postgresql/src/common/md5_common.c

150 lines
3.4 KiB
C
Raw Normal View History

Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
/*-------------------------------------------------------------------------
*
* md5_common.c
* Routines shared between all MD5 implementations used for encrypted
* passwords.
*
* Sverre H. Huseby <sverrehu@online.no>
*
* Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/common/md5_common.c
*
*-------------------------------------------------------------------------
*/
#ifndef FRONTEND
#include "postgres.h"
#else
#include "postgres_fe.h"
#endif
#include "common/cryptohash.h"
#include "common/md5.h"
static void
bytesToHex(uint8 b[16], char *s)
{
static const char *hex = "0123456789abcdef";
int q,
w;
for (q = 0, w = 0; q < 16; q++)
{
s[w++] = hex[(b[q] >> 4) & 0x0F];
s[w++] = hex[b[q] & 0x0F];
}
s[w] = '\0';
}
/*
* pg_md5_hash
*
* Calculates the MD5 sum of the bytes in a buffer.
*
* SYNOPSIS #include "md5.h"
* int pg_md5_hash(const void *buff, size_t len, char *hexsum)
*
* INPUT buff the buffer containing the bytes that you want
* the MD5 sum of.
* len number of bytes in the buffer.
*
* OUTPUT hexsum the MD5 sum as a '\0'-terminated string of
* hexadecimal digits. an MD5 sum is 16 bytes long.
* each byte is represented by two hexadecimal
* characters. you thus need to provide an array
* of 33 characters, including the trailing '\0'.
*
* RETURNS false on failure (out of memory for internal buffers
* or MD5 computation failure) or true on success.
*
* STANDARDS MD5 is described in RFC 1321.
*
* AUTHOR Sverre H. Huseby <sverrehu@online.no>
*
*/
bool
pg_md5_hash(const void *buff, size_t len, char *hexsum)
{
uint8 sum[MD5_DIGEST_LENGTH];
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
pg_cryptohash_ctx *ctx;
ctx = pg_cryptohash_create(PG_MD5);
if (ctx == NULL)
return false;
if (pg_cryptohash_init(ctx) < 0 ||
pg_cryptohash_update(ctx, buff, len) < 0 ||
pg_cryptohash_final(ctx, sum) < 0)
{
pg_cryptohash_free(ctx);
return false;
}
bytesToHex(sum, hexsum);
pg_cryptohash_free(ctx);
return true;
}
bool
pg_md5_binary(const void *buff, size_t len, void *outbuf)
{
pg_cryptohash_ctx *ctx;
ctx = pg_cryptohash_create(PG_MD5);
if (ctx == NULL)
return false;
if (pg_cryptohash_init(ctx) < 0 ||
pg_cryptohash_update(ctx, buff, len) < 0 ||
pg_cryptohash_final(ctx, outbuf) < 0)
{
pg_cryptohash_free(ctx);
return false;
}
pg_cryptohash_free(ctx);
return true;
}
/*
* Computes MD5 checksum of "passwd" (a null-terminated string) followed
* by "salt" (which need not be null-terminated).
*
* Output format is "md5" followed by a 32-hex-digit MD5 checksum.
* Hence, the output buffer "buf" must be at least 36 bytes long.
*
* Returns true if okay, false on error (out of memory).
*/
bool
pg_md5_encrypt(const char *passwd, const char *salt, size_t salt_len,
char *buf)
{
size_t passwd_len = strlen(passwd);
/* +1 here is just to avoid risk of unportable malloc(0) */
char *crypt_buf = malloc(passwd_len + salt_len + 1);
bool ret;
if (!crypt_buf)
return false;
/*
* Place salt at the end because it may be known by users trying to crack
* the MD5 output.
*/
memcpy(crypt_buf, passwd, passwd_len);
memcpy(crypt_buf + passwd_len, salt, salt_len);
strcpy(buf, "md5");
ret = pg_md5_hash(crypt_buf, passwd_len + salt_len, buf + 3);
free(crypt_buf);
return ret;
}