postgresql/src/backend/optimizer/path/allpaths.c

425 lines
9.6 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* allpaths.c--
* Routines to find possible search paths for processing a query
*
* Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/allpaths.c,v 1.25 1999/02/03 20:15:28 momjian Exp $
*
*-------------------------------------------------------------------------
*/
#include <string.h>
1996-11-06 10:29:26 +01:00
#include <stdio.h>
#include "postgres.h"
#include "nodes/pg_list.h"
#include "nodes/relation.h"
#include "nodes/primnodes.h"
#include "optimizer/internal.h"
#include "optimizer/paths.h"
#include "optimizer/pathnode.h"
#include "optimizer/clauses.h"
#include "optimizer/xfunc.h"
#include "optimizer/cost.h"
#include "commands/creatinh.h"
#include "optimizer/geqo_gene.h"
#include "optimizer/geqo.h"
#ifdef GEQO
bool _use_geqo_ = true;
#else
bool _use_geqo_ = false;
#endif
int32 _use_geqo_rels_ = GEQO_RELS;
static void find_rel_paths(Query *root, List *rels);
static List *find_join_paths(Query *root, List *outer_rels, int levels_needed);
#ifdef OPTIMIZER_DEBUG
static void debug_print_rel(Query *root, RelOptInfo * rel);
#endif
/*
* find-paths--
* Finds all possible access paths for executing a query, returning the
* top level list of relation entries.
*
* 'rels' is the list of single relation entries appearing in the query
*/
List *
find_paths(Query *root, List *rels)
{
int levels_needed;
/*
* Set the number of join (not nesting) levels yet to be processed.
*/
levels_needed = length(rels);
if (levels_needed <= 0)
return NIL;
/*
* Find the base relation paths.
*/
find_rel_paths(root, rels);
if (levels_needed <= 1)
{
/*
* Unsorted single relation, no more processing is required.
*/
return rels;
}
else
{
/*
* this means that joins or sorts are required. set selectivities
* of clauses that have not been set by an index.
*/
set_rest_relselec(root, rels);
return find_join_paths(root, rels, levels_needed);
}
}
/*
* find-rel-paths--
* Finds all paths available for scanning each relation entry in
* 'rels'. Sequential scan and any available indices are considered
* if possible(indices are not considered for lower nesting levels).
* All unique paths are attached to the relation's 'pathlist' field.
*
* MODIFIES: rels
*/
static void
find_rel_paths(Query *root, List *rels)
{
List *temp;
List *lastpath;
foreach(temp, rels)
{
List *sequential_scan_list;
List *rel_index_scan_list;
List *or_index_scan_list;
1998-08-04 02:42:14 +02:00
RelOptInfo *rel = (RelOptInfo *) lfirst(temp);
sequential_scan_list = lcons(create_seqscan_path(rel), NIL);
1998-08-10 06:49:39 +02:00
rel_index_scan_list = find_index_paths(root,
rel,
find_relation_indices(root, rel),
rel->restrictinfo,
rel->joininfo);
or_index_scan_list = create_or_index_paths(root, rel, rel->restrictinfo);
rel->pathlist = add_pathlist(rel,
sequential_scan_list,
append(rel_index_scan_list,
or_index_scan_list));
/*
* The unordered path is always the last in the list. If it is not
* the cheapest path, prune it.
*/
lastpath = rel->pathlist;
while (lnext(lastpath) != NIL)
lastpath = lnext(lastpath);
prune_rel_path(rel, (Path *) lfirst(lastpath));
/*
* if there is a qualification of sequential scan the selec. value
* is not set -- so set it explicitly -- Sunita
*/
set_rest_selec(root, rel->restrictinfo);
rel->size = compute_rel_size(rel);
rel->width = compute_rel_width(rel);
}
return;
}
/*
* find-join-paths--
* Find all possible joinpaths for a query by successively finding ways
* to join single relations into join relations.
*
* if BushyPlanFlag is set, bushy tree plans will be generated:
* Find all possible joinpaths(bushy trees) for a query by systematically
* finding ways to join relations(both original and derived) together.
*
* 'outer-rels' is the current list of relations for which join paths
* are to be found, i.e., he current list of relations that
* have already been derived.
* 'levels-needed' is the number of iterations needed
*
* Returns the final level of join relations, i.e., the relation that is
* the result of joining all the original relations together.
*/
static List *
find_join_paths(Query *root, List *outer_rels, int levels_needed)
{
List *x;
List *new_rels = NIL;
1998-08-07 07:02:32 +02:00
RelOptInfo *rel;
/*******************************************
* genetic query optimizer entry point *
* <utesch@aut.tu-freiberg.de> *
*******************************************/
{
List *temp;
int paths_to_consider = 0;
foreach(temp, outer_rels)
{
RelOptInfo *rel = (RelOptInfo *) lfirst(temp);
paths_to_consider += length(rel->pathlist);
}
if ((_use_geqo_) && paths_to_consider >= _use_geqo_rels_)
/* returns _one_ RelOptInfo, so lcons it */
return lcons(geqo(root), NIL);
}
/*******************************************
* rest will be deprecated in case of GEQO *
*******************************************/
while (--levels_needed)
{
/*
* Determine all possible pairs of relations to be joined at this
* level. Determine paths for joining these relation pairs and
* modify 'new-rels' accordingly, then eliminate redundant join
* relations.
*/
new_rels = find_join_rels(root, outer_rels);
find_all_join_paths(root, new_rels);
prune_joinrels(new_rels);
#if 0
/*
* * for each expensive predicate in each path in each distinct
* rel, * consider doing pullup -- JMH
*/
if (XfuncMode != XFUNC_NOPULL && XfuncMode != XFUNC_OFF)
foreach(x, new_rels)
1998-07-18 06:22:52 +02:00
xfunc_trypullup((RelOptInfo *) lfirst(x));
#endif
prune_rel_paths(new_rels);
if (BushyPlanFlag)
{
/*
* In case of bushy trees if there is still a join between a
* join relation and another relation, add a new joininfo that
* involves the join relation to the joininfo list of the
* other relation
*/
add_new_joininfos(root, new_rels, outer_rels);
}
foreach(x, new_rels)
{
1998-07-18 06:22:52 +02:00
rel = (RelOptInfo *) lfirst(x);
if (rel->size <= 0)
rel->size = compute_rel_size(rel);
rel->width = compute_rel_width(rel);
/* #define OPTIMIZER_DEBUG */
#ifdef OPTIMIZER_DEBUG
1998-08-07 07:02:32 +02:00
printf("levels left: %d\n", levels_needed);
debug_print_rel(root, rel);
#endif
}
if (BushyPlanFlag)
{
/*
* prune rels that have been completely incorporated into new
* join rels
*/
outer_rels = prune_oldrels(outer_rels);
/*
* merge join rels if then contain the same list of base rels
*/
outer_rels = merge_joinrels(new_rels, outer_rels);
root->join_rel_list = outer_rels;
}
else
root->join_rel_list = new_rels;
if (!BushyPlanFlag)
outer_rels = new_rels;
}
if (BushyPlanFlag)
return final_join_rels(outer_rels);
else
return new_rels;
}
/*****************************************************************************
*
*****************************************************************************/
#ifdef OPTIMIZER_DEBUG
static void
print_joinclauses(Query *root, List *clauses)
{
List *l;
extern void print_expr(Node *expr, List *rtable); /* in print.c */
foreach(l, clauses)
{
RestrictInfo *c = lfirst(l);
print_expr((Node *) c->clause, root->rtable);
if (lnext(l))
printf(" ");
}
}
static void
print_path(Query *root, Path *path, int indent)
{
char *ptype = NULL;
JoinPath *jp;
bool join = false;
int i;
for (i = 0; i < indent; i++)
printf("\t");
switch (nodeTag(path))
{
case T_Path:
ptype = "SeqScan";
join = false;
break;
case T_IndexPath:
ptype = "IdxScan";
join = false;
break;
case T_JoinPath:
ptype = "Nestloop";
join = true;
break;
case T_MergePath:
ptype = "MergeJoin";
join = true;
break;
case T_HashPath:
ptype = "HashJoin";
join = true;
break;
default:
break;
}
if (join)
{
int size = path->parent->size;
jp = (JoinPath *) path;
printf("%s size=%d cost=%f\n", ptype, size, path->path_cost);
switch (nodeTag(path))
{
case T_MergePath:
case T_HashPath:
for (i = 0; i < indent + 1; i++)
printf("\t");
printf(" clauses=(");
print_joinclauses(root, ((JoinPath *) path)->pathinfo);
printf(")\n");
if (nodeTag(path) == T_MergePath)
{
MergePath *mp = (MergePath *) path;
if (mp->outersortkeys || mp->innersortkeys)
{
for (i = 0; i < indent + 1; i++)
printf("\t");
printf(" sortouter=%d sortinner=%d\n",
((mp->outersortkeys) ? 1 : 0),
((mp->innersortkeys) ? 1 : 0));
}
}
break;
default:
break;
}
print_path(root, jp->outerjoinpath, indent + 1);
print_path(root, jp->innerjoinpath, indent + 1);
}
else
{
int size = path->parent->size;
int relid = lfirsti(path->parent->relids);
printf("%s(%d) size=%d cost=%f",
ptype, relid, size, path->path_cost);
if (nodeTag(path) == T_IndexPath)
{
List *k,
*l;
printf(" keys=");
foreach(k, path->keys)
{
printf("(");
foreach(l, lfirst(k))
{
Var *var = lfirst(l);
printf("%d.%d", var->varnoold, var->varoattno);
if (lnext(l))
printf(", ");
}
printf(")");
if (lnext(k))
printf(", ");
}
}
printf("\n");
}
}
static void
debug_print_rel(Query *root, RelOptInfo * rel)
{
List *l;
printf("(");
foreach(l, rel->relids)
printf("%d ", lfirsti(l));
printf("): size=%d width=%d\n", rel->size, rel->width);
printf("\tpath list:\n");
foreach(l, rel->pathlist)
print_path(root, lfirst(l), 1);
printf("\tcheapest path:\n");
print_path(root, rel->cheapestpath, 1);
}
#endif /* OPTIMIZER_DEBUG */