postgresql/src/backend/commands/vacuum.c

1099 lines
32 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* vacuum.c
* The postgres vacuum cleaner.
*
* This file now includes only control and dispatch code for VACUUM and
* ANALYZE commands. Regular VACUUM is implemented in vacuumlazy.c,
* ANALYZE in analyze.c, and VACUUM FULL is a variant of CLUSTER, handled
* in cluster.c.
*
*
2011-01-01 19:18:15 +01:00
* Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
2010-09-20 22:08:53 +02:00
* src/backend/commands/vacuum.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/clog.h"
#include "access/genam.h"
#include "access/heapam.h"
#include "access/transam.h"
#include "access/xact.h"
#include "catalog/namespace.h"
#include "catalog/pg_database.h"
#include "catalog/pg_namespace.h"
#include "commands/cluster.h"
#include "commands/vacuum.h"
1999-07-16 07:00:38 +02:00
#include "miscadmin.h"
#include "pgstat.h"
#include "postmaster/autovacuum.h"
#include "storage/bufmgr.h"
#include "storage/lmgr.h"
#include "storage/proc.h"
#include "storage/procarray.h"
#include "utils/acl.h"
#include "utils/fmgroids.h"
2009-12-09 22:57:51 +01:00
#include "utils/guc.h"
#include "utils/memutils.h"
#include "utils/snapmgr.h"
#include "utils/syscache.h"
#include "utils/tqual.h"
/*
* GUC parameters
*/
int vacuum_freeze_min_age;
int vacuum_freeze_table_age;
/* A few variables that don't seem worth passing around as parameters */
static MemoryContext vac_context = NULL;
static BufferAccessStrategy vac_strategy;
/* non-export function prototypes */
static List *get_rel_oids(Oid relid, const RangeVar *vacrel);
static void vac_truncate_clog(TransactionId frozenXID);
static bool vacuum_rel(Oid relid, VacuumStmt *vacstmt, bool do_toast,
bool for_wraparound, bool *scanned_all);
/*
* Primary entry point for VACUUM and ANALYZE commands.
*
* relid is normally InvalidOid; if it is not, then it provides the relation
* OID to be processed, and vacstmt->relation is ignored. (The non-invalid
* case is currently only used by autovacuum.)
*
* do_toast is passed as FALSE by autovacuum, because it processes TOAST
* tables separately.
*
* for_wraparound is used by autovacuum to let us know when it's forcing
* a vacuum for wraparound, which should not be auto-cancelled.
*
* bstrategy is normally given as NULL, but in autovacuum it can be passed
* in to use the same buffer strategy object across multiple vacuum() calls.
*
* isTopLevel should be passed down from ProcessUtility.
*
* It is the caller's responsibility that vacstmt and bstrategy
* (if given) be allocated in a memory context that won't disappear
* at transaction commit.
*/
void
vacuum(VacuumStmt *vacstmt, Oid relid, bool do_toast,
BufferAccessStrategy bstrategy, bool for_wraparound, bool isTopLevel)
{
const char *stmttype;
volatile bool in_outer_xact,
use_own_xacts;
List *relations;
/* sanity checks on options */
Assert(vacstmt->options & (VACOPT_VACUUM | VACOPT_ANALYZE));
Assert((vacstmt->options & VACOPT_VACUUM) ||
!(vacstmt->options & (VACOPT_FULL | VACOPT_FREEZE)));
Assert((vacstmt->options & VACOPT_ANALYZE) || vacstmt->va_cols == NIL);
stmttype = (vacstmt->options & VACOPT_VACUUM) ? "VACUUM" : "ANALYZE";
/*
2005-10-15 04:49:52 +02:00
* We cannot run VACUUM inside a user transaction block; if we were inside
* a transaction, then our commit- and start-transaction-command calls
2010-02-26 03:01:40 +01:00
* would not have the intended effect! There are numerous other subtle
* dependencies on this, too.
*
* ANALYZE (without VACUUM) can run either way.
*/
if (vacstmt->options & VACOPT_VACUUM)
{
PreventTransactionChain(isTopLevel, stmttype);
in_outer_xact = false;
}
else
in_outer_xact = IsInTransactionChain(isTopLevel);
2002-06-13 21:52:02 +02:00
/*
2006-10-04 02:30:14 +02:00
* Send info about dead objects to the statistics collector, unless we are
* in autovacuum --- autovacuum.c does this for itself.
*/
if ((vacstmt->options & VACOPT_VACUUM) && !IsAutoVacuumWorkerProcess())
pgstat_vacuum_stat();
/*
* Create special memory context for cross-transaction storage.
*
* Since it is a child of PortalContext, it will go away eventually even
* if we suffer an error; there's no need for special abort cleanup logic.
*/
vac_context = AllocSetContextCreate(PortalContext,
"Vacuum",
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
/*
* If caller didn't give us a buffer strategy object, make one in the
* cross-transaction memory context.
*/
if (bstrategy == NULL)
{
MemoryContext old_context = MemoryContextSwitchTo(vac_context);
bstrategy = GetAccessStrategy(BAS_VACUUM);
MemoryContextSwitchTo(old_context);
}
vac_strategy = bstrategy;
/*
2005-10-15 04:49:52 +02:00
* Build list of relations to process, unless caller gave us one. (If we
* build one, we put it in vac_context for safekeeping.)
*/
relations = get_rel_oids(relid, vacstmt->relation);
/*
* Decide whether we need to start/commit our own transactions.
*
* For VACUUM (with or without ANALYZE): always do so, so that we can
* release locks as soon as possible. (We could possibly use the outer
2005-10-15 04:49:52 +02:00
* transaction for a one-table VACUUM, but handling TOAST tables would be
* problematic.)
*
* For ANALYZE (no VACUUM): if inside a transaction block, we cannot
2005-10-15 04:49:52 +02:00
* start/commit our own transactions. Also, there's no need to do so if
* only processing one relation. For multiple relations when not within a
* transaction block, and also in an autovacuum worker, use own
* transactions so we can release locks sooner.
*/
if (vacstmt->options & VACOPT_VACUUM)
use_own_xacts = true;
else
{
Assert(vacstmt->options & VACOPT_ANALYZE);
if (IsAutoVacuumWorkerProcess())
use_own_xacts = true;
else if (in_outer_xact)
use_own_xacts = false;
else if (list_length(relations) > 1)
use_own_xacts = true;
else
use_own_xacts = false;
}
2002-06-15 23:52:31 +02:00
/*
2005-10-15 04:49:52 +02:00
* vacuum_rel expects to be entered with no transaction active; it will
* start and commit its own transaction. But we are called by an SQL
* command, and so we are executing inside a transaction already. We
* commit the transaction started in PostgresMain() here, and start
* another one before exiting to match the commit waiting for us back in
* PostgresMain().
*/
if (use_own_xacts)
2002-06-13 21:52:02 +02:00
{
/* ActiveSnapshot is not set by autovacuum */
if (ActiveSnapshotSet())
PopActiveSnapshot();
2002-06-13 21:52:02 +02:00
/* matches the StartTransaction in PostgresMain() */
CommitTransactionCommand();
2002-06-13 21:52:02 +02:00
}
/* Turn vacuum cost accounting on or off */
PG_TRY();
{
ListCell *cur;
VacuumCostActive = (VacuumCostDelay > 0);
VacuumCostBalance = 0;
/*
* Loop to process each selected relation.
*/
foreach(cur, relations)
2002-06-13 21:52:02 +02:00
{
Oid relid = lfirst_oid(cur);
bool scanned_all = false;
if (vacstmt->options & VACOPT_VACUUM)
{
if (!vacuum_rel(relid, vacstmt, do_toast, for_wraparound,
&scanned_all))
continue;
}
if (vacstmt->options & VACOPT_ANALYZE)
2002-06-13 21:52:02 +02:00
{
/*
2005-10-15 04:49:52 +02:00
* If using separate xacts, start one for analyze. Otherwise,
* we can use the outer transaction.
*/
if (use_own_xacts)
{
StartTransactionCommand();
/* functions in indexes may want a snapshot set */
PushActiveSnapshot(GetTransactionSnapshot());
}
analyze_rel(relid, vacstmt, vac_strategy, !scanned_all);
if (use_own_xacts)
{
PopActiveSnapshot();
CommitTransactionCommand();
}
2002-06-13 21:52:02 +02:00
}
}
}
PG_CATCH();
{
/* Make sure cost accounting is turned off after error */
VacuumCostActive = false;
PG_RE_THROW();
}
PG_END_TRY();
/* Turn off vacuum cost accounting */
VacuumCostActive = false;
/*
* Finish up processing.
*/
if (use_own_xacts)
{
2002-06-15 23:52:31 +02:00
/* here, we are not in a transaction */
/*
2002-09-04 22:31:48 +02:00
* This matches the CommitTransaction waiting for us in
* PostgresMain().
*/
StartTransactionCommand();
}
if ((vacstmt->options & VACOPT_VACUUM) && !IsAutoVacuumWorkerProcess())
{
/*
* Update pg_database.datfrozenxid, and truncate pg_clog if possible.
* (autovacuum.c does this for itself.)
*/
vac_update_datfrozenxid();
}
/*
* Clean up working storage --- note we must do this after
2005-10-15 04:49:52 +02:00
* StartTransactionCommand, else we might be trying to delete the active
* context!
*/
MemoryContextDelete(vac_context);
vac_context = NULL;
}
/*
* Build a list of Oids for each relation to be processed
*
* The list is built in vac_context so that it will survive across our
* per-relation transactions.
*/
static List *
get_rel_oids(Oid relid, const RangeVar *vacrel)
{
List *oid_list = NIL;
MemoryContext oldcontext;
/* OID supplied by VACUUM's caller? */
if (OidIsValid(relid))
{
oldcontext = MemoryContextSwitchTo(vac_context);
oid_list = lappend_oid(oid_list, relid);
MemoryContextSwitchTo(oldcontext);
}
else if (vacrel)
{
/* Process a specific relation */
2002-09-04 22:31:48 +02:00
Oid relid;
relid = RangeVarGetRelid(vacrel, false);
/* Make a relation list entry for this guy */
oldcontext = MemoryContextSwitchTo(vac_context);
oid_list = lappend_oid(oid_list, relid);
MemoryContextSwitchTo(oldcontext);
}
else
{
/* Process all plain relations listed in pg_class */
Relation pgclass;
HeapScanDesc scan;
HeapTuple tuple;
ScanKeyData key;
ScanKeyInit(&key,
Anum_pg_class_relkind,
BTEqualStrategyNumber, F_CHAREQ,
CharGetDatum(RELKIND_RELATION));
pgclass = heap_open(RelationRelationId, AccessShareLock);
scan = heap_beginscan(pgclass, SnapshotNow, 1, &key);
while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
{
/* Make a relation list entry for this guy */
oldcontext = MemoryContextSwitchTo(vac_context);
oid_list = lappend_oid(oid_list, HeapTupleGetOid(tuple));
MemoryContextSwitchTo(oldcontext);
}
heap_endscan(scan);
heap_close(pgclass, AccessShareLock);
}
return oid_list;
}
/*
* vacuum_set_xid_limits() -- compute oldest-Xmin and freeze cutoff points
*/
void
vacuum_set_xid_limits(int freeze_min_age,
int freeze_table_age,
bool sharedRel,
TransactionId *oldestXmin,
TransactionId *freezeLimit,
TransactionId *freezeTableLimit)
{
int freezemin;
TransactionId limit;
TransactionId safeLimit;
/*
2006-10-04 02:30:14 +02:00
* We can always ignore processes running lazy vacuum. This is because we
* use these values only for deciding which tuples we must keep in the
2007-11-15 22:14:46 +01:00
* tables. Since lazy vacuum doesn't write its XID anywhere, it's safe to
* ignore it. In theory it could be problematic to ignore lazy vacuums in
2007-11-15 22:14:46 +01:00
* a full vacuum, but keep in mind that only one vacuum process can be
* working on a particular table at any time, and that each vacuum is
* always an independent transaction.
*/
*oldestXmin = GetOldestXmin(sharedRel, true);
Assert(TransactionIdIsNormal(*oldestXmin));
/*
2007-11-15 22:14:46 +01:00
* Determine the minimum freeze age to use: as specified by the caller, or
* vacuum_freeze_min_age, but in any case not more than half
* autovacuum_freeze_max_age, so that autovacuums to prevent XID
* wraparound won't occur too frequently.
*/
freezemin = freeze_min_age;
if (freezemin < 0)
freezemin = vacuum_freeze_min_age;
freezemin = Min(freezemin, autovacuum_freeze_max_age / 2);
Assert(freezemin >= 0);
/*
* Compute the cutoff XID, being careful not to generate a "permanent" XID
*/
limit = *oldestXmin - freezemin;
if (!TransactionIdIsNormal(limit))
limit = FirstNormalTransactionId;
/*
* If oldestXmin is very far back (in practice, more than
2007-11-15 22:14:46 +01:00
* autovacuum_freeze_max_age / 2 XIDs old), complain and force a minimum
* freeze age of zero.
*/
safeLimit = ReadNewTransactionId() - autovacuum_freeze_max_age;
if (!TransactionIdIsNormal(safeLimit))
safeLimit = FirstNormalTransactionId;
if (TransactionIdPrecedes(limit, safeLimit))
{
ereport(WARNING,
(errmsg("oldest xmin is far in the past"),
errhint("Close open transactions soon to avoid wraparound problems.")));
limit = *oldestXmin;
}
*freezeLimit = limit;
if (freezeTableLimit != NULL)
{
int freezetable;
/*
* Determine the table freeze age to use: as specified by the caller,
* or vacuum_freeze_table_age, but in any case not more than
* autovacuum_freeze_max_age * 0.95, so that if you have e.g nightly
* VACUUM schedule, the nightly VACUUM gets a chance to freeze tuples
* before anti-wraparound autovacuum is launched.
*/
freezetable = freeze_min_age;
if (freezetable < 0)
freezetable = vacuum_freeze_table_age;
freezetable = Min(freezetable, autovacuum_freeze_max_age * 0.95);
Assert(freezetable >= 0);
/*
* Compute the cutoff XID, being careful not to generate a "permanent"
* XID.
*/
limit = ReadNewTransactionId() - freezetable;
if (!TransactionIdIsNormal(limit))
limit = FirstNormalTransactionId;
*freezeTableLimit = limit;
}
}
/*
* vac_update_relstats() -- update statistics for one relation
*
* Update the whole-relation statistics that are kept in its pg_class
* row. There are additional stats that will be updated if we are
* doing ANALYZE, but we always update these stats. This routine works
* for both index and heap relation entries in pg_class.
*
* We violate transaction semantics here by overwriting the rel's
* existing pg_class tuple with the new values. This is reasonably
* safe since the new values are correct whether or not this transaction
* commits. The reason for this is that if we updated these tuples in
* the usual way, vacuuming pg_class itself wouldn't work very well ---
* by the time we got done with a vacuum cycle, most of the tuples in
* pg_class would've been obsoleted. Of course, this only works for
* fixed-size never-null columns, but these are.
*
* Note another assumption: that two VACUUMs/ANALYZEs on a table can't
* run in parallel, nor can VACUUM/ANALYZE run in parallel with a
* schema alteration such as adding an index, rule, or trigger. Otherwise
* our updates of relhasindex etc might overwrite uncommitted updates.
*
* Another reason for doing it this way is that when we are in a lazy
* VACUUM and have PROC_IN_VACUUM set, we mustn't do any updates ---
* somebody vacuuming pg_class might think they could delete a tuple
* marked with xmin = our xid.
*
* This routine is shared by VACUUM and stand-alone ANALYZE.
*/
void
vac_update_relstats(Relation relation,
BlockNumber num_pages, double num_tuples,
bool hasindex, TransactionId frozenxid)
{
Oid relid = RelationGetRelid(relation);
Relation rd;
HeapTuple ctup;
Form_pg_class pgcform;
bool dirty;
rd = heap_open(RelationRelationId, RowExclusiveLock);
/* Fetch a copy of the tuple to scribble on */
ctup = SearchSysCacheCopy1(RELOID, ObjectIdGetDatum(relid));
if (!HeapTupleIsValid(ctup))
elog(ERROR, "pg_class entry for relid %u vanished during vacuuming",
relid);
pgcform = (Form_pg_class) GETSTRUCT(ctup);
/* Apply required updates, if any, to copied tuple */
dirty = false;
if (pgcform->relpages != (int32) num_pages)
{
pgcform->relpages = (int32) num_pages;
dirty = true;
}
if (pgcform->reltuples != (float4) num_tuples)
{
pgcform->reltuples = (float4) num_tuples;
dirty = true;
}
if (pgcform->relhasindex != hasindex)
{
pgcform->relhasindex = hasindex;
dirty = true;
}
2006-10-04 02:30:14 +02:00
/*
* If we have discovered that there are no indexes, then there's no
2011-04-10 17:42:00 +02:00
* primary key either. This could be done more thoroughly...
*/
if (pgcform->relhaspkey && !hasindex)
{
pgcform->relhaspkey = false;
dirty = true;
}
/* We also clear relhasrules and relhastriggers if needed */
if (pgcform->relhasrules && relation->rd_rules == NULL)
{
pgcform->relhasrules = false;
dirty = true;
}
if (pgcform->relhastriggers && relation->trigdesc == NULL)
{
pgcform->relhastriggers = false;
dirty = true;
}
/*
* relfrozenxid should never go backward. Caller can pass
* InvalidTransactionId if it has no new data.
*/
if (TransactionIdIsNormal(frozenxid) &&
TransactionIdPrecedes(pgcform->relfrozenxid, frozenxid))
{
pgcform->relfrozenxid = frozenxid;
dirty = true;
}
/* If anything changed, write out the tuple. */
if (dirty)
heap_inplace_update(rd, ctup);
heap_close(rd, RowExclusiveLock);
}
/*
* vac_update_datfrozenxid() -- update pg_database.datfrozenxid for our DB
*
* Update pg_database's datfrozenxid entry for our database to be the
* minimum of the pg_class.relfrozenxid values. If we are able to
* advance pg_database.datfrozenxid, also try to truncate pg_clog.
*
* We violate transaction semantics here by overwriting the database's
2007-11-15 22:14:46 +01:00
* existing pg_database tuple with the new value. This is reasonably
* safe since the new value is correct whether or not this transaction
* commits. As with vac_update_relstats, this avoids leaving dead tuples
* behind after a VACUUM.
*/
void
vac_update_datfrozenxid(void)
{
HeapTuple tuple;
Form_pg_database dbform;
Relation relation;
2006-10-04 02:30:14 +02:00
SysScanDesc scan;
HeapTuple classTup;
TransactionId newFrozenXid;
bool dirty = false;
/*
* Initialize the "min" calculation with GetOldestXmin, which is a
* reasonable approximation to the minimum relfrozenxid for not-yet-
* committed pg_class entries for new tables; see AddNewRelationTuple().
* Se we cannot produce a wrong minimum by starting with this.
*/
newFrozenXid = GetOldestXmin(true, true);
2006-10-04 02:30:14 +02:00
/*
* We must seqscan pg_class to find the minimum Xid, because there is no
* index that can help us here.
*/
relation = heap_open(RelationRelationId, AccessShareLock);
scan = systable_beginscan(relation, InvalidOid, false,
SnapshotNow, 0, NULL);
while ((classTup = systable_getnext(scan)) != NULL)
{
Form_pg_class classForm = (Form_pg_class) GETSTRUCT(classTup);
/*
* Only consider heap and TOAST tables (anything else should have
* InvalidTransactionId in relfrozenxid anyway.)
*/
if (classForm->relkind != RELKIND_RELATION &&
classForm->relkind != RELKIND_TOASTVALUE)
continue;
Assert(TransactionIdIsNormal(classForm->relfrozenxid));
if (TransactionIdPrecedes(classForm->relfrozenxid, newFrozenXid))
newFrozenXid = classForm->relfrozenxid;
}
/* we're done with pg_class */
systable_endscan(scan);
heap_close(relation, AccessShareLock);
Assert(TransactionIdIsNormal(newFrozenXid));
/* Now fetch the pg_database tuple we need to update. */
relation = heap_open(DatabaseRelationId, RowExclusiveLock);
/* Fetch a copy of the tuple to scribble on */
tuple = SearchSysCacheCopy1(DATABASEOID, ObjectIdGetDatum(MyDatabaseId));
if (!HeapTupleIsValid(tuple))
elog(ERROR, "could not find tuple for database %u", MyDatabaseId);
dbform = (Form_pg_database) GETSTRUCT(tuple);
/*
* Don't allow datfrozenxid to go backward (probably can't happen anyway);
* and detect the common case where it doesn't go forward either.
*/
if (TransactionIdPrecedes(dbform->datfrozenxid, newFrozenXid))
{
dbform->datfrozenxid = newFrozenXid;
dirty = true;
}
if (dirty)
heap_inplace_update(relation, tuple);
heap_freetuple(tuple);
heap_close(relation, RowExclusiveLock);
/*
2010-02-26 03:01:40 +01:00
* If we were able to advance datfrozenxid, see if we can truncate
* pg_clog. Also do it if the shared XID-wrap-limit info is stale, since
* this action will update that too.
*/
if (dirty || ForceTransactionIdLimitUpdate())
vac_truncate_clog(newFrozenXid);
}
/*
* vac_truncate_clog() -- attempt to truncate the commit log
*
* Scan pg_database to determine the system-wide oldest datfrozenxid,
* and use it to truncate the transaction commit log (pg_clog).
* Also update the XID wrap limit info maintained by varsup.c.
*
* The passed XID is simply the one I just wrote into my pg_database
* entry. It's used to initialize the "min" calculation.
*
2010-02-15 17:10:34 +01:00
* This routine is only invoked when we've managed to change our
* DB's datfrozenxid entry, or we found that the shared XID-wrap-limit
* info is stale.
*/
static void
vac_truncate_clog(TransactionId frozenXID)
{
TransactionId myXID = GetCurrentTransactionId();
Relation relation;
HeapScanDesc scan;
HeapTuple tuple;
Oid oldest_datoid;
bool frozenAlreadyWrapped = false;
/* init oldest_datoid to sync with my frozenXID */
oldest_datoid = MyDatabaseId;
/*
* Scan pg_database to compute the minimum datfrozenxid
*
* Note: we need not worry about a race condition with new entries being
* inserted by CREATE DATABASE. Any such entry will have a copy of some
* existing DB's datfrozenxid, and that source DB cannot be ours because
* of the interlock against copying a DB containing an active backend.
2007-11-15 22:14:46 +01:00
* Hence the new entry will not reduce the minimum. Also, if two VACUUMs
* concurrently modify the datfrozenxid's of different databases, the
* worst possible outcome is that pg_clog is not truncated as aggressively
* as it could be.
*/
relation = heap_open(DatabaseRelationId, AccessShareLock);
scan = heap_beginscan(relation, SnapshotNow, 0, NULL);
while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
{
Form_pg_database dbform = (Form_pg_database) GETSTRUCT(tuple);
Assert(TransactionIdIsNormal(dbform->datfrozenxid));
if (TransactionIdPrecedes(myXID, dbform->datfrozenxid))
frozenAlreadyWrapped = true;
else if (TransactionIdPrecedes(dbform->datfrozenxid, frozenXID))
{
frozenXID = dbform->datfrozenxid;
oldest_datoid = HeapTupleGetOid(tuple);
}
}
heap_endscan(scan);
heap_close(relation, AccessShareLock);
/*
2005-10-15 04:49:52 +02:00
* Do not truncate CLOG if we seem to have suffered wraparound already;
* the computed minimum XID might be bogus. This case should now be
* impossible due to the defenses in GetNewTransactionId, but we keep the
* test anyway.
*/
if (frozenAlreadyWrapped)
{
ereport(WARNING,
(errmsg("some databases have not been vacuumed in over 2 billion transactions"),
errdetail("You might have already suffered transaction-wraparound data loss.")));
return;
}
/* Truncate CLOG to the oldest frozenxid */
TruncateCLOG(frozenXID);
/*
* Update the wrap limit for GetNewTransactionId. Note: this function
* will also signal the postmaster for an(other) autovac cycle if needed.
*/
SetTransactionIdLimit(frozenXID, oldest_datoid);
}
/*
* vacuum_rel() -- vacuum one heap relation
*
* Doing one heap at a time incurs extra overhead, since we need to
* check that the heap exists again just before we vacuum it. The
* reason that we do this is so that vacuuming can be spread across
* many small transactions. Otherwise, two-phase locking would require
* us to lock the entire database during one pass of the vacuum cleaner.
*
* We'll return true in *scanned_all if the vacuum scanned all heap
* pages, and updated pg_class.
*
* At entry and exit, we are not inside a transaction.
*/
static bool
vacuum_rel(Oid relid, VacuumStmt *vacstmt, bool do_toast, bool for_wraparound,
bool *scanned_all)
{
LOCKMODE lmode;
Relation onerel;
LockRelId onerelid;
Oid toast_relid;
Oid save_userid;
2009-12-09 22:57:51 +01:00
int save_sec_context;
int save_nestlevel;
if (scanned_all)
*scanned_all = false;
/* Begin a transaction for vacuuming this relation */
StartTransactionCommand();
/*
* Functions in indexes may want a snapshot set. Also, setting a snapshot
* ensures that RecentGlobalXmin is kept truly recent.
*/
PushActiveSnapshot(GetTransactionSnapshot());
if (!(vacstmt->options & VACOPT_FULL))
{
/*
* In lazy vacuum, we can set the PROC_IN_VACUUM flag, which lets
* other concurrent VACUUMs know that they can ignore this one while
2007-11-15 22:14:46 +01:00
* determining their OldestXmin. (The reason we don't set it during a
* full VACUUM is exactly that we may have to run user-defined
2007-11-15 22:14:46 +01:00
* functions for functional indexes, and we want to make sure that if
* they use the snapshot set above, any tuples it requires can't get
* removed from other tables. An index function that depends on the
* contents of other tables is arguably broken, but we won't break it
* here by violating transaction semantics.)
*
* We also set the VACUUM_FOR_WRAPAROUND flag, which is passed down by
* autovacuum; it's used to avoid cancelling a vacuum that was invoked
* in an emergency.
*
* Note: these flags remain set until CommitTransaction or
* AbortTransaction. We don't want to clear them until we reset
* MyProc->xid/xmin, else OldestXmin might appear to go backwards,
* which is probably Not Good.
*/
LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
MyProc->vacuumFlags |= PROC_IN_VACUUM;
if (for_wraparound)
MyProc->vacuumFlags |= PROC_VACUUM_FOR_WRAPAROUND;
LWLockRelease(ProcArrayLock);
}
/*
2000-01-20 21:01:25 +01:00
* Check for user-requested abort. Note we want this to be inside a
* transaction, so xact.c doesn't issue useless WARNING.
*/
CHECK_FOR_INTERRUPTS();
/*
2005-10-15 04:49:52 +02:00
* Determine the type of lock we want --- hard exclusive lock for a FULL
* vacuum, but just ShareUpdateExclusiveLock for concurrent vacuum. Either
* way, we can be sure that no other backend is vacuuming the same table.
*/
lmode = (vacstmt->options & VACOPT_FULL) ? AccessExclusiveLock : ShareUpdateExclusiveLock;
/*
* Open the relation and get the appropriate lock on it.
*
2006-10-04 02:30:14 +02:00
* There's a race condition here: the rel may have gone away since the
* last time we saw it. If so, we don't need to vacuum it.
*
2011-04-10 17:42:00 +02:00
* If we've been asked not to wait for the relation lock, acquire it first
* in non-blocking mode, before calling try_relation_open().
*/
if (!(vacstmt->options & VACOPT_NOWAIT))
onerel = try_relation_open(relid, lmode);
else if (ConditionalLockRelationOid(relid, lmode))
onerel = try_relation_open(relid, NoLock);
else
{
onerel = NULL;
if (IsAutoVacuumWorkerProcess() && Log_autovacuum_min_duration >= 0)
ereport(LOG,
(errcode(ERRCODE_LOCK_NOT_AVAILABLE),
2011-04-10 17:42:00 +02:00
errmsg("skipping vacuum of \"%s\" --- lock not available",
vacstmt->relation->relname)));
}
if (!onerel)
{
PopActiveSnapshot();
CommitTransactionCommand();
return false;
}
/*
* Check permissions.
*
* We allow the user to vacuum a table if he is superuser, the table
* owner, or the database owner (but in the latter case, only if it's not
* a shared relation). pg_class_ownercheck includes the superuser case.
*
* Note we choose to treat permissions failure as a WARNING and keep
* trying to vacuum the rest of the DB --- is this appropriate?
*/
if (!(pg_class_ownercheck(RelationGetRelid(onerel), GetUserId()) ||
2003-06-27 16:45:32 +02:00
(pg_database_ownercheck(MyDatabaseId, GetUserId()) && !onerel->rd_rel->relisshared)))
{
if (onerel->rd_rel->relisshared)
ereport(WARNING,
(errmsg("skipping \"%s\" --- only superuser can vacuum it",
RelationGetRelationName(onerel))));
else if (onerel->rd_rel->relnamespace == PG_CATALOG_NAMESPACE)
ereport(WARNING,
(errmsg("skipping \"%s\" --- only superuser or database owner can vacuum it",
RelationGetRelationName(onerel))));
else
ereport(WARNING,
(errmsg("skipping \"%s\" --- only table or database owner can vacuum it",
RelationGetRelationName(onerel))));
relation_close(onerel, lmode);
PopActiveSnapshot();
CommitTransactionCommand();
return false;
}
/*
* Check that it's a vacuumable table; we used to do this in
* get_rel_oids() but seems safer to check after we've locked the
* relation.
*/
if (onerel->rd_rel->relkind != RELKIND_RELATION &&
onerel->rd_rel->relkind != RELKIND_TOASTVALUE)
{
ereport(WARNING,
2011-01-02 13:26:10 +01:00
(errmsg("skipping \"%s\" --- cannot vacuum non-tables or special system tables",
RelationGetRelationName(onerel))));
relation_close(onerel, lmode);
PopActiveSnapshot();
CommitTransactionCommand();
return false;
}
/*
* Silently ignore tables that are temp tables of other backends ---
* trying to vacuum these will lead to great unhappiness, since their
* contents are probably not up-to-date on disk. (We don't throw a
* warning here; it would just lead to chatter during a database-wide
* VACUUM.)
*/
if (RELATION_IS_OTHER_TEMP(onerel))
{
relation_close(onerel, lmode);
PopActiveSnapshot();
CommitTransactionCommand();
return false;
}
/*
* Get a session-level lock too. This will protect our access to the
* relation across multiple transactions, so that we can vacuum the
2005-10-15 04:49:52 +02:00
* relation's TOAST table (if any) secure in the knowledge that no one is
* deleting the parent relation.
*
* NOTE: this cannot block, even if someone else is waiting for access,
* because the lock manager knows that both lock requests are from the
* same process.
*/
onerelid = onerel->rd_lockInfo.lockRelId;
LockRelationIdForSession(&onerelid, lmode);
/*
* Remember the relation's TOAST relation for later, if the caller asked
* us to process it. In VACUUM FULL, though, the toast table is
* automatically rebuilt by cluster_rel so we shouldn't recurse to it.
*/
if (do_toast && !(vacstmt->options & VACOPT_FULL))
toast_relid = onerel->rd_rel->reltoastrelid;
else
toast_relid = InvalidOid;
/*
* Switch to the table owner's userid, so that any index functions are run
2009-12-09 22:57:51 +01:00
* as that user. Also lock down security-restricted operations and
2010-02-26 03:01:40 +01:00
* arrange to make GUC variable changes local to this command. (This is
* unnecessary, but harmless, for lazy VACUUM.)
*/
2009-12-09 22:57:51 +01:00
GetUserIdAndSecContext(&save_userid, &save_sec_context);
SetUserIdAndSecContext(onerel->rd_rel->relowner,
save_sec_context | SECURITY_RESTRICTED_OPERATION);
save_nestlevel = NewGUCNestLevel();
/*
* Do the actual work --- either FULL or "lazy" vacuum
*/
if (vacstmt->options & VACOPT_FULL)
{
/* close relation before vacuuming, but hold lock until commit */
relation_close(onerel, NoLock);
onerel = NULL;
/* VACUUM FULL is now a variant of CLUSTER; see cluster.c */
cluster_rel(relid, InvalidOid, false,
(vacstmt->options & VACOPT_VERBOSE) != 0,
vacstmt->freeze_min_age, vacstmt->freeze_table_age);
}
else
lazy_vacuum_rel(onerel, vacstmt, vac_strategy, scanned_all);
2009-12-09 22:57:51 +01:00
/* Roll back any GUC changes executed by index functions */
AtEOXact_GUC(false, save_nestlevel);
/* Restore userid and security context */
SetUserIdAndSecContext(save_userid, save_sec_context);
/* all done with this class, but hold lock until commit */
if (onerel)
relation_close(onerel, NoLock);
/*
* Complete the transaction and free all temporary memory used.
*/
PopActiveSnapshot();
CommitTransactionCommand();
/*
* If the relation has a secondary toast rel, vacuum that too while we
* still hold the session lock on the master table. Note however that
2005-10-15 04:49:52 +02:00
* "analyze" will not get done on the toast table. This is good, because
* the toaster always uses hardcoded index access and statistics are
* totally unimportant for toast relations.
*/
if (toast_relid != InvalidOid)
vacuum_rel(toast_relid, vacstmt, false, for_wraparound, NULL);
/*
* Now release the session-level lock on the master table.
*/
UnlockRelationIdForSession(&onerelid, lmode);
/* Report that we really did it. */
return true;
}
/*
* Open all the indexes of the given relation, obtaining the specified kind
* of lock on each. Return an array of Relation pointers for the indexes
* into *Irel, and the number of indexes into *nindexes.
*/
void
vac_open_indexes(Relation relation, LOCKMODE lockmode,
int *nindexes, Relation **Irel)
{
List *indexoidlist;
ListCell *indexoidscan;
int i;
Assert(lockmode != NoLock);
indexoidlist = RelationGetIndexList(relation);
*nindexes = list_length(indexoidlist);
if (*nindexes > 0)
*Irel = (Relation *) palloc(*nindexes * sizeof(Relation));
else
*Irel = NULL;
i = 0;
foreach(indexoidscan, indexoidlist)
{
Oid indexoid = lfirst_oid(indexoidscan);
(*Irel)[i++] = index_open(indexoid, lockmode);
}
list_free(indexoidlist);
2000-05-29 03:46:00 +02:00
}
1996-11-27 08:27:20 +01:00
/*
* Release the resources acquired by vac_open_indexes. Optionally release
* the locks (say NoLock to keep 'em).
*/
void
vac_close_indexes(int nindexes, Relation *Irel, LOCKMODE lockmode)
{
if (Irel == NULL)
return;
while (nindexes--)
1996-11-27 08:27:20 +01:00
{
Relation ind = Irel[nindexes];
index_close(ind, lockmode);
}
pfree(Irel);
2000-05-29 03:46:00 +02:00
}
1996-11-27 08:27:20 +01:00
/*
* vacuum_delay_point --- check for interrupts and cost-based delay.
*
* This should be called in each major loop of VACUUM processing,
* typically once per page processed.
*/
void
vacuum_delay_point(void)
{
/* Always check for interrupts */
CHECK_FOR_INTERRUPTS();
/* Nap if appropriate */
if (VacuumCostActive && !InterruptPending &&
VacuumCostBalance >= VacuumCostLimit)
{
2004-08-29 07:07:03 +02:00
int msec;
msec = VacuumCostDelay * VacuumCostBalance / VacuumCostLimit;
if (msec > VacuumCostDelay * 4)
msec = VacuumCostDelay * 4;
pg_usleep(msec * 1000L);
VacuumCostBalance = 0;
/* update balance values for workers */
AutoVacuumUpdateDelay();
/* Might have gotten an interrupt while sleeping */
CHECK_FOR_INTERRUPTS();
}
}