postgresql/src/backend/statistics/mvdistinct.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

700 lines
18 KiB
C
Raw Normal View History

Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
/*-------------------------------------------------------------------------
*
* mvdistinct.c
* POSTGRES multivariate ndistinct coefficients
*
* Estimating number of groups in a combination of columns (e.g. for GROUP BY)
* is tricky, and the estimation error is often significant.
* The multivariate ndistinct coefficients address this by storing ndistinct
* estimates for combinations of the user-specified columns. So for example
* given a statistics object on three columns (a,b,c), this module estimates
* and stores n-distinct for (a,b), (a,c), (b,c) and (a,b,c). The per-column
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
* estimates are already available in pg_statistic.
*
*
* Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/statistics/mvdistinct.c
*
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <math.h>
#include "access/htup_details.h"
#include "catalog/pg_statistic_ext.h"
#include "catalog/pg_statistic_ext_data.h"
#include "lib/stringinfo.h"
#include "statistics/extended_stats_internal.h"
#include "statistics/statistics.h"
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
#include "utils/fmgrprotos.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
#include "utils/typcache.h"
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
static double ndistinct_for_combination(double totalrows, StatsBuildData *data,
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
int k, int *combination);
static double estimate_ndistinct(double totalrows, int numrows, int d, int f1);
static int n_choose_k(int n, int k);
static int num_combinations(int n);
/* size of the struct header fields (magic, type, nitems) */
#define SizeOfHeader (3 * sizeof(uint32))
/* size of a serialized ndistinct item (coefficient, natts, atts) */
#define SizeOfItem(natts) \
(sizeof(double) + sizeof(int) + (natts) * sizeof(AttrNumber))
/* minimal size of a ndistinct item (with two attributes) */
#define MinSizeOfItem SizeOfItem(2)
/* minimal size of mvndistinct, when all items are minimal */
#define MinSizeOfItems(nitems) \
(SizeOfHeader + (nitems) * MinSizeOfItem)
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
/* Combination generator API */
/* internal state for generator of k-combinations of n elements */
typedef struct CombinationGenerator
{
int k; /* size of the combination */
int n; /* total number of elements */
int current; /* index of the next combination to return */
int ncombinations; /* number of combinations (size of array) */
int *combinations; /* array of pre-built combinations */
} CombinationGenerator;
static CombinationGenerator *generator_init(int n, int k);
static void generator_free(CombinationGenerator *state);
static int *generator_next(CombinationGenerator *state);
static void generate_combinations(CombinationGenerator *state);
/*
* statext_ndistinct_build
* Compute ndistinct coefficient for the combination of attributes.
*
* This computes the ndistinct estimate using the same estimator used
* in analyze.c and then computes the coefficient.
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
*
* To handle expressions easily, we treat them as system attributes with
* negative attnums, and offset everything by number of expressions to
* allow using Bitmapsets.
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
*/
MVNDistinct *
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
statext_ndistinct_build(double totalrows, StatsBuildData *data)
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
{
MVNDistinct *result;
int k;
int itemcnt;
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
int numattrs = data->nattnums;
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
int numcombs = num_combinations(numattrs);
result = palloc(offsetof(MVNDistinct, items) +
numcombs * sizeof(MVNDistinctItem));
result->magic = STATS_NDISTINCT_MAGIC;
result->type = STATS_NDISTINCT_TYPE_BASIC;
result->nitems = numcombs;
itemcnt = 0;
for (k = 2; k <= numattrs; k++)
{
int *combination;
CombinationGenerator *generator;
/* generate combinations of K out of N elements */
generator = generator_init(numattrs, k);
while ((combination = generator_next(generator)))
{
MVNDistinctItem *item = &result->items[itemcnt];
int j;
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
item->attributes = palloc(sizeof(AttrNumber) * k);
item->nattributes = k;
/* translate the indexes to attnums */
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
for (j = 0; j < k; j++)
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
{
item->attributes[j] = data->attnums[combination[j]];
Assert(AttributeNumberIsValid(item->attributes[j]));
}
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
item->ndistinct =
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
ndistinct_for_combination(totalrows, data, k, combination);
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
itemcnt++;
Assert(itemcnt <= result->nitems);
}
generator_free(generator);
}
/* must consume exactly the whole output array */
Assert(itemcnt == result->nitems);
return result;
}
/*
* statext_ndistinct_load
* Load the ndistinct value for the indicated pg_statistic_ext tuple
*/
MVNDistinct *
statext_ndistinct_load(Oid mvoid)
{
MVNDistinct *result;
bool isnull;
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
Datum ndist;
HeapTuple htup;
htup = SearchSysCache1(STATEXTDATASTXOID, ObjectIdGetDatum(mvoid));
if (!HeapTupleIsValid(htup))
elog(ERROR, "cache lookup failed for statistics object %u", mvoid);
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
ndist = SysCacheGetAttr(STATEXTDATASTXOID, htup,
Anum_pg_statistic_ext_data_stxdndistinct, &isnull);
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
if (isnull)
elog(ERROR,
"requested statistics kind \"%c\" is not yet built for statistics object %u",
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
STATS_EXT_NDISTINCT, mvoid);
result = statext_ndistinct_deserialize(DatumGetByteaPP(ndist));
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
ReleaseSysCache(htup);
return result;
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
}
/*
* statext_ndistinct_serialize
* serialize ndistinct to the on-disk bytea format
*/
bytea *
statext_ndistinct_serialize(MVNDistinct *ndistinct)
{
int i;
bytea *output;
char *tmp;
Size len;
Assert(ndistinct->magic == STATS_NDISTINCT_MAGIC);
Assert(ndistinct->type == STATS_NDISTINCT_TYPE_BASIC);
/*
* Base size is size of scalar fields in the struct, plus one base struct
* for each item, including number of items for each.
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
*/
len = VARHDRSZ + SizeOfHeader;
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
/* and also include space for the actual attribute numbers */
for (i = 0; i < ndistinct->nitems; i++)
{
int nmembers;
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
nmembers = ndistinct->items[i].nattributes;
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
Assert(nmembers >= 2);
len += SizeOfItem(nmembers);
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
}
output = (bytea *) palloc(len);
SET_VARSIZE(output, len);
tmp = VARDATA(output);
/* Store the base struct values (magic, type, nitems) */
memcpy(tmp, &ndistinct->magic, sizeof(uint32));
tmp += sizeof(uint32);
memcpy(tmp, &ndistinct->type, sizeof(uint32));
tmp += sizeof(uint32);
memcpy(tmp, &ndistinct->nitems, sizeof(uint32));
tmp += sizeof(uint32);
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
/*
* store number of attributes and attribute numbers for each entry
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
*/
for (i = 0; i < ndistinct->nitems; i++)
{
MVNDistinctItem item = ndistinct->items[i];
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
int nmembers = item.nattributes;
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
memcpy(tmp, &item.ndistinct, sizeof(double));
tmp += sizeof(double);
memcpy(tmp, &nmembers, sizeof(int));
tmp += sizeof(int);
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
memcpy(tmp, item.attributes, sizeof(AttrNumber) * nmembers);
tmp += nmembers * sizeof(AttrNumber);
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
/* protect against overflows */
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
Assert(tmp <= ((char *) output + len));
}
/* check we used exactly the expected space */
Assert(tmp == ((char *) output + len));
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
return output;
}
/*
* statext_ndistinct_deserialize
* Read an on-disk bytea format MVNDistinct to in-memory format
*/
MVNDistinct *
statext_ndistinct_deserialize(bytea *data)
{
int i;
Size minimum_size;
MVNDistinct ndist;
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
MVNDistinct *ndistinct;
char *tmp;
if (data == NULL)
return NULL;
/* we expect at least the basic fields of MVNDistinct struct */
if (VARSIZE_ANY_EXHDR(data) < SizeOfHeader)
elog(ERROR, "invalid MVNDistinct size %zd (expected at least %zd)",
VARSIZE_ANY_EXHDR(data), SizeOfHeader);
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
/* initialize pointer to the data part (skip the varlena header) */
tmp = VARDATA_ANY(data);
/* read the header fields and perform basic sanity checks */
memcpy(&ndist.magic, tmp, sizeof(uint32));
tmp += sizeof(uint32);
memcpy(&ndist.type, tmp, sizeof(uint32));
tmp += sizeof(uint32);
memcpy(&ndist.nitems, tmp, sizeof(uint32));
tmp += sizeof(uint32);
if (ndist.magic != STATS_NDISTINCT_MAGIC)
elog(ERROR, "invalid ndistinct magic %08x (expected %08x)",
ndist.magic, STATS_NDISTINCT_MAGIC);
if (ndist.type != STATS_NDISTINCT_TYPE_BASIC)
elog(ERROR, "invalid ndistinct type %d (expected %d)",
ndist.type, STATS_NDISTINCT_TYPE_BASIC);
if (ndist.nitems == 0)
elog(ERROR, "invalid zero-length item array in MVNDistinct");
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
/* what minimum bytea size do we expect for those parameters */
minimum_size = MinSizeOfItems(ndist.nitems);
if (VARSIZE_ANY_EXHDR(data) < minimum_size)
elog(ERROR, "invalid MVNDistinct size %zd (expected at least %zd)",
VARSIZE_ANY_EXHDR(data), minimum_size);
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
/*
* Allocate space for the ndistinct items (no space for each item's
* attnos: those live in bitmapsets allocated separately)
*/
ndistinct = palloc0(MAXALIGN(offsetof(MVNDistinct, items)) +
(ndist.nitems * sizeof(MVNDistinctItem)));
ndistinct->magic = ndist.magic;
ndistinct->type = ndist.type;
ndistinct->nitems = ndist.nitems;
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
for (i = 0; i < ndistinct->nitems; i++)
{
MVNDistinctItem *item = &ndistinct->items[i];
/* ndistinct value */
memcpy(&item->ndistinct, tmp, sizeof(double));
tmp += sizeof(double);
/* number of attributes */
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
memcpy(&item->nattributes, tmp, sizeof(int));
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
tmp += sizeof(int);
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
Assert((item->nattributes >= 2) && (item->nattributes <= STATS_MAX_DIMENSIONS));
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
item->attributes
= (AttrNumber *) palloc(item->nattributes * sizeof(AttrNumber));
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
memcpy(item->attributes, tmp, sizeof(AttrNumber) * item->nattributes);
tmp += sizeof(AttrNumber) * item->nattributes;
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
/* still within the bytea */
Assert(tmp <= ((char *) data + VARSIZE_ANY(data)));
}
/* we should have consumed the whole bytea exactly */
Assert(tmp == ((char *) data + VARSIZE_ANY(data)));
return ndistinct;
}
/*
* pg_ndistinct_in
* input routine for type pg_ndistinct
*
* pg_ndistinct is real enough to be a table column, but it has no
* operations of its own, and disallows input (just like pg_node_tree).
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
*/
Datum
pg_ndistinct_in(PG_FUNCTION_ARGS)
{
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot accept a value of type %s", "pg_ndistinct")));
PG_RETURN_VOID(); /* keep compiler quiet */
}
/*
* pg_ndistinct
* output routine for type pg_ndistinct
*
* Produces a human-readable representation of the value.
*/
Datum
pg_ndistinct_out(PG_FUNCTION_ARGS)
{
bytea *data = PG_GETARG_BYTEA_PP(0);
MVNDistinct *ndist = statext_ndistinct_deserialize(data);
int i;
StringInfoData str;
initStringInfo(&str);
appendStringInfoChar(&str, '{');
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
for (i = 0; i < ndist->nitems; i++)
{
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
int j;
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
MVNDistinctItem item = ndist->items[i];
if (i > 0)
appendStringInfoString(&str, ", ");
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
for (j = 0; j < item.nattributes; j++)
{
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
AttrNumber attnum = item.attributes[j];
appendStringInfo(&str, "%s%d", (j == 0) ? "\"" : ", ", attnum);
}
appendStringInfo(&str, "\": %d", (int) item.ndistinct);
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
}
appendStringInfoChar(&str, '}');
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
PG_RETURN_CSTRING(str.data);
}
/*
* pg_ndistinct_recv
* binary input routine for type pg_ndistinct
*/
Datum
pg_ndistinct_recv(PG_FUNCTION_ARGS)
{
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot accept a value of type %s", "pg_ndistinct")));
PG_RETURN_VOID(); /* keep compiler quiet */
}
/*
* pg_ndistinct_send
* binary output routine for type pg_ndistinct
*
* n-distinct is serialized into a bytea value, so let's send that.
*/
Datum
pg_ndistinct_send(PG_FUNCTION_ARGS)
{
return byteasend(fcinfo);
}
/*
* ndistinct_for_combination
* Estimates number of distinct values in a combination of columns.
*
* This uses the same ndistinct estimator as compute_scalar_stats() in
* ANALYZE, i.e.,
* n*d / (n - f1 + f1*n/N)
*
* except that instead of values in a single column we are dealing with
* combination of multiple columns.
*/
static double
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
ndistinct_for_combination(double totalrows, StatsBuildData *data,
int k, int *combination)
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
{
int i,
j;
int f1,
cnt,
d;
bool *isnull;
Datum *values;
SortItem *items;
MultiSortSupport mss;
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
int numrows = data->numrows;
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
mss = multi_sort_init(k);
/*
* In order to determine the number of distinct elements, create separate
* values[]/isnull[] arrays with all the data we have, then sort them
* using the specified column combination as dimensions. We could try to
* sort in place, but it'd probably be more complex and bug-prone.
*/
items = (SortItem *) palloc(numrows * sizeof(SortItem));
values = (Datum *) palloc0(sizeof(Datum) * numrows * k);
isnull = (bool *) palloc0(sizeof(bool) * numrows * k);
for (i = 0; i < numrows; i++)
{
items[i].values = &values[i * k];
items[i].isnull = &isnull[i * k];
}
/*
* For each dimension, set up sort-support and fill in the values from the
* sample data.
Make pg_statistic and related code account more honestly for collations. When we first put in collations support, we basically punted on teaching pg_statistic, ANALYZE, and the planner selectivity functions about that. They've just used DEFAULT_COLLATION_OID independently of the actual collation of the data. It's time to improve that, so: * Add columns to pg_statistic that record the specific collation associated with each statistics slot. * Teach ANALYZE to use the column's actual collation when comparing values for statistical purposes, and record this in the appropriate slot. (Note that type-specific typanalyze functions are now expected to fill stats->stacoll with the appropriate collation, too.) * Teach assorted selectivity functions to use the actual collation of the stats they are looking at, instead of just assuming it's DEFAULT_COLLATION_OID. This should give noticeably better results in selectivity estimates for columns with nondefault collations, at least for query clauses that use that same collation (which would be the default behavior in most cases). It's still true that comparisons with explicit COLLATE clauses different from the stored data's collation won't be well-estimated, but that's no worse than before. Also, this patch does make the first step towards doing better with that, which is that it's now theoretically possible to collect stats for a collation other than the column's own collation. Patch by me; thanks to Peter Eisentraut for review. Discussion: https://postgr.es/m/14706.1544630227@sss.pgh.pa.us
2018-12-14 18:52:49 +01:00
*
* We use the column data types' default sort operators and collations;
* perhaps at some point it'd be worth using column-specific collations?
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
*/
for (i = 0; i < k; i++)
{
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
Oid typid;
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
TypeCacheEntry *type;
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
Oid collid = InvalidOid;
VacAttrStats *colstat = data->stats[combination[i]];
typid = colstat->attrtypid;
collid = colstat->attrcollid;
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
type = lookup_type_cache(typid, TYPECACHE_LT_OPR);
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
if (type->lt_opr == InvalidOid) /* shouldn't happen */
elog(ERROR, "cache lookup failed for ordering operator for type %u",
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
typid);
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
/* prepare the sort function for this dimension */
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
multi_sort_add_dimension(mss, i, type->lt_opr, collid);
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
/* accumulate all the data for this dimension into the arrays */
for (j = 0; j < numrows; j++)
{
Extended statistics on expressions Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-26 23:22:01 +01:00
items[j].values[i] = data->values[combination[i]][j];
items[j].isnull[i] = data->nulls[combination[i]][j];
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
}
}
/* We can sort the array now ... */
qsort_interruptible((void *) items, numrows, sizeof(SortItem),
multi_sort_compare, mss);
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
/* ... and count the number of distinct combinations */
f1 = 0;
cnt = 1;
d = 1;
for (i = 1; i < numrows; i++)
{
if (multi_sort_compare(&items[i], &items[i - 1], mss) != 0)
{
if (cnt == 1)
f1 += 1;
d++;
cnt = 0;
}
cnt += 1;
}
if (cnt == 1)
f1 += 1;
return estimate_ndistinct(totalrows, numrows, d, f1);
}
/* The Duj1 estimator (already used in analyze.c). */
static double
estimate_ndistinct(double totalrows, int numrows, int d, int f1)
{
double numer,
denom,
ndistinct;
numer = (double) numrows * (double) d;
denom = (double) (numrows - f1) +
(double) f1 * (double) numrows / totalrows;
ndistinct = numer / denom;
/* Clamp to sane range in case of roundoff error */
if (ndistinct < (double) d)
ndistinct = (double) d;
if (ndistinct > totalrows)
ndistinct = totalrows;
return floor(ndistinct + 0.5);
}
/*
* n_choose_k
* computes binomial coefficients using an algorithm that is both
* efficient and prevents overflows
*/
static int
n_choose_k(int n, int k)
{
int d,
r;
Assert((k > 0) && (n >= k));
/* use symmetry of the binomial coefficients */
k = Min(k, n - k);
r = 1;
for (d = 1; d <= k; ++d)
{
r *= n--;
r /= d;
}
return r;
}
/*
* num_combinations
* number of combinations, excluding single-value combinations
*/
static int
num_combinations(int n)
{
return (1 << n) - (n + 1);
Implement multivariate n-distinct coefficients Add support for explicitly declared statistic objects (CREATE STATISTICS), allowing collection of statistics on more complex combinations that individual table columns. Companion commands DROP STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are added too. All this DDL has been designed so that more statistic types can be added later on, such as multivariate most-common-values and multivariate histograms between columns of a single table, leaving room for permitting columns on multiple tables, too, as well as expressions. This commit only adds support for collection of n-distinct coefficient on user-specified sets of columns in a single table. This is useful to estimate number of distinct groups in GROUP BY and DISTINCT clauses; estimation errors there can cause over-allocation of memory in hashed aggregates, for instance, so it's a worthwhile problem to solve. A new special pseudo-type pg_ndistinct is used. (num-distinct estimation was deemed sufficiently useful by itself that this is worthwhile even if no further statistic types are added immediately; so much so that another version of essentially the same functionality was submitted by Kyotaro Horiguchi: https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp though this commit does not use that code.) Author: Tomas Vondra. Some code rework by Álvaro. Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes, Ideriha Takeshi Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.cz https://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
2017-03-24 18:06:10 +01:00
}
/*
* generator_init
* initialize the generator of combinations
*
* The generator produces combinations of K elements in the interval (0..N).
* We prebuild all the combinations in this method, which is simpler than
* generating them on the fly.
*/
static CombinationGenerator *
generator_init(int n, int k)
{
CombinationGenerator *state;
Assert((n >= k) && (k > 0));
/* allocate the generator state as a single chunk of memory */
state = (CombinationGenerator *) palloc(sizeof(CombinationGenerator));
state->ncombinations = n_choose_k(n, k);
/* pre-allocate space for all combinations */
state->combinations = (int *) palloc(sizeof(int) * k * state->ncombinations);
state->current = 0;
state->k = k;
state->n = n;
/* now actually pre-generate all the combinations of K elements */
generate_combinations(state);
/* make sure we got the expected number of combinations */
Assert(state->current == state->ncombinations);
/* reset the number, so we start with the first one */
state->current = 0;
return state;
}
/*
* generator_next
* returns the next combination from the prebuilt list
*
* Returns a combination of K array indexes (0 .. N), as specified to
* generator_init), or NULL when there are no more combination.
*/
static int *
generator_next(CombinationGenerator *state)
{
if (state->current == state->ncombinations)
return NULL;
return &state->combinations[state->k * state->current++];
}
/*
* generator_free
* free the internal state of the generator
*
* Releases the generator internal state (pre-built combinations).
*/
static void
generator_free(CombinationGenerator *state)
{
pfree(state->combinations);
pfree(state);
}
/*
* generate_combinations_recurse
* given a prefix, generate all possible combinations
*
* Given a prefix (first few elements of the combination), generate following
* elements recursively. We generate the combinations in lexicographic order,
* which eliminates permutations of the same combination.
*/
static void
generate_combinations_recurse(CombinationGenerator *state,
int index, int start, int *current)
{
/* If we haven't filled all the elements, simply recurse. */
if (index < state->k)
{
int i;
/*
* The values have to be in ascending order, so make sure we start
* with the value passed by parameter.
*/
for (i = start; i < state->n; i++)
{
current[index] = i;
generate_combinations_recurse(state, (index + 1), (i + 1), current);
}
return;
}
else
{
/* we got a valid combination, add it to the array */
memcpy(&state->combinations[(state->k * state->current)],
current, state->k * sizeof(int));
state->current++;
}
}
/*
* generate_combinations
* generate all k-combinations of N elements
*/
static void
generate_combinations(CombinationGenerator *state)
{
int *current = (int *) palloc0(sizeof(int) * state->k);
generate_combinations_recurse(state, 0, 0, current);
pfree(current);
}