple. Note that index_fetch_tuple implementations need to be smarter than just blindly fetching the tuples for AMs that have optimizations similar to heap's HOT - the currently alive tuple in the update chain needs to be fetched if appropriate. Similar to table_scan_getnextslot(), it's undesirable to continue to return HeapTuples. Thus index_fetch_heap (might want to rename that later) now accepts a slot as an argument. Core code doesn't have a lot of call sites performing index scans without going through the systable_* API (in contrast to loads of heap_getnext calls and working directly with HeapTuples). Index scans now store the result of a search in IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the target is not generally a HeapTuple anymore that seems cleaner. To be able to sensible adapt code to use the above, two further callbacks have been introduced: a) slot_callbacks returns a TupleTableSlotOps* suitable for creating slots capable of holding a tuple of the AMs type. table_slot_callbacks() and table_slot_create() are based upon that, but have additional logic to deal with views, foreign tables, etc. While this change could have been done separately, nearly all the call sites that needed to be adapted for the rest of this commit also would have been needed to be adapted for table_slot_callbacks(), making separation not worthwhile. b) tuple_satisfies_snapshot checks whether the tuple in a slot is currently visible according to a snapshot. That's required as a few places now don't have a buffer + HeapTuple around, but a slot (which in heap's case internally has that information). Additionally a few infrastructure changes were needed: I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now internally uses a slot to keep track of tuples. While systable_getnext() still returns HeapTuples, and will so for the foreseeable future, the index API (see 1) above) now only deals with slots. The remainder, and largest part, of this commit is then adjusting all scans in postgres to use the new APIs. Author: Andres Freund, Haribabu Kommi, Alvaro Herrera Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
2019-03-11 20:46:41 +01:00
LockBuffer(hscan->rs_cbuf, BUFFER_LOCK_SHARE);
htsu = HeapTupleSatisfiesUpdate(tuple,
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
GetCurrentCommandId(false),
tableam: Add and use scan APIs. Too allow table accesses to be not directly dependent on heap, several new abstractions are needed. Specifically: 1) Heap scans need to be generalized into table scans. Do this by introducing TableScanDesc, which will be the "base class" for individual AMs. This contains the AM independent fields from HeapScanDesc. The previous heap_{beginscan,rescan,endscan} et al. have been replaced with a table_ version. There's no direct replacement for heap_getnext(), as that returned a HeapTuple, which is undesirable for a other AMs. Instead there's table_scan_getnextslot(). But note that heap_getnext() lives on, it's still used widely to access catalog tables. This is achieved by new scan_begin, scan_end, scan_rescan, scan_getnextslot callbacks. 2) The portion of parallel scans that's shared between backends need to be able to do so without the user doing per-AM work. To achieve that new parallelscan_{estimate, initialize, reinitialize} callbacks are introduced, which operate on a new ParallelTableScanDesc, which again can be subclassed by AMs. As it is likely that several AMs are going to be block oriented, block oriented callbacks that can be shared between such AMs are provided and used by heap. table_block_parallelscan_{estimate, intiialize, reinitialize} as callbacks, and table_block_parallelscan_{nextpage, init} for use in AMs. These operate on a ParallelBlockTableScanDesc. 3) Index scans need to be able to access tables to return a tuple, and there needs to be state across individual accesses to the heap to store state like buffers. That's now handled by introducing a sort-of-scan IndexFetchTable, which again is intended to be subclassed by individual AMs (for heap IndexFetchHeap). The relevant callbacks for an AM are index_fetch_{end, begin, reset} to create the necessary state, and index_fetch_tuple to retrieve an indexed tuple. Note that index_fetch_tuple implementations need to be smarter than just blindly fetching the tuples for AMs that have optimizations similar to heap's HOT - the currently alive tuple in the update chain needs to be fetched if appropriate. Similar to table_scan_getnextslot(), it's undesirable to continue to return HeapTuples. Thus index_fetch_heap (might want to rename that later) now accepts a slot as an argument. Core code doesn't have a lot of call sites performing index scans without going through the systable_* API (in contrast to loads of heap_getnext calls and working directly with HeapTuples). Index scans now store the result of a search in IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the target is not generally a HeapTuple anymore that seems cleaner. To be able to sensible adapt code to use the above, two further callbacks have been introduced: a) slot_callbacks returns a TupleTableSlotOps* suitable for creating slots capable of holding a tuple of the AMs type. table_slot_callbacks() and table_slot_create() are based upon that, but have additional logic to deal with views, foreign tables, etc. While this change could have been done separately, nearly all the call sites that needed to be adapted for the rest of this commit also would have been needed to be adapted for table_slot_callbacks(), making separation not worthwhile. b) tuple_satisfies_snapshot checks whether the tuple in a slot is currently visible according to a snapshot. That's required as a few places now don't have a buffer + HeapTuple around, but a slot (which in heap's case internally has that information). Additionally a few infrastructure changes were needed: I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now internally uses a slot to keep track of tuples. While systable_getnext() still returns HeapTuples, and will so for the foreseeable future, the index API (see 1) above) now only deals with slots. The remainder, and largest part, of this commit is then adjusting all scans in postgres to use the new APIs. Author: Andres Freund, Haribabu Kommi, Alvaro Herrera Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
2019-03-11 20:46:41 +01:00
hscan->rs_cbuf);
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
xmax = HeapTupleHeaderGetRawXmax(tuple->t_data);
infomask = tuple->t_data->t_infomask;
/*
tableam: Add tuple_{insert, delete, update, lock} and use. This adds new, required, table AM callbacks for insert/delete/update and lock_tuple. To be able to reasonably use those, the EvalPlanQual mechanism had to be adapted, moving more logic into the AM. Previously both delete/update/lock call-sites and the EPQ mechanism had to have awareness of the specific tuple format to be able to fetch the latest version of a tuple. Obviously that needs to be abstracted away. To do so, move the logic that find the latest row version into the AM. lock_tuple has a new flag argument, TUPLE_LOCK_FLAG_FIND_LAST_VERSION, that forces it to lock the last version, rather than the current one. It'd have been possible to do so via a separate callback as well, but finding the last version usually also necessitates locking the newest version, making it sensible to combine the two. This replaces the previous use of EvalPlanQualFetch(). Additionally HeapTupleUpdated, which previously signaled either a concurrent update or delete, is now split into two, to avoid callers needing AM specific knowledge to differentiate. The move of finding the latest row version into tuple_lock means that encountering a row concurrently moved into another partition will now raise an error about "tuple to be locked" rather than "tuple to be updated/deleted" - which is accurate, as that always happens when locking rows. While possible slightly less helpful for users, it seems like an acceptable trade-off. As part of this commit HTSU_Result has been renamed to TM_Result, and its members been expanded to differentiated between updating and deleting. HeapUpdateFailureData has been renamed to TM_FailureData. The interface to speculative insertion is changed so nodeModifyTable.c does not have to set the speculative token itself anymore. Instead there's a version of tuple_insert, tuple_insert_speculative, that performs the speculative insertion (without requiring a flag to signal that fact), and the speculative insertion is either made permanent with table_complete_speculative(succeeded = true) or aborted with succeeded = false). Note that multi_insert is not yet routed through tableam, nor is COPY. Changing multi_insert requires changes to copy.c that are large enough to better be done separately. Similarly, although simpler, CREATE TABLE AS and CREATE MATERIALIZED VIEW are also only going to be adjusted in a later commit. Author: Andres Freund and Haribabu Kommi Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de https://postgr.es/m/20190313003903.nwvrxi7rw3ywhdel@alap3.anarazel.de https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
2019-03-24 03:55:57 +01:00
* A tuple is locked if HTSU returns BeingModified.
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
*/
tableam: Add tuple_{insert, delete, update, lock} and use. This adds new, required, table AM callbacks for insert/delete/update and lock_tuple. To be able to reasonably use those, the EvalPlanQual mechanism had to be adapted, moving more logic into the AM. Previously both delete/update/lock call-sites and the EPQ mechanism had to have awareness of the specific tuple format to be able to fetch the latest version of a tuple. Obviously that needs to be abstracted away. To do so, move the logic that find the latest row version into the AM. lock_tuple has a new flag argument, TUPLE_LOCK_FLAG_FIND_LAST_VERSION, that forces it to lock the last version, rather than the current one. It'd have been possible to do so via a separate callback as well, but finding the last version usually also necessitates locking the newest version, making it sensible to combine the two. This replaces the previous use of EvalPlanQualFetch(). Additionally HeapTupleUpdated, which previously signaled either a concurrent update or delete, is now split into two, to avoid callers needing AM specific knowledge to differentiate. The move of finding the latest row version into tuple_lock means that encountering a row concurrently moved into another partition will now raise an error about "tuple to be locked" rather than "tuple to be updated/deleted" - which is accurate, as that always happens when locking rows. While possible slightly less helpful for users, it seems like an acceptable trade-off. As part of this commit HTSU_Result has been renamed to TM_Result, and its members been expanded to differentiated between updating and deleting. HeapUpdateFailureData has been renamed to TM_FailureData. The interface to speculative insertion is changed so nodeModifyTable.c does not have to set the speculative token itself anymore. Instead there's a version of tuple_insert, tuple_insert_speculative, that performs the speculative insertion (without requiring a flag to signal that fact), and the speculative insertion is either made permanent with table_complete_speculative(succeeded = true) or aborted with succeeded = false). Note that multi_insert is not yet routed through tableam, nor is COPY. Changing multi_insert requires changes to copy.c that are large enough to better be done separately. Similarly, although simpler, CREATE TABLE AS and CREATE MATERIALIZED VIEW are also only going to be adjusted in a later commit. Author: Andres Freund and Haribabu Kommi Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de https://postgr.es/m/20190313003903.nwvrxi7rw3ywhdel@alap3.anarazel.de https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
2019-03-24 03:55:57 +01:00
if (htsu == TM_BeingModified)
{
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
values[Atnum_tid] = (char *) DirectFunctionCall1(tidout,
PointerGetDatum(&tuple->t_self));
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
values[Atnum_xmax] = palloc(NCHARS * sizeof(char));
snprintf(values[Atnum_xmax], NCHARS, "%u", xmax);
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
if (infomask & HEAP_XMAX_IS_MULTI)
{
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
MultiXactMember *members;
int nmembers;
bool first = true;
bool allow_old;
values[Atnum_ismulti] = pstrdup("true");
Fix handling of multixacts predating pg_upgrade After pg_upgrade, it is possible that some tuples' Xmax have multixacts corresponding to the old installation; such multixacts cannot have running members anymore. In many code sites we already know not to read them and clobber them silently, but at least when VACUUM tries to freeze a multixact or determine whether one needs freezing, there's an attempt to resolve it to its member transactions by calling GetMultiXactIdMembers, and if the multixact value is "in the future" with regards to the current valid multixact range, an error like this is raised: ERROR: MultiXactId 123 has not been created yet -- apparent wraparound and vacuuming fails. Per discussion with Andrew Gierth, it is completely bogus to try to resolve multixacts coming from before a pg_upgrade, regardless of where they stand with regards to the current valid multixact range. It's possible to get from under this problem by doing SELECT FOR UPDATE of the problem tuples, but if tables are large, this is slow and tedious, so a more thorough solution is desirable. To fix, we realize that multixacts in xmax created in 9.2 and previous have a specific bit pattern that is never used in 9.3 and later (we already knew this, per comments and infomask tests sprinkled in various places, but we weren't leveraging this knowledge appropriately). Whenever the infomask of the tuple matches that bit pattern, we just ignore the multixact completely as if Xmax wasn't set; or, in the case of tuple freezing, we act as if an unwanted value is set and clobber it without decoding. This guarantees that no errors will be raised, and that the values will be progressively removed until all tables are clean. Most callers of GetMultiXactIdMembers are patched to recognize directly that the value is a removable "empty" multixact and avoid calling GetMultiXactIdMembers altogether. To avoid changing the signature of GetMultiXactIdMembers() in back branches, we keep the "allow_old" boolean flag but rename it to "from_pgupgrade"; if the flag is true, we always return an empty set instead of looking up the multixact. (I suppose we could remove the argument in the master branch, but I chose not to do so in this commit). This was broken all along, but the error-facing message appeared first because of commit 8e9a16ab8f7f and was partially fixed in a25c2b7c4db3. This fix, backpatched all the way back to 9.3, goes approximately in the same direction as a25c2b7c4db3 but should cover all cases. Bug analysis by Andrew Gierth and Álvaro Herrera. A number of public reports match this bug: https://www.postgresql.org/message-id/20140330040029.GY4582@tamriel.snowman.net https://www.postgresql.org/message-id/538F3D70.6080902@publicrelay.com https://www.postgresql.org/message-id/556439CF.7070109@pscs.co.uk https://www.postgresql.org/message-id/SG2PR06MB0760098A111C88E31BD4D96FB3540@SG2PR06MB0760.apcprd06.prod.outlook.com https://www.postgresql.org/message-id/20160615203829.5798.4594@wrigleys.postgresql.org
2016-06-25 00:29:28 +02:00
allow_old = HEAP_LOCKED_UPGRADED(infomask);
nmembers = GetMultiXactIdMembers(xmax, &members, allow_old,
false);
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
if (nmembers == -1)
{
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
values[Atnum_xids] = "{0}";
values[Atnum_modes] = "{transient upgrade status}";
values[Atnum_pids] = "{0}";
}
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
else
{
int j;
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
values[Atnum_xids] = palloc(NCHARS * nmembers);
values[Atnum_modes] = palloc(NCHARS * nmembers);
values[Atnum_pids] = palloc(NCHARS * nmembers);
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
strcpy(values[Atnum_xids], "{");
strcpy(values[Atnum_modes], "{");
strcpy(values[Atnum_pids], "{");
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
for (j = 0; j < nmembers; j++)
{
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
char buf[NCHARS];
if (!first)
{
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
strcat(values[Atnum_xids], ",");
strcat(values[Atnum_modes], ",");
strcat(values[Atnum_pids], ",");
}
snprintf(buf, NCHARS, "%u", members[j].xid);
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
strcat(values[Atnum_xids], buf);
switch (members[j].status)
{
case MultiXactStatusUpdate:
snprintf(buf, NCHARS, "Update");
break;
case MultiXactStatusNoKeyUpdate:
snprintf(buf, NCHARS, "No Key Update");
break;
case MultiXactStatusForUpdate:
snprintf(buf, NCHARS, "For Update");
break;
case MultiXactStatusForNoKeyUpdate:
snprintf(buf, NCHARS, "For No Key Update");
break;
case MultiXactStatusForShare:
snprintf(buf, NCHARS, "For Share");
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
break;
case MultiXactStatusForKeyShare:
snprintf(buf, NCHARS, "For Key Share");
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
break;
}
strcat(values[Atnum_modes], buf);
snprintf(buf, NCHARS, "%d",
BackendXidGetPid(members[j].xid));
strcat(values[Atnum_pids], buf);
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
first = false;
}
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
strcat(values[Atnum_xids], "}");
strcat(values[Atnum_modes], "}");
strcat(values[Atnum_pids], "}");
}
}
else
{
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
values[Atnum_ismulti] = pstrdup("false");
values[Atnum_xids] = palloc(NCHARS * sizeof(char));
snprintf(values[Atnum_xids], NCHARS, "{%u}", xmax);
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
values[Atnum_modes] = palloc(NCHARS);
if (infomask & HEAP_XMAX_LOCK_ONLY)
{
if (HEAP_XMAX_IS_SHR_LOCKED(infomask))
snprintf(values[Atnum_modes], NCHARS, "{For Share}");
else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask))
snprintf(values[Atnum_modes], NCHARS, "{For Key Share}");
else if (HEAP_XMAX_IS_EXCL_LOCKED(infomask))
{
if (tuple->t_data->t_infomask2 & HEAP_KEYS_UPDATED)
snprintf(values[Atnum_modes], NCHARS, "{For Update}");
else
snprintf(values[Atnum_modes], NCHARS, "{For No Key Update}");
}
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
else
/* neither keyshare nor exclusive bit it set */
snprintf(values[Atnum_modes], NCHARS,
"{transient upgrade status}");
}
else
{
if (tuple->t_data->t_infomask2 & HEAP_KEYS_UPDATED)
snprintf(values[Atnum_modes], NCHARS, "{Update}");
else
snprintf(values[Atnum_modes], NCHARS, "{No Key Update}");
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
}
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
values[Atnum_pids] = palloc(NCHARS * sizeof(char));
snprintf(values[Atnum_pids], NCHARS, "{%d}",
BackendXidGetPid(xmax));
}
tableam: Add and use scan APIs. Too allow table accesses to be not directly dependent on heap, several new abstractions are needed. Specifically: 1) Heap scans need to be generalized into table scans. Do this by introducing TableScanDesc, which will be the "base class" for individual AMs. This contains the AM independent fields from HeapScanDesc. The previous heap_{beginscan,rescan,endscan} et al. have been replaced with a table_ version. There's no direct replacement for heap_getnext(), as that returned a HeapTuple, which is undesirable for a other AMs. Instead there's table_scan_getnextslot(). But note that heap_getnext() lives on, it's still used widely to access catalog tables. This is achieved by new scan_begin, scan_end, scan_rescan, scan_getnextslot callbacks. 2) The portion of parallel scans that's shared between backends need to be able to do so without the user doing per-AM work. To achieve that new parallelscan_{estimate, initialize, reinitialize} callbacks are introduced, which operate on a new ParallelTableScanDesc, which again can be subclassed by AMs. As it is likely that several AMs are going to be block oriented, block oriented callbacks that can be shared between such AMs are provided and used by heap. table_block_parallelscan_{estimate, intiialize, reinitialize} as callbacks, and table_block_parallelscan_{nextpage, init} for use in AMs. These operate on a ParallelBlockTableScanDesc. 3) Index scans need to be able to access tables to return a tuple, and there needs to be state across individual accesses to the heap to store state like buffers. That's now handled by introducing a sort-of-scan IndexFetchTable, which again is intended to be subclassed by individual AMs (for heap IndexFetchHeap). The relevant callbacks for an AM are index_fetch_{end, begin, reset} to create the necessary state, and index_fetch_tuple to retrieve an indexed tuple. Note that index_fetch_tuple implementations need to be smarter than just blindly fetching the tuples for AMs that have optimizations similar to heap's HOT - the currently alive tuple in the update chain needs to be fetched if appropriate. Similar to table_scan_getnextslot(), it's undesirable to continue to return HeapTuples. Thus index_fetch_heap (might want to rename that later) now accepts a slot as an argument. Core code doesn't have a lot of call sites performing index scans without going through the systable_* API (in contrast to loads of heap_getnext calls and working directly with HeapTuples). Index scans now store the result of a search in IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the target is not generally a HeapTuple anymore that seems cleaner. To be able to sensible adapt code to use the above, two further callbacks have been introduced: a) slot_callbacks returns a TupleTableSlotOps* suitable for creating slots capable of holding a tuple of the AMs type. table_slot_callbacks() and table_slot_create() are based upon that, but have additional logic to deal with views, foreign tables, etc. While this change could have been done separately, nearly all the call sites that needed to be adapted for the rest of this commit also would have been needed to be adapted for table_slot_callbacks(), making separation not worthwhile. b) tuple_satisfies_snapshot checks whether the tuple in a slot is currently visible according to a snapshot. That's required as a few places now don't have a buffer + HeapTuple around, but a slot (which in heap's case internally has that information). Additionally a few infrastructure changes were needed: I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now internally uses a slot to keep track of tuples. While systable_getnext() still returns HeapTuples, and will so for the foreseeable future, the index API (see 1) above) now only deals with slots. The remainder, and largest part, of this commit is then adjusting all scans in postgres to use the new APIs. Author: Andres Freund, Haribabu Kommi, Alvaro Herrera Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
2019-03-11 20:46:41 +01:00
LockBuffer(hscan->rs_cbuf, BUFFER_LOCK_UNLOCK);
/* build a tuple */
tuple = BuildTupleFromCStrings(attinmeta, values);
tuplestore_puttuple(rsinfo->setResult, tuple);
}
else
{
tableam: Add and use scan APIs. Too allow table accesses to be not directly dependent on heap, several new abstractions are needed. Specifically: 1) Heap scans need to be generalized into table scans. Do this by introducing TableScanDesc, which will be the "base class" for individual AMs. This contains the AM independent fields from HeapScanDesc. The previous heap_{beginscan,rescan,endscan} et al. have been replaced with a table_ version. There's no direct replacement for heap_getnext(), as that returned a HeapTuple, which is undesirable for a other AMs. Instead there's table_scan_getnextslot(). But note that heap_getnext() lives on, it's still used widely to access catalog tables. This is achieved by new scan_begin, scan_end, scan_rescan, scan_getnextslot callbacks. 2) The portion of parallel scans that's shared between backends need to be able to do so without the user doing per-AM work. To achieve that new parallelscan_{estimate, initialize, reinitialize} callbacks are introduced, which operate on a new ParallelTableScanDesc, which again can be subclassed by AMs. As it is likely that several AMs are going to be block oriented, block oriented callbacks that can be shared between such AMs are provided and used by heap. table_block_parallelscan_{estimate, intiialize, reinitialize} as callbacks, and table_block_parallelscan_{nextpage, init} for use in AMs. These operate on a ParallelBlockTableScanDesc. 3) Index scans need to be able to access tables to return a tuple, and there needs to be state across individual accesses to the heap to store state like buffers. That's now handled by introducing a sort-of-scan IndexFetchTable, which again is intended to be subclassed by individual AMs (for heap IndexFetchHeap). The relevant callbacks for an AM are index_fetch_{end, begin, reset} to create the necessary state, and index_fetch_tuple to retrieve an indexed tuple. Note that index_fetch_tuple implementations need to be smarter than just blindly fetching the tuples for AMs that have optimizations similar to heap's HOT - the currently alive tuple in the update chain needs to be fetched if appropriate. Similar to table_scan_getnextslot(), it's undesirable to continue to return HeapTuples. Thus index_fetch_heap (might want to rename that later) now accepts a slot as an argument. Core code doesn't have a lot of call sites performing index scans without going through the systable_* API (in contrast to loads of heap_getnext calls and working directly with HeapTuples). Index scans now store the result of a search in IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the target is not generally a HeapTuple anymore that seems cleaner. To be able to sensible adapt code to use the above, two further callbacks have been introduced: a) slot_callbacks returns a TupleTableSlotOps* suitable for creating slots capable of holding a tuple of the AMs type. table_slot_callbacks() and table_slot_create() are based upon that, but have additional logic to deal with views, foreign tables, etc. While this change could have been done separately, nearly all the call sites that needed to be adapted for the rest of this commit also would have been needed to be adapted for table_slot_callbacks(), making separation not worthwhile. b) tuple_satisfies_snapshot checks whether the tuple in a slot is currently visible according to a snapshot. That's required as a few places now don't have a buffer + HeapTuple around, but a slot (which in heap's case internally has that information). Additionally a few infrastructure changes were needed: I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now internally uses a slot to keep track of tuples. While systable_getnext() still returns HeapTuples, and will so for the foreseeable future, the index API (see 1) above) now only deals with slots. The remainder, and largest part, of this commit is then adjusting all scans in postgres to use the new APIs. Author: Andres Freund, Haribabu Kommi, Alvaro Herrera Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
2019-03-11 20:46:41 +01:00
LockBuffer(hscan->rs_cbuf, BUFFER_LOCK_UNLOCK);
}
}
tableam: Add and use scan APIs. Too allow table accesses to be not directly dependent on heap, several new abstractions are needed. Specifically: 1) Heap scans need to be generalized into table scans. Do this by introducing TableScanDesc, which will be the "base class" for individual AMs. This contains the AM independent fields from HeapScanDesc. The previous heap_{beginscan,rescan,endscan} et al. have been replaced with a table_ version. There's no direct replacement for heap_getnext(), as that returned a HeapTuple, which is undesirable for a other AMs. Instead there's table_scan_getnextslot(). But note that heap_getnext() lives on, it's still used widely to access catalog tables. This is achieved by new scan_begin, scan_end, scan_rescan, scan_getnextslot callbacks. 2) The portion of parallel scans that's shared between backends need to be able to do so without the user doing per-AM work. To achieve that new parallelscan_{estimate, initialize, reinitialize} callbacks are introduced, which operate on a new ParallelTableScanDesc, which again can be subclassed by AMs. As it is likely that several AMs are going to be block oriented, block oriented callbacks that can be shared between such AMs are provided and used by heap. table_block_parallelscan_{estimate, intiialize, reinitialize} as callbacks, and table_block_parallelscan_{nextpage, init} for use in AMs. These operate on a ParallelBlockTableScanDesc. 3) Index scans need to be able to access tables to return a tuple, and there needs to be state across individual accesses to the heap to store state like buffers. That's now handled by introducing a sort-of-scan IndexFetchTable, which again is intended to be subclassed by individual AMs (for heap IndexFetchHeap). The relevant callbacks for an AM are index_fetch_{end, begin, reset} to create the necessary state, and index_fetch_tuple to retrieve an indexed tuple. Note that index_fetch_tuple implementations need to be smarter than just blindly fetching the tuples for AMs that have optimizations similar to heap's HOT - the currently alive tuple in the update chain needs to be fetched if appropriate. Similar to table_scan_getnextslot(), it's undesirable to continue to return HeapTuples. Thus index_fetch_heap (might want to rename that later) now accepts a slot as an argument. Core code doesn't have a lot of call sites performing index scans without going through the systable_* API (in contrast to loads of heap_getnext calls and working directly with HeapTuples). Index scans now store the result of a search in IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the target is not generally a HeapTuple anymore that seems cleaner. To be able to sensible adapt code to use the above, two further callbacks have been introduced: a) slot_callbacks returns a TupleTableSlotOps* suitable for creating slots capable of holding a tuple of the AMs type. table_slot_callbacks() and table_slot_create() are based upon that, but have additional logic to deal with views, foreign tables, etc. While this change could have been done separately, nearly all the call sites that needed to be adapted for the rest of this commit also would have been needed to be adapted for table_slot_callbacks(), making separation not worthwhile. b) tuple_satisfies_snapshot checks whether the tuple in a slot is currently visible according to a snapshot. That's required as a few places now don't have a buffer + HeapTuple around, but a slot (which in heap's case internally has that information). Additionally a few infrastructure changes were needed: I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now internally uses a slot to keep track of tuples. While systable_getnext() still returns HeapTuples, and will so for the foreseeable future, the index API (see 1) above) now only deals with slots. The remainder, and largest part, of this commit is then adjusting all scans in postgres to use the new APIs. Author: Andres Freund, Haribabu Kommi, Alvaro Herrera Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
2019-03-11 20:46:41 +01:00
table_endscan(scan);
table_close(rel, AccessShareLock);
return (Datum) 0;
}