postgresql/src/backend/access/nbtree/nbtsort.c

511 lines
14 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
* nbtsort.c
* Build a btree from sorted input by loading leaf pages sequentially.
*
* NOTES
*
* We use tuplesort.c to sort the given index tuples into order.
* Then we scan the index tuples in order and build the btree pages
* for each level. We load source tuples into leaf-level pages.
* Whenever we fill a page at one level, we add a link to it to its
* parent level (starting a new parent level if necessary). When
* done, we write out each final page on each level, adding it to
* its parent level. When we have only one page on a level, it must be
* the root -- it can be attached to the btree metapage and we are done.
*
* this code is moderately slow (~10% slower) compared to the regular
* btree (insertion) build code on sorted or well-clustered data. on
* random data, however, the insertion build code is unusable -- the
* difference on a 60MB heap is a factor of 15 because the random
* probes into the btree thrash the buffer pool. (NOTE: the above
* "10%" estimate is probably obsolete, since it refers to an old and
* not very good external sort implementation that used to exist in
* this module. tuplesort.c is almost certainly faster.)
*
* this code currently packs the pages to 100% of capacity. this is
* not wise, since *any* insertion will cause splitting. filling to
* something like the standard 70% steady-state load factor for btrees
* would probably be better.
*
* Another limitation is that we currently load full copies of all keys
* into upper tree levels. The leftmost data key in each non-leaf node
* could be omitted as far as normal btree operations are concerned
* (see README for more info). However, because we build the tree from
* the bottom up, we need that data key to insert into the node's parent.
* This could be fixed by keeping a spare copy of the minimum key in the
* state stack, but I haven't time for that right now.
*
*
* Portions Copyright (c) 1996-2000, PostgreSQL, Inc
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/access/nbtree/nbtsort.c,v 1.55 2000/07/21 06:42:33 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/nbtree.h"
#include "utils/tuplesort.h"
What looks like some *major* improvements to btree indexing... Patches from: aoki@CS.Berkeley.EDU (Paul M. Aoki) i gave jolly my btree bulkload code a long, long time ago but never gave him a bunch of my bugfixes. here's a diff against the 6.0 baseline. for some reason, this code has slowed down somewhat relative to the insertion-build code on very small tables. don't know why -- it used to be within about 10%. anyway, here are some (highly unscientific!) timings on a dec 3000/300 for synthetic tables with 10k, 100k and 1000k tuples (basically, 1mb, 10mb and 100mb heaps). 'c' means clustered (pre-sorted) inputs and 'u' means unclustered (randomly ordered) inputs. the 10k table basically fits in the buffer pool, but the 100k and 1000k tables don't. as you can see, insertion build is fine if you've sorted your heaps on your index key or if your heap fits in core, but is absolutely horrible on unordered data (yes, that's 7.5 hours to index 100mb of data...) because of the zillions of random i/os. if it doesn't work for you for whatever reason, you can always turn it back off by flipping the FastBuild flag in nbtree.c. i don't have time to maintain it. good luck! baseline code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 8.6 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 9.1 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.2 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 652.4 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.1 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 26772.9 bulkloading code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 11.3 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 10.4 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.5 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 63.5 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.9 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 701.0
1997-02-12 06:04:52 +01:00
/*
* turn on debugging output.
*
* XXX this code just does a numeric printf of the index key, so it's
* only really useful for integer keys.
*/
/*#define FASTBUILD_DEBUG*/
/*
* Status record for spooling.
*/
struct BTSpool
{
Tuplesortstate *sortstate; /* state data for tuplesort.c */
Relation index;
bool isunique;
};
/*
* Status record for a btree page being built. We have one of these
* for each active tree level.
*/
typedef struct BTPageState
{
Buffer btps_buf; /* current buffer & page */
Page btps_page;
OffsetNumber btps_lastoff; /* last item offset loaded */
int btps_level;
struct BTPageState *btps_next; /* link to parent level, if any */
} BTPageState;
#define BTITEMSZ(btitem) \
((btitem) ? \
(IndexTupleDSize((btitem)->bti_itup) + \
(sizeof(BTItemData) - sizeof(IndexTupleData))) : \
0)
static void _bt_load(Relation index, BTSpool *btspool);
static void _bt_buildadd(Relation index, BTPageState *state,
BTItem bti, int flags);
static BTItem _bt_minitem(Page opage, BlockNumber oblkno, int atend);
static BTPageState *_bt_pagestate(Relation index, int flags, int level);
static void _bt_uppershutdown(Relation index, BTPageState *state);
/*
* Interface routines
*/
/*
* create and initialize a spool structure
*/
BTSpool *
_bt_spoolinit(Relation index, bool isunique)
{
BTSpool *btspool = (BTSpool *) palloc(sizeof(BTSpool));
1997-09-18 22:22:58 +02:00
MemSet((char *) btspool, 0, sizeof(BTSpool));
btspool->index = index;
btspool->isunique = isunique;
btspool->sortstate = tuplesort_begin_index(index, isunique, false);
/*
* Currently, tuplesort provides sort functions on IndexTuples. If we
* kept anything in a BTItem other than a regular IndexTuple, we'd
* need to modify tuplesort to understand BTItems as such.
*/
Assert(sizeof(BTItemData) == sizeof(IndexTupleData));
return btspool;
}
/*
* clean up a spool structure and its substructures.
*/
void
_bt_spooldestroy(BTSpool *btspool)
{
tuplesort_end(btspool->sortstate);
pfree((void *) btspool);
}
/*
* spool a btitem into the sort file.
*/
void
_bt_spool(BTItem btitem, BTSpool *btspool)
{
/* A BTItem is really just an IndexTuple */
tuplesort_puttuple(btspool->sortstate, (void *) btitem);
}
/*
* given a spool loaded by successive calls to _bt_spool,
* create an entire btree.
*/
void
_bt_leafbuild(BTSpool *btspool)
{
#ifdef BTREE_BUILD_STATS
if (Show_btree_build_stats)
{
fprintf(StatFp, "BTREE BUILD (Spool) STATISTICS\n");
ShowUsage();
ResetUsage();
}
#endif /* BTREE_BUILD_STATS */
tuplesort_performsort(btspool->sortstate);
_bt_load(btspool->index, btspool);
}
/*
* Internal routines.
*/
/*
* allocate a new, clean btree page, not linked to any siblings.
*/
static void
_bt_blnewpage(Relation index, Buffer *buf, Page *page, int flags)
{
BTPageOpaque opaque;
*buf = _bt_getbuf(index, P_NEW, BT_WRITE);
*page = BufferGetPage(*buf);
_bt_pageinit(*page, BufferGetPageSize(*buf));
opaque = (BTPageOpaque) PageGetSpecialPointer(*page);
opaque->btpo_prev = opaque->btpo_next = P_NONE;
opaque->btpo_flags = flags;
}
/*
* slide an array of ItemIds back one slot (from P_FIRSTKEY to
What looks like some *major* improvements to btree indexing... Patches from: aoki@CS.Berkeley.EDU (Paul M. Aoki) i gave jolly my btree bulkload code a long, long time ago but never gave him a bunch of my bugfixes. here's a diff against the 6.0 baseline. for some reason, this code has slowed down somewhat relative to the insertion-build code on very small tables. don't know why -- it used to be within about 10%. anyway, here are some (highly unscientific!) timings on a dec 3000/300 for synthetic tables with 10k, 100k and 1000k tuples (basically, 1mb, 10mb and 100mb heaps). 'c' means clustered (pre-sorted) inputs and 'u' means unclustered (randomly ordered) inputs. the 10k table basically fits in the buffer pool, but the 100k and 1000k tables don't. as you can see, insertion build is fine if you've sorted your heaps on your index key or if your heap fits in core, but is absolutely horrible on unordered data (yes, that's 7.5 hours to index 100mb of data...) because of the zillions of random i/os. if it doesn't work for you for whatever reason, you can always turn it back off by flipping the FastBuild flag in nbtree.c. i don't have time to maintain it. good luck! baseline code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 8.6 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 9.1 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.2 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 652.4 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.1 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 26772.9 bulkloading code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 11.3 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 10.4 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.5 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 63.5 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.9 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 701.0
1997-02-12 06:04:52 +01:00
* P_HIKEY, overwriting P_HIKEY). we need to do this when we discover
* that we have built an ItemId array in what has turned out to be a
* P_RIGHTMOST page.
*/
static void
_bt_slideleft(Relation index, Buffer buf, Page page)
{
OffsetNumber off;
OffsetNumber maxoff;
ItemId previi;
ItemId thisii;
if (!PageIsEmpty(page))
{
maxoff = PageGetMaxOffsetNumber(page);
previi = PageGetItemId(page, P_HIKEY);
for (off = P_FIRSTKEY; off <= maxoff; off = OffsetNumberNext(off))
{
thisii = PageGetItemId(page, off);
*previi = *thisii;
previi = thisii;
}
((PageHeader) page)->pd_lower -= sizeof(ItemIdData);
What looks like some *major* improvements to btree indexing... Patches from: aoki@CS.Berkeley.EDU (Paul M. Aoki) i gave jolly my btree bulkload code a long, long time ago but never gave him a bunch of my bugfixes. here's a diff against the 6.0 baseline. for some reason, this code has slowed down somewhat relative to the insertion-build code on very small tables. don't know why -- it used to be within about 10%. anyway, here are some (highly unscientific!) timings on a dec 3000/300 for synthetic tables with 10k, 100k and 1000k tuples (basically, 1mb, 10mb and 100mb heaps). 'c' means clustered (pre-sorted) inputs and 'u' means unclustered (randomly ordered) inputs. the 10k table basically fits in the buffer pool, but the 100k and 1000k tables don't. as you can see, insertion build is fine if you've sorted your heaps on your index key or if your heap fits in core, but is absolutely horrible on unordered data (yes, that's 7.5 hours to index 100mb of data...) because of the zillions of random i/os. if it doesn't work for you for whatever reason, you can always turn it back off by flipping the FastBuild flag in nbtree.c. i don't have time to maintain it. good luck! baseline code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 8.6 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 9.1 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.2 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 652.4 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.1 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 26772.9 bulkloading code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 11.3 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 10.4 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.5 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 63.5 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.9 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 701.0
1997-02-12 06:04:52 +01:00
}
}
What looks like some *major* improvements to btree indexing... Patches from: aoki@CS.Berkeley.EDU (Paul M. Aoki) i gave jolly my btree bulkload code a long, long time ago but never gave him a bunch of my bugfixes. here's a diff against the 6.0 baseline. for some reason, this code has slowed down somewhat relative to the insertion-build code on very small tables. don't know why -- it used to be within about 10%. anyway, here are some (highly unscientific!) timings on a dec 3000/300 for synthetic tables with 10k, 100k and 1000k tuples (basically, 1mb, 10mb and 100mb heaps). 'c' means clustered (pre-sorted) inputs and 'u' means unclustered (randomly ordered) inputs. the 10k table basically fits in the buffer pool, but the 100k and 1000k tables don't. as you can see, insertion build is fine if you've sorted your heaps on your index key or if your heap fits in core, but is absolutely horrible on unordered data (yes, that's 7.5 hours to index 100mb of data...) because of the zillions of random i/os. if it doesn't work for you for whatever reason, you can always turn it back off by flipping the FastBuild flag in nbtree.c. i don't have time to maintain it. good luck! baseline code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 8.6 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 9.1 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.2 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 652.4 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.1 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 26772.9 bulkloading code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 11.3 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 10.4 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.5 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 63.5 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.9 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 701.0
1997-02-12 06:04:52 +01:00
/*
* allocate and initialize a new BTPageState. the returned structure
* is suitable for immediate use by _bt_buildadd.
*/
static BTPageState *
_bt_pagestate(Relation index, int flags, int level)
What looks like some *major* improvements to btree indexing... Patches from: aoki@CS.Berkeley.EDU (Paul M. Aoki) i gave jolly my btree bulkload code a long, long time ago but never gave him a bunch of my bugfixes. here's a diff against the 6.0 baseline. for some reason, this code has slowed down somewhat relative to the insertion-build code on very small tables. don't know why -- it used to be within about 10%. anyway, here are some (highly unscientific!) timings on a dec 3000/300 for synthetic tables with 10k, 100k and 1000k tuples (basically, 1mb, 10mb and 100mb heaps). 'c' means clustered (pre-sorted) inputs and 'u' means unclustered (randomly ordered) inputs. the 10k table basically fits in the buffer pool, but the 100k and 1000k tables don't. as you can see, insertion build is fine if you've sorted your heaps on your index key or if your heap fits in core, but is absolutely horrible on unordered data (yes, that's 7.5 hours to index 100mb of data...) because of the zillions of random i/os. if it doesn't work for you for whatever reason, you can always turn it back off by flipping the FastBuild flag in nbtree.c. i don't have time to maintain it. good luck! baseline code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 8.6 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 9.1 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.2 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 652.4 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.1 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 26772.9 bulkloading code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 11.3 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 10.4 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.5 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 63.5 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.9 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 701.0
1997-02-12 06:04:52 +01:00
{
BTPageState *state = (BTPageState *) palloc(sizeof(BTPageState));
1997-09-18 22:22:58 +02:00
MemSet((char *) state, 0, sizeof(BTPageState));
_bt_blnewpage(index, &(state->btps_buf), &(state->btps_page), flags);
state->btps_lastoff = P_HIKEY;
state->btps_next = (BTPageState *) NULL;
state->btps_level = level;
return state;
What looks like some *major* improvements to btree indexing... Patches from: aoki@CS.Berkeley.EDU (Paul M. Aoki) i gave jolly my btree bulkload code a long, long time ago but never gave him a bunch of my bugfixes. here's a diff against the 6.0 baseline. for some reason, this code has slowed down somewhat relative to the insertion-build code on very small tables. don't know why -- it used to be within about 10%. anyway, here are some (highly unscientific!) timings on a dec 3000/300 for synthetic tables with 10k, 100k and 1000k tuples (basically, 1mb, 10mb and 100mb heaps). 'c' means clustered (pre-sorted) inputs and 'u' means unclustered (randomly ordered) inputs. the 10k table basically fits in the buffer pool, but the 100k and 1000k tables don't. as you can see, insertion build is fine if you've sorted your heaps on your index key or if your heap fits in core, but is absolutely horrible on unordered data (yes, that's 7.5 hours to index 100mb of data...) because of the zillions of random i/os. if it doesn't work for you for whatever reason, you can always turn it back off by flipping the FastBuild flag in nbtree.c. i don't have time to maintain it. good luck! baseline code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 8.6 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 9.1 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.2 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 652.4 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.1 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 26772.9 bulkloading code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 11.3 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 10.4 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.5 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 63.5 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.9 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 701.0
1997-02-12 06:04:52 +01:00
}
/*
* return a copy of the minimum (P_HIKEY or P_FIRSTKEY) item on
* 'opage'. the copy is modified to point to 'opage' (as opposed to
* the page to which the item used to point, e.g., a heap page if
* 'opage' is a leaf page).
*/
static BTItem
What looks like some *major* improvements to btree indexing... Patches from: aoki@CS.Berkeley.EDU (Paul M. Aoki) i gave jolly my btree bulkload code a long, long time ago but never gave him a bunch of my bugfixes. here's a diff against the 6.0 baseline. for some reason, this code has slowed down somewhat relative to the insertion-build code on very small tables. don't know why -- it used to be within about 10%. anyway, here are some (highly unscientific!) timings on a dec 3000/300 for synthetic tables with 10k, 100k and 1000k tuples (basically, 1mb, 10mb and 100mb heaps). 'c' means clustered (pre-sorted) inputs and 'u' means unclustered (randomly ordered) inputs. the 10k table basically fits in the buffer pool, but the 100k and 1000k tables don't. as you can see, insertion build is fine if you've sorted your heaps on your index key or if your heap fits in core, but is absolutely horrible on unordered data (yes, that's 7.5 hours to index 100mb of data...) because of the zillions of random i/os. if it doesn't work for you for whatever reason, you can always turn it back off by flipping the FastBuild flag in nbtree.c. i don't have time to maintain it. good luck! baseline code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 8.6 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 9.1 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.2 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 652.4 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.1 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 26772.9 bulkloading code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 11.3 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 10.4 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.5 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 63.5 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.9 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 701.0
1997-02-12 06:04:52 +01:00
_bt_minitem(Page opage, BlockNumber oblkno, int atend)
{
OffsetNumber off;
BTItem obti;
BTItem nbti;
What looks like some *major* improvements to btree indexing... Patches from: aoki@CS.Berkeley.EDU (Paul M. Aoki) i gave jolly my btree bulkload code a long, long time ago but never gave him a bunch of my bugfixes. here's a diff against the 6.0 baseline. for some reason, this code has slowed down somewhat relative to the insertion-build code on very small tables. don't know why -- it used to be within about 10%. anyway, here are some (highly unscientific!) timings on a dec 3000/300 for synthetic tables with 10k, 100k and 1000k tuples (basically, 1mb, 10mb and 100mb heaps). 'c' means clustered (pre-sorted) inputs and 'u' means unclustered (randomly ordered) inputs. the 10k table basically fits in the buffer pool, but the 100k and 1000k tables don't. as you can see, insertion build is fine if you've sorted your heaps on your index key or if your heap fits in core, but is absolutely horrible on unordered data (yes, that's 7.5 hours to index 100mb of data...) because of the zillions of random i/os. if it doesn't work for you for whatever reason, you can always turn it back off by flipping the FastBuild flag in nbtree.c. i don't have time to maintain it. good luck! baseline code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 8.6 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 9.1 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.2 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 652.4 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.1 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 26772.9 bulkloading code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 11.3 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 10.4 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.5 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 63.5 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.9 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 701.0
1997-02-12 06:04:52 +01:00
off = atend ? P_HIKEY : P_FIRSTKEY;
obti = (BTItem) PageGetItem(opage, PageGetItemId(opage, off));
nbti = _bt_formitem(&(obti->bti_itup));
ItemPointerSet(&(nbti->bti_itup.t_tid), oblkno, P_HIKEY);
What looks like some *major* improvements to btree indexing... Patches from: aoki@CS.Berkeley.EDU (Paul M. Aoki) i gave jolly my btree bulkload code a long, long time ago but never gave him a bunch of my bugfixes. here's a diff against the 6.0 baseline. for some reason, this code has slowed down somewhat relative to the insertion-build code on very small tables. don't know why -- it used to be within about 10%. anyway, here are some (highly unscientific!) timings on a dec 3000/300 for synthetic tables with 10k, 100k and 1000k tuples (basically, 1mb, 10mb and 100mb heaps). 'c' means clustered (pre-sorted) inputs and 'u' means unclustered (randomly ordered) inputs. the 10k table basically fits in the buffer pool, but the 100k and 1000k tables don't. as you can see, insertion build is fine if you've sorted your heaps on your index key or if your heap fits in core, but is absolutely horrible on unordered data (yes, that's 7.5 hours to index 100mb of data...) because of the zillions of random i/os. if it doesn't work for you for whatever reason, you can always turn it back off by flipping the FastBuild flag in nbtree.c. i don't have time to maintain it. good luck! baseline code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 8.6 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 9.1 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.2 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 652.4 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.1 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 26772.9 bulkloading code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 11.3 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 10.4 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.5 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 63.5 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.9 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 701.0
1997-02-12 06:04:52 +01:00
1998-09-01 05:29:17 +02:00
return nbti;
What looks like some *major* improvements to btree indexing... Patches from: aoki@CS.Berkeley.EDU (Paul M. Aoki) i gave jolly my btree bulkload code a long, long time ago but never gave him a bunch of my bugfixes. here's a diff against the 6.0 baseline. for some reason, this code has slowed down somewhat relative to the insertion-build code on very small tables. don't know why -- it used to be within about 10%. anyway, here are some (highly unscientific!) timings on a dec 3000/300 for synthetic tables with 10k, 100k and 1000k tuples (basically, 1mb, 10mb and 100mb heaps). 'c' means clustered (pre-sorted) inputs and 'u' means unclustered (randomly ordered) inputs. the 10k table basically fits in the buffer pool, but the 100k and 1000k tables don't. as you can see, insertion build is fine if you've sorted your heaps on your index key or if your heap fits in core, but is absolutely horrible on unordered data (yes, that's 7.5 hours to index 100mb of data...) because of the zillions of random i/os. if it doesn't work for you for whatever reason, you can always turn it back off by flipping the FastBuild flag in nbtree.c. i don't have time to maintain it. good luck! baseline code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 8.6 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 9.1 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.2 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 652.4 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.1 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 26772.9 bulkloading code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 11.3 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 10.4 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.5 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 63.5 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.9 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 701.0
1997-02-12 06:04:52 +01:00
}
/*
* add an item to a disk page from the sort output.
*
* we must be careful to observe the following restrictions, placed
* upon us by the conventions in nbtsearch.c:
* - rightmost pages start data items at P_HIKEY instead of at
* P_FIRSTKEY.
*
* a leaf page being built looks like:
*
* +----------------+---------------------------------+
* | PageHeaderData | linp0 linp1 linp2 ... |
* +-----------+----+---------------------------------+
* | ... linpN | |
* +-----------+--------------------------------------+
* | ^ last |
* | |
* +-------------+------------------------------------+
* | | itemN ... |
* +-------------+------------------+-----------------+
* | ... item3 item2 item1 | "special space" |
* +--------------------------------+-----------------+
*
* contrast this with the diagram in bufpage.h; note the mismatch
* between linps and items. this is because we reserve linp0 as a
* placeholder for the pointer to the "high key" item; when we have
* filled up the page, we will set linp0 to point to itemN and clear
* linpN.
*
* 'last' pointer indicates the last offset added to the page.
*/
static void
_bt_buildadd(Relation index, BTPageState *state, BTItem bti, int flags)
{
Buffer nbuf;
Page npage;
OffsetNumber last_off;
Size pgspc;
Size btisz;
nbuf = state->btps_buf;
npage = state->btps_page;
last_off = state->btps_lastoff;
pgspc = PageGetFreeSpace(npage);
btisz = BTITEMSZ(bti);
btisz = MAXALIGN(btisz);
/*
* Check whether the item can fit on a btree page at all. (Eventually,
* we ought to try to apply TOAST methods if not.) We actually need to
* be able to fit three items on every page, so restrict any one item
* to 1/3 the per-page available space. Note that at this point, btisz
* doesn't include the ItemId.
*
* NOTE: similar code appears in _bt_insertonpg() to defend against
* oversize items being inserted into an already-existing index. But
* during creation of an index, we don't go through there.
*/
if (btisz > (PageGetPageSize(npage) - sizeof(PageHeaderData) - MAXALIGN(sizeof(BTPageOpaqueData))) / 3 - sizeof(ItemIdData))
elog(ERROR, "btree: index item size %d exceeds maximum %ld",
btisz,
(PageGetPageSize(npage) - sizeof(PageHeaderData) - MAXALIGN(sizeof(BTPageOpaqueData))) /3 - sizeof(ItemIdData));
if (pgspc < btisz)
{
/*
* Item won't fit on this page, so finish off the page and
* write it out.
*/
Buffer obuf = nbuf;
Page opage = npage;
ItemId ii;
ItemId hii;
BTItem nbti;
_bt_blnewpage(index, &nbuf, &npage, flags);
/*
* We copy the last item on the page into the new page, and then
* rearrange the old page so that the 'last item' becomes its high
* key rather than a true data item.
*
* note that since we always copy an item to the new page,
* 'bti' will never be the first data item on the new page.
*/
ii = PageGetItemId(opage, last_off);
if (PageAddItem(npage, PageGetItem(opage, ii), ii->lp_len,
P_FIRSTKEY, LP_USED) == InvalidOffsetNumber)
elog(FATAL, "btree: failed to add item to the page in _bt_sort (1)");
#ifdef FASTBUILD_DEBUG
{
bool isnull;
BTItem tmpbti =
(BTItem) PageGetItem(npage, PageGetItemId(npage, P_FIRSTKEY));
Datum d = index_getattr(&(tmpbti->bti_itup), 1,
index->rd_att, &isnull);
printf("_bt_buildadd: moved <%x> to offset %d at level %d\n",
d, P_FIRSTKEY, state->btps_level);
}
What looks like some *major* improvements to btree indexing... Patches from: aoki@CS.Berkeley.EDU (Paul M. Aoki) i gave jolly my btree bulkload code a long, long time ago but never gave him a bunch of my bugfixes. here's a diff against the 6.0 baseline. for some reason, this code has slowed down somewhat relative to the insertion-build code on very small tables. don't know why -- it used to be within about 10%. anyway, here are some (highly unscientific!) timings on a dec 3000/300 for synthetic tables with 10k, 100k and 1000k tuples (basically, 1mb, 10mb and 100mb heaps). 'c' means clustered (pre-sorted) inputs and 'u' means unclustered (randomly ordered) inputs. the 10k table basically fits in the buffer pool, but the 100k and 1000k tables don't. as you can see, insertion build is fine if you've sorted your heaps on your index key or if your heap fits in core, but is absolutely horrible on unordered data (yes, that's 7.5 hours to index 100mb of data...) because of the zillions of random i/os. if it doesn't work for you for whatever reason, you can always turn it back off by flipping the FastBuild flag in nbtree.c. i don't have time to maintain it. good luck! baseline code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 8.6 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 9.1 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.2 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 652.4 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.1 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 26772.9 bulkloading code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 11.3 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 10.4 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.5 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 63.5 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.9 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 701.0
1997-02-12 06:04:52 +01:00
#endif
/*
* Move 'last' into the high key position on opage
*/
hii = PageGetItemId(opage, P_HIKEY);
*hii = *ii;
ii->lp_flags &= ~LP_USED;
((PageHeader) opage)->pd_lower -= sizeof(ItemIdData);
/*
* Reset last_off to point to new page
*/
last_off = PageGetMaxOffsetNumber(npage);
/*
* set the page (side link) pointers.
*/
{
BTPageOpaque oopaque = (BTPageOpaque) PageGetSpecialPointer(opage);
BTPageOpaque nopaque = (BTPageOpaque) PageGetSpecialPointer(npage);
oopaque->btpo_next = BufferGetBlockNumber(nbuf);
nopaque->btpo_prev = BufferGetBlockNumber(obuf);
nopaque->btpo_next = P_NONE;
}
/*
* Link the old buffer into its parent, using its minimum key.
* If we don't have a parent, we have to create one;
* this adds a new btree level.
*/
if (state->btps_next == (BTPageState *) NULL)
{
state->btps_next =
_bt_pagestate(index, 0, state->btps_level + 1);
}
nbti = _bt_minitem(opage, BufferGetBlockNumber(obuf), 0);
_bt_buildadd(index, state->btps_next, nbti, 0);
pfree((void *) nbti);
/*
* write out the old stuff. we never want to see it again, so we
* can give up our lock (if we had one; BuildingBtree is set, so
* we aren't locking).
*/
_bt_wrtbuf(index, obuf);
What looks like some *major* improvements to btree indexing... Patches from: aoki@CS.Berkeley.EDU (Paul M. Aoki) i gave jolly my btree bulkload code a long, long time ago but never gave him a bunch of my bugfixes. here's a diff against the 6.0 baseline. for some reason, this code has slowed down somewhat relative to the insertion-build code on very small tables. don't know why -- it used to be within about 10%. anyway, here are some (highly unscientific!) timings on a dec 3000/300 for synthetic tables with 10k, 100k and 1000k tuples (basically, 1mb, 10mb and 100mb heaps). 'c' means clustered (pre-sorted) inputs and 'u' means unclustered (randomly ordered) inputs. the 10k table basically fits in the buffer pool, but the 100k and 1000k tables don't. as you can see, insertion build is fine if you've sorted your heaps on your index key or if your heap fits in core, but is absolutely horrible on unordered data (yes, that's 7.5 hours to index 100mb of data...) because of the zillions of random i/os. if it doesn't work for you for whatever reason, you can always turn it back off by flipping the FastBuild flag in nbtree.c. i don't have time to maintain it. good luck! baseline code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 8.6 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 9.1 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.2 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 652.4 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.1 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 26772.9 bulkloading code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 11.3 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 10.4 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.5 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 63.5 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.9 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 701.0
1997-02-12 06:04:52 +01:00
}
/*
* Add the new item into the current page.
*/
last_off = OffsetNumberNext(last_off);
if (PageAddItem(npage, (Item) bti, btisz,
last_off, LP_USED) == InvalidOffsetNumber)
elog(FATAL, "btree: failed to add item to the page in _bt_sort (2)");
#ifdef FASTBUILD_DEBUG
{
bool isnull;
Datum d = index_getattr(&(bti->bti_itup), 1, index->rd_att, &isnull);
printf("_bt_buildadd: inserted <%x> at offset %d at level %d\n",
d, last_off, state->btps_level);
}
What looks like some *major* improvements to btree indexing... Patches from: aoki@CS.Berkeley.EDU (Paul M. Aoki) i gave jolly my btree bulkload code a long, long time ago but never gave him a bunch of my bugfixes. here's a diff against the 6.0 baseline. for some reason, this code has slowed down somewhat relative to the insertion-build code on very small tables. don't know why -- it used to be within about 10%. anyway, here are some (highly unscientific!) timings on a dec 3000/300 for synthetic tables with 10k, 100k and 1000k tuples (basically, 1mb, 10mb and 100mb heaps). 'c' means clustered (pre-sorted) inputs and 'u' means unclustered (randomly ordered) inputs. the 10k table basically fits in the buffer pool, but the 100k and 1000k tables don't. as you can see, insertion build is fine if you've sorted your heaps on your index key or if your heap fits in core, but is absolutely horrible on unordered data (yes, that's 7.5 hours to index 100mb of data...) because of the zillions of random i/os. if it doesn't work for you for whatever reason, you can always turn it back off by flipping the FastBuild flag in nbtree.c. i don't have time to maintain it. good luck! baseline code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 8.6 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 9.1 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.2 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 652.4 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.1 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 26772.9 bulkloading code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 11.3 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 10.4 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.5 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 63.5 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.9 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 701.0
1997-02-12 06:04:52 +01:00
#endif
state->btps_buf = nbuf;
state->btps_page = npage;
state->btps_lastoff = last_off;
What looks like some *major* improvements to btree indexing... Patches from: aoki@CS.Berkeley.EDU (Paul M. Aoki) i gave jolly my btree bulkload code a long, long time ago but never gave him a bunch of my bugfixes. here's a diff against the 6.0 baseline. for some reason, this code has slowed down somewhat relative to the insertion-build code on very small tables. don't know why -- it used to be within about 10%. anyway, here are some (highly unscientific!) timings on a dec 3000/300 for synthetic tables with 10k, 100k and 1000k tuples (basically, 1mb, 10mb and 100mb heaps). 'c' means clustered (pre-sorted) inputs and 'u' means unclustered (randomly ordered) inputs. the 10k table basically fits in the buffer pool, but the 100k and 1000k tables don't. as you can see, insertion build is fine if you've sorted your heaps on your index key or if your heap fits in core, but is absolutely horrible on unordered data (yes, that's 7.5 hours to index 100mb of data...) because of the zillions of random i/os. if it doesn't work for you for whatever reason, you can always turn it back off by flipping the FastBuild flag in nbtree.c. i don't have time to maintain it. good luck! baseline code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 8.6 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 9.1 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.2 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 652.4 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.1 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 26772.9 bulkloading code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 11.3 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 10.4 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.5 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 63.5 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.9 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 701.0
1997-02-12 06:04:52 +01:00
}
/*
* Finish writing out the completed btree.
*/
static void
_bt_uppershutdown(Relation index, BTPageState *state)
What looks like some *major* improvements to btree indexing... Patches from: aoki@CS.Berkeley.EDU (Paul M. Aoki) i gave jolly my btree bulkload code a long, long time ago but never gave him a bunch of my bugfixes. here's a diff against the 6.0 baseline. for some reason, this code has slowed down somewhat relative to the insertion-build code on very small tables. don't know why -- it used to be within about 10%. anyway, here are some (highly unscientific!) timings on a dec 3000/300 for synthetic tables with 10k, 100k and 1000k tuples (basically, 1mb, 10mb and 100mb heaps). 'c' means clustered (pre-sorted) inputs and 'u' means unclustered (randomly ordered) inputs. the 10k table basically fits in the buffer pool, but the 100k and 1000k tables don't. as you can see, insertion build is fine if you've sorted your heaps on your index key or if your heap fits in core, but is absolutely horrible on unordered data (yes, that's 7.5 hours to index 100mb of data...) because of the zillions of random i/os. if it doesn't work for you for whatever reason, you can always turn it back off by flipping the FastBuild flag in nbtree.c. i don't have time to maintain it. good luck! baseline code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 8.6 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 9.1 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.2 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 652.4 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.1 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 26772.9 bulkloading code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 11.3 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 10.4 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.5 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 63.5 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.9 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 701.0
1997-02-12 06:04:52 +01:00
{
BTPageState *s;
BlockNumber blkno;
BTPageOpaque opaque;
BTItem bti;
What looks like some *major* improvements to btree indexing... Patches from: aoki@CS.Berkeley.EDU (Paul M. Aoki) i gave jolly my btree bulkload code a long, long time ago but never gave him a bunch of my bugfixes. here's a diff against the 6.0 baseline. for some reason, this code has slowed down somewhat relative to the insertion-build code on very small tables. don't know why -- it used to be within about 10%. anyway, here are some (highly unscientific!) timings on a dec 3000/300 for synthetic tables with 10k, 100k and 1000k tuples (basically, 1mb, 10mb and 100mb heaps). 'c' means clustered (pre-sorted) inputs and 'u' means unclustered (randomly ordered) inputs. the 10k table basically fits in the buffer pool, but the 100k and 1000k tables don't. as you can see, insertion build is fine if you've sorted your heaps on your index key or if your heap fits in core, but is absolutely horrible on unordered data (yes, that's 7.5 hours to index 100mb of data...) because of the zillions of random i/os. if it doesn't work for you for whatever reason, you can always turn it back off by flipping the FastBuild flag in nbtree.c. i don't have time to maintain it. good luck! baseline code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 8.6 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 9.1 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.2 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 652.4 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.1 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 26772.9 bulkloading code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 11.3 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 10.4 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.5 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 63.5 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.9 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 701.0
1997-02-12 06:04:52 +01:00
/*
* Each iteration of this loop completes one more level of the tree.
*/
for (s = state; s != (BTPageState *) NULL; s = s->btps_next)
{
blkno = BufferGetBlockNumber(s->btps_buf);
opaque = (BTPageOpaque) PageGetSpecialPointer(s->btps_page);
What looks like some *major* improvements to btree indexing... Patches from: aoki@CS.Berkeley.EDU (Paul M. Aoki) i gave jolly my btree bulkload code a long, long time ago but never gave him a bunch of my bugfixes. here's a diff against the 6.0 baseline. for some reason, this code has slowed down somewhat relative to the insertion-build code on very small tables. don't know why -- it used to be within about 10%. anyway, here are some (highly unscientific!) timings on a dec 3000/300 for synthetic tables with 10k, 100k and 1000k tuples (basically, 1mb, 10mb and 100mb heaps). 'c' means clustered (pre-sorted) inputs and 'u' means unclustered (randomly ordered) inputs. the 10k table basically fits in the buffer pool, but the 100k and 1000k tables don't. as you can see, insertion build is fine if you've sorted your heaps on your index key or if your heap fits in core, but is absolutely horrible on unordered data (yes, that's 7.5 hours to index 100mb of data...) because of the zillions of random i/os. if it doesn't work for you for whatever reason, you can always turn it back off by flipping the FastBuild flag in nbtree.c. i don't have time to maintain it. good luck! baseline code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 8.6 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 9.1 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.2 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 652.4 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.1 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 26772.9 bulkloading code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 11.3 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 10.4 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.5 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 63.5 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.9 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 701.0
1997-02-12 06:04:52 +01:00
/*
* We have to link the last page on this level to somewhere.
*
* If we're at the top, it's the root, so attach it to the metapage.
* Otherwise, add an entry for it to its parent using its minimum
* key. This may cause the last page of the parent level to split,
* but that's not a problem -- we haven't gotten to it yet.
*/
if (s->btps_next == (BTPageState *) NULL)
{
opaque->btpo_flags |= BTP_ROOT;
_bt_metaproot(index, blkno, s->btps_level + 1);
}
else
{
bti = _bt_minitem(s->btps_page, blkno, 0);
_bt_buildadd(index, s->btps_next, bti, 0);
pfree((void *) bti);
}
What looks like some *major* improvements to btree indexing... Patches from: aoki@CS.Berkeley.EDU (Paul M. Aoki) i gave jolly my btree bulkload code a long, long time ago but never gave him a bunch of my bugfixes. here's a diff against the 6.0 baseline. for some reason, this code has slowed down somewhat relative to the insertion-build code on very small tables. don't know why -- it used to be within about 10%. anyway, here are some (highly unscientific!) timings on a dec 3000/300 for synthetic tables with 10k, 100k and 1000k tuples (basically, 1mb, 10mb and 100mb heaps). 'c' means clustered (pre-sorted) inputs and 'u' means unclustered (randomly ordered) inputs. the 10k table basically fits in the buffer pool, but the 100k and 1000k tables don't. as you can see, insertion build is fine if you've sorted your heaps on your index key or if your heap fits in core, but is absolutely horrible on unordered data (yes, that's 7.5 hours to index 100mb of data...) because of the zillions of random i/os. if it doesn't work for you for whatever reason, you can always turn it back off by flipping the FastBuild flag in nbtree.c. i don't have time to maintain it. good luck! baseline code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 8.6 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 9.1 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.2 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 652.4 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.1 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 26772.9 bulkloading code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 11.3 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 10.4 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.5 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 63.5 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.9 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 701.0
1997-02-12 06:04:52 +01:00
/*
* This is the rightmost page, so the ItemId array needs to be
* slid back one slot. Then we can dump out the page.
*/
_bt_slideleft(index, s->btps_buf, s->btps_page);
_bt_wrtbuf(index, s->btps_buf);
}
}
/*
* Read tuples in correct sort order from tuplesort, and load them into
* btree leaves.
*/
What looks like some *major* improvements to btree indexing... Patches from: aoki@CS.Berkeley.EDU (Paul M. Aoki) i gave jolly my btree bulkload code a long, long time ago but never gave him a bunch of my bugfixes. here's a diff against the 6.0 baseline. for some reason, this code has slowed down somewhat relative to the insertion-build code on very small tables. don't know why -- it used to be within about 10%. anyway, here are some (highly unscientific!) timings on a dec 3000/300 for synthetic tables with 10k, 100k and 1000k tuples (basically, 1mb, 10mb and 100mb heaps). 'c' means clustered (pre-sorted) inputs and 'u' means unclustered (randomly ordered) inputs. the 10k table basically fits in the buffer pool, but the 100k and 1000k tables don't. as you can see, insertion build is fine if you've sorted your heaps on your index key or if your heap fits in core, but is absolutely horrible on unordered data (yes, that's 7.5 hours to index 100mb of data...) because of the zillions of random i/os. if it doesn't work for you for whatever reason, you can always turn it back off by flipping the FastBuild flag in nbtree.c. i don't have time to maintain it. good luck! baseline code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 8.6 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 9.1 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.2 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 652.4 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.1 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 26772.9 bulkloading code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 11.3 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 10.4 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.5 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 63.5 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.9 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 701.0
1997-02-12 06:04:52 +01:00
static void
_bt_load(Relation index, BTSpool *btspool)
{
BTPageState *state = NULL;
for (;;)
{
BTItem bti;
bool should_free;
bti = (BTItem) tuplesort_getindextuple(btspool->sortstate, true,
&should_free);
if (bti == (BTItem) NULL)
break;
/* When we see first tuple, create first index page */
if (state == NULL)
state = _bt_pagestate(index, BTP_LEAF, 0);
_bt_buildadd(index, state, bti, BTP_LEAF);
if (should_free)
pfree((void *) bti);
}
if (state != NULL)
_bt_uppershutdown(index, state);
}