postgresql/src/backend/utils/adt/datetime.c

4372 lines
106 KiB
C
Raw Normal View History

1997-03-15 00:21:12 +01:00
/*-------------------------------------------------------------------------
*
* datetime.c
* Support functions for date/time types.
1997-03-15 00:21:12 +01:00
*
2011-01-01 19:18:15 +01:00
* Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
1997-03-15 00:21:12 +01:00
*
*
* IDENTIFICATION
2010-09-20 22:08:53 +02:00
* src/backend/utils/adt/datetime.c
1997-03-15 00:21:12 +01:00
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <ctype.h>
1997-04-04 10:55:29 +02:00
#include <float.h>
#include <limits.h>
#include <math.h>
#include "access/xact.h"
#include "catalog/pg_type.h"
#include "funcapi.h"
#include "miscadmin.h"
#include "utils/builtins.h"
#include "utils/date.h"
#include "utils/datetime.h"
#include "utils/memutils.h"
#include "utils/tzparser.h"
1997-03-15 00:21:12 +01:00
static int DecodeNumber(int flen, char *field, bool haveTextMonth,
int fmask, int *tmask,
struct pg_tm * tm, fsec_t *fsec, bool *is2digits);
static int DecodeNumberField(int len, char *str,
int fmask, int *tmask,
struct pg_tm * tm, fsec_t *fsec, bool *is2digits);
static int DecodeTime(char *str, int fmask, int range,
int *tmask, struct pg_tm * tm, fsec_t *fsec);
static int DecodeTimezone(char *str, int *tzp);
static const datetkn *datebsearch(const char *key, const datetkn *base, int nel);
static int DecodeDate(char *str, int fmask, int *tmask, bool *is2digits,
struct pg_tm * tm);
static int ValidateDate(int fmask, bool isjulian, bool is2digits, bool bc,
struct pg_tm * tm);
static void TrimTrailingZeros(char *str);
static void AppendSeconds(char *cp, int sec, fsec_t fsec,
int precision, bool fillzeros);
static void AdjustFractSeconds(double frac, struct pg_tm * tm, fsec_t *fsec,
int scale);
static void AdjustFractDays(double frac, struct pg_tm * tm, fsec_t *fsec,
int scale);
const int day_tab[2][13] =
{
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0},
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0}
};
char *months[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
2002-09-04 22:31:48 +02:00
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec", NULL};
1997-03-15 00:21:12 +01:00
char *days[] = {"Sunday", "Monday", "Tuesday", "Wednesday",
2002-09-04 22:31:48 +02:00
"Thursday", "Friday", "Saturday", NULL};
/*****************************************************************************
* PRIVATE ROUTINES *
*****************************************************************************/
1997-03-15 00:21:12 +01:00
/*
* Definitions for squeezing values into "value"
* We set aside a high bit for a sign, and scale the timezone offsets
* in minutes by a factor of 15 (so can represent quarter-hour increments).
*/
#define ABS_SIGNBIT ((char) 0200)
#define VALMASK ((char) 0177)
#define POS(n) (n)
#define NEG(n) ((n)|ABS_SIGNBIT)
#define SIGNEDCHAR(c) ((c)&ABS_SIGNBIT? -((c)&VALMASK): (c))
#define FROMVAL(tp) (-SIGNEDCHAR((tp)->value) * 15) /* uncompress */
#define TOVAL(tp, v) ((tp)->value = ((v) < 0? NEG((-(v))/15): POS(v)/15))
/*
* datetktbl holds date/time keywords.
*
* Note that this table must be strictly alphabetically ordered to allow an
* O(ln(N)) search algorithm to be used.
*
* The text field is NOT guaranteed to be NULL-terminated.
*
* To keep this table reasonably small, we divide the lexval for TZ and DTZ
* entries by 15 (so they are on 15 minute boundaries) and truncate the text
* field at TOKMAXLEN characters.
* Formerly, we divided by 10 rather than 15 but there are a few time zones
* which are 30 or 45 minutes away from an even hour, most are on an hour
* boundary, and none on other boundaries.
*
* The static table contains no TZ or DTZ entries, rather those are loaded
* from configuration files and stored in timezonetktbl, which has the same
* format as the static datetktbl.
*/
static datetkn *timezonetktbl = NULL;
2006-10-04 02:30:14 +02:00
static int sztimezonetktbl = 0;
static const datetkn datetktbl[] = {
/* text, token, lexval */
{EARLY, RESERV, DTK_EARLY}, /* "-infinity" reserved for "early time" */
{DA_D, ADBC, AD}, /* "ad" for years > 0 */
2002-09-04 22:31:48 +02:00
{"allballs", RESERV, DTK_ZULU}, /* 00:00:00 */
{"am", AMPM, AM},
{"apr", MONTH, 4},
{"april", MONTH, 4},
{"at", IGNORE_DTF, 0}, /* "at" (throwaway) */
{"aug", MONTH, 8},
{"august", MONTH, 8},
{DB_C, ADBC, BC}, /* "bc" for years <= 0 */
{DCURRENT, RESERV, DTK_CURRENT}, /* "current" is always now */
{"d", UNITS, DTK_DAY}, /* "day of month" for ISO input */
{"dec", MONTH, 12},
{"december", MONTH, 12},
{"dow", RESERV, DTK_DOW}, /* day of week */
{"doy", RESERV, DTK_DOY}, /* day of year */
{"dst", DTZMOD, 6},
{EPOCH, RESERV, DTK_EPOCH}, /* "epoch" reserved for system epoch time */
{"feb", MONTH, 2},
{"february", MONTH, 2},
{"fri", DOW, 5},
{"friday", DOW, 5},
{"h", UNITS, DTK_HOUR}, /* "hour" */
{LATE, RESERV, DTK_LATE}, /* "infinity" reserved for "late time" */
2002-09-04 22:31:48 +02:00
{INVALID, RESERV, DTK_INVALID}, /* "invalid" reserved for bad time */
{"isodow", RESERV, DTK_ISODOW}, /* ISO day of week, Sunday == 7 */
{"isoyear", UNITS, DTK_ISOYEAR}, /* year in terms of the ISO week date */
{"j", UNITS, DTK_JULIAN},
{"jan", MONTH, 1},
{"january", MONTH, 1},
{"jd", UNITS, DTK_JULIAN},
{"jul", MONTH, 7},
{"julian", UNITS, DTK_JULIAN},
{"july", MONTH, 7},
{"jun", MONTH, 6},
{"june", MONTH, 6},
{"m", UNITS, DTK_MONTH}, /* "month" for ISO input */
{"mar", MONTH, 3},
{"march", MONTH, 3},
{"may", MONTH, 5},
{"mm", UNITS, DTK_MINUTE}, /* "minute" for ISO input */
{"mon", DOW, 1},
{"monday", DOW, 1},
{"nov", MONTH, 11},
{"november", MONTH, 11},
{NOW, RESERV, DTK_NOW}, /* current transaction time */
{"oct", MONTH, 10},
{"october", MONTH, 10},
{"on", IGNORE_DTF, 0}, /* "on" (throwaway) */
{"pm", AMPM, PM},
{"s", UNITS, DTK_SECOND}, /* "seconds" for ISO input */
{"sat", DOW, 6},
{"saturday", DOW, 6},
{"sep", MONTH, 9},
{"sept", MONTH, 9},
{"september", MONTH, 9},
{"sun", DOW, 0},
{"sunday", DOW, 0},
{"t", ISOTIME, DTK_TIME}, /* Filler for ISO time fields */
{"thu", DOW, 4},
{"thur", DOW, 4},
{"thurs", DOW, 4},
{"thursday", DOW, 4},
{TODAY, RESERV, DTK_TODAY}, /* midnight */
{TOMORROW, RESERV, DTK_TOMORROW}, /* tomorrow midnight */
{"tue", DOW, 2},
{"tues", DOW, 2},
{"tuesday", DOW, 2},
{"undefined", RESERV, DTK_INVALID}, /* pre-v6.1 invalid time */
{"wed", DOW, 3},
{"wednesday", DOW, 3},
{"weds", DOW, 3},
{"y", UNITS, DTK_YEAR}, /* "year" for ISO input */
{YESTERDAY, RESERV, DTK_YESTERDAY} /* yesterday midnight */
};
2006-10-04 02:30:14 +02:00
static int szdatetktbl = sizeof datetktbl / sizeof datetktbl[0];
static datetkn deltatktbl[] = {
/* text, token, lexval */
{"@", IGNORE_DTF, 0}, /* postgres relative prefix */
{DAGO, AGO, 0}, /* "ago" indicates negative time offset */
{"c", UNITS, DTK_CENTURY}, /* "century" relative */
{"cent", UNITS, DTK_CENTURY}, /* "century" relative */
{"centuries", UNITS, DTK_CENTURY}, /* "centuries" relative */
{DCENTURY, UNITS, DTK_CENTURY}, /* "century" relative */
{"d", UNITS, DTK_DAY}, /* "day" relative */
{DDAY, UNITS, DTK_DAY}, /* "day" relative */
{"days", UNITS, DTK_DAY}, /* "days" relative */
{"dec", UNITS, DTK_DECADE}, /* "decade" relative */
2002-09-04 22:31:48 +02:00
{DDECADE, UNITS, DTK_DECADE}, /* "decade" relative */
{"decades", UNITS, DTK_DECADE}, /* "decades" relative */
{"decs", UNITS, DTK_DECADE}, /* "decades" relative */
{"h", UNITS, DTK_HOUR}, /* "hour" relative */
{DHOUR, UNITS, DTK_HOUR}, /* "hour" relative */
{"hours", UNITS, DTK_HOUR}, /* "hours" relative */
{"hr", UNITS, DTK_HOUR}, /* "hour" relative */
{"hrs", UNITS, DTK_HOUR}, /* "hours" relative */
2002-09-04 22:31:48 +02:00
{INVALID, RESERV, DTK_INVALID}, /* reserved for invalid time */
{"m", UNITS, DTK_MINUTE}, /* "minute" relative */
2002-09-04 22:31:48 +02:00
{"microsecon", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
{"mil", UNITS, DTK_MILLENNIUM}, /* "millennium" relative */
{"millennia", UNITS, DTK_MILLENNIUM}, /* "millennia" relative */
{DMILLENNIUM, UNITS, DTK_MILLENNIUM}, /* "millennium" relative */
{"millisecon", UNITS, DTK_MILLISEC}, /* relative */
{"mils", UNITS, DTK_MILLENNIUM}, /* "millennia" relative */
{"min", UNITS, DTK_MINUTE}, /* "minute" relative */
{"mins", UNITS, DTK_MINUTE}, /* "minutes" relative */
{DMINUTE, UNITS, DTK_MINUTE}, /* "minute" relative */
{"minutes", UNITS, DTK_MINUTE}, /* "minutes" relative */
{"mon", UNITS, DTK_MONTH}, /* "months" relative */
{"mons", UNITS, DTK_MONTH}, /* "months" relative */
{DMONTH, UNITS, DTK_MONTH}, /* "month" relative */
{"months", UNITS, DTK_MONTH},
{"ms", UNITS, DTK_MILLISEC},
{"msec", UNITS, DTK_MILLISEC},
{DMILLISEC, UNITS, DTK_MILLISEC},
{"mseconds", UNITS, DTK_MILLISEC},
{"msecs", UNITS, DTK_MILLISEC},
{"qtr", UNITS, DTK_QUARTER}, /* "quarter" relative */
2002-09-04 22:31:48 +02:00
{DQUARTER, UNITS, DTK_QUARTER}, /* "quarter" relative */
{"s", UNITS, DTK_SECOND},
{"sec", UNITS, DTK_SECOND},
{DSECOND, UNITS, DTK_SECOND},
{"seconds", UNITS, DTK_SECOND},
{"secs", UNITS, DTK_SECOND},
2002-09-04 22:31:48 +02:00
{DTIMEZONE, UNITS, DTK_TZ}, /* "timezone" time offset */
{"timezone_h", UNITS, DTK_TZ_HOUR}, /* timezone hour units */
2002-09-04 22:31:48 +02:00
{"timezone_m", UNITS, DTK_TZ_MINUTE}, /* timezone minutes units */
{"undefined", RESERV, DTK_INVALID}, /* pre-v6.1 invalid time */
2002-09-04 22:31:48 +02:00
{"us", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
{"usec", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
{DMICROSEC, UNITS, DTK_MICROSEC}, /* "microsecond" relative */
{"useconds", UNITS, DTK_MICROSEC}, /* "microseconds" relative */
{"usecs", UNITS, DTK_MICROSEC}, /* "microseconds" relative */
{"w", UNITS, DTK_WEEK}, /* "week" relative */
{DWEEK, UNITS, DTK_WEEK}, /* "week" relative */
{"weeks", UNITS, DTK_WEEK}, /* "weeks" relative */
{"y", UNITS, DTK_YEAR}, /* "year" relative */
{DYEAR, UNITS, DTK_YEAR}, /* "year" relative */
{"years", UNITS, DTK_YEAR}, /* "years" relative */
{"yr", UNITS, DTK_YEAR}, /* "year" relative */
{"yrs", UNITS, DTK_YEAR} /* "years" relative */
};
2006-10-04 02:30:14 +02:00
static int szdeltatktbl = sizeof deltatktbl / sizeof deltatktbl[0];
static const datetkn *datecache[MAXDATEFIELDS] = {NULL};
static const datetkn *deltacache[MAXDATEFIELDS] = {NULL};
1997-03-15 00:21:12 +01:00
/*
* strtoi --- just like strtol, but returns int not long
*/
static int
strtoi(const char *nptr, char **endptr, int base)
{
long val;
val = strtol(nptr, endptr, base);
#ifdef HAVE_LONG_INT_64
if (val != (long) ((int32) val))
errno = ERANGE;
#endif
return (int) val;
}
/*
* Calendar time to Julian date conversions.
* Julian date is commonly used in astronomical applications,
* since it is numerically accurate and computationally simple.
* The algorithms here will accurately convert between Julian day
* and calendar date for all non-negative Julian days
* (i.e. from Nov 24, -4713 on).
*
* These routines will be used by other date/time packages
* - thomas 97/02/25
*
* Rewritten to eliminate overflow problems. This now allows the
* routines to work correctly for all Julian day counts from
2003-08-04 02:43:34 +02:00
* 0 to 2147483647 (Nov 24, -4713 to Jun 3, 5874898) assuming
* a 32-bit integer. Longer types should also work to the limits
* of their precision.
*/
1997-03-15 00:21:12 +01:00
int
date2j(int y, int m, int d)
1997-03-15 00:21:12 +01:00
{
int julian;
int century;
2003-08-04 02:43:34 +02:00
if (m > 2)
{
m += 1;
y += 4800;
2003-08-04 02:43:34 +02:00
}
else
{
m += 13;
y += 4799;
}
2003-08-04 02:43:34 +02:00
century = y / 100;
julian = y * 365 - 32167;
julian += y / 4 - century + century / 4;
julian += 7834 * m / 256 + d;
1997-03-15 00:21:12 +01:00
return julian;
} /* date2j() */
1997-03-15 00:21:12 +01:00
void
j2date(int jd, int *year, int *month, int *day)
1997-03-15 00:21:12 +01:00
{
2003-08-04 02:43:34 +02:00
unsigned int julian;
unsigned int quad;
unsigned int extra;
int y;
julian = jd;
julian += 32044;
2003-08-04 02:43:34 +02:00
quad = julian / 146097;
extra = (julian - quad * 146097) * 4 + 3;
julian += 60 + quad * 3 + extra / 146097;
quad = julian / 1461;
julian -= quad * 1461;
y = julian * 4 / 1461;
julian = ((y != 0) ? ((julian + 305) % 365) : ((julian + 306) % 366))
+ 123;
2003-08-04 02:43:34 +02:00
y += quad * 4;
*year = y - 4800;
quad = julian * 2141 / 65536;
2003-08-04 02:43:34 +02:00
*day = julian - 7834 * quad / 256;
*month = (quad + 10) % 12 + 1;
return;
} /* j2date() */
1997-03-15 00:21:12 +01:00
/*
* j2day - convert Julian date to day-of-week (0..6 == Sun..Sat)
*
* Note: various places use the locution j2day(date - 1) to produce a
2003-08-04 02:43:34 +02:00
* result according to the convention 0..6 = Mon..Sun. This is a bit of
* a crock, but will work as long as the computation here is just a modulo.
*/
1997-03-15 00:21:12 +01:00
int
j2day(int date)
1997-03-15 00:21:12 +01:00
{
unsigned int day;
day = date;
day += 1;
day %= 7;
1997-03-15 00:21:12 +01:00
return (int) day;
} /* j2day() */
/*
* GetCurrentDateTime()
*
* Get the transaction start time ("now()") broken down as a struct pg_tm.
*/
void
2005-10-15 04:49:52 +02:00
GetCurrentDateTime(struct pg_tm * tm)
{
int tz;
fsec_t fsec;
timestamp2tm(GetCurrentTransactionStartTimestamp(), &tz, tm, &fsec,
NULL, NULL);
/* Note: don't pass NULL tzp to timestamp2tm; affects behavior */
}
/*
* GetCurrentTimeUsec()
*
* Get the transaction start time ("now()") broken down as a struct pg_tm,
* including fractional seconds and timezone offset.
*/
void
2005-10-15 04:49:52 +02:00
GetCurrentTimeUsec(struct pg_tm * tm, fsec_t *fsec, int *tzp)
{
int tz;
timestamp2tm(GetCurrentTransactionStartTimestamp(), &tz, tm, fsec,
NULL, NULL);
/* Note: don't pass NULL tzp to timestamp2tm; affects behavior */
if (tzp != NULL)
*tzp = tz;
}
/* TrimTrailingZeros()
* ... resulting from printing numbers with full precision.
*
* Before Postgres 8.4, this always left at least 2 fractional digits,
* but conversations on the lists suggest this isn't desired
* since showing '0.10' is misleading with values of precision(1).
*/
static void
TrimTrailingZeros(char *str)
{
int len = strlen(str);
while (len > 1 && *(str + len - 1) == '0' && *(str + len - 2) != '.')
{
len--;
*(str + len) = '\0';
}
}
/*
* Append sections and fractional seconds (if any) at *cp.
* precision is the max number of fraction digits, fillzeros says to
* pad to two integral-seconds digits.
* Note that any sign is stripped from the input seconds values.
*/
static void
AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros)
{
if (fsec == 0)
{
if (fillzeros)
sprintf(cp, "%02d", abs(sec));
else
sprintf(cp, "%d", abs(sec));
}
else
{
#ifdef HAVE_INT64_TIMESTAMP
if (fillzeros)
sprintf(cp, "%02d.%0*d", abs(sec), precision, (int) Abs(fsec));
else
sprintf(cp, "%d.%0*d", abs(sec), precision, (int) Abs(fsec));
#else
if (fillzeros)
sprintf(cp, "%0*.*f", precision + 3, precision, fabs(sec + fsec));
else
sprintf(cp, "%.*f", precision, fabs(sec + fsec));
#endif
TrimTrailingZeros(cp);
}
}
/* Variant of above that's specialized to timestamp case */
static void
AppendTimestampSeconds(char *cp, struct pg_tm * tm, fsec_t fsec)
{
/*
* In float mode, don't print fractional seconds before 1 AD, since it's
* unlikely there's any precision left ...
*/
#ifndef HAVE_INT64_TIMESTAMP
if (tm->tm_year <= 0)
fsec = 0;
#endif
AppendSeconds(cp, tm->tm_sec, fsec, MAX_TIMESTAMP_PRECISION, true);
}
/*
* Multiply frac by scale (to produce seconds) and add to *tm & *fsec.
* We assume the input frac is less than 1 so overflow is not an issue.
*/
static void
AdjustFractSeconds(double frac, struct pg_tm * tm, fsec_t *fsec, int scale)
{
int sec;
if (frac == 0)
return;
frac *= scale;
sec = (int) frac;
tm->tm_sec += sec;
frac -= sec;
#ifdef HAVE_INT64_TIMESTAMP
*fsec += rint(frac * 1000000);
#else
*fsec += frac;
#endif
}
/* As above, but initial scale produces days */
static void
AdjustFractDays(double frac, struct pg_tm * tm, fsec_t *fsec, int scale)
{
int extra_days;
if (frac == 0)
return;
frac *= scale;
extra_days = (int) frac;
tm->tm_mday += extra_days;
frac -= extra_days;
AdjustFractSeconds(frac, tm, fsec, SECS_PER_DAY);
}
/* Fetch a fractional-second value with suitable error checking */
static int
ParseFractionalSecond(char *cp, fsec_t *fsec)
{
double frac;
/* Caller should always pass the start of the fraction part */
Assert(*cp == '.');
errno = 0;
frac = strtod(cp, &cp);
/* check for parse failure */
if (*cp != '\0' || errno != 0)
return DTERR_BAD_FORMAT;
#ifdef HAVE_INT64_TIMESTAMP
*fsec = rint(frac * 1000000);
#else
*fsec = frac;
#endif
return 0;
}
/* ParseDateTime()
* Break string into tokens based on a date/time context.
* Returns 0 if successful, DTERR code if bogus input detected.
*
* timestr - the input string
* workbuf - workspace for field string storage. This must be
2005-10-15 04:49:52 +02:00
* larger than the largest legal input for this datetime type --
* some additional space will be needed to NUL terminate fields.
* buflen - the size of workbuf
* field[] - pointers to field strings are returned in this array
* ftype[] - field type indicators are returned in this array
* maxfields - dimensions of the above two arrays
* *numfields - set to the actual number of fields detected
*
* The fields extracted from the input are stored as separate,
* null-terminated strings in the workspace at workbuf. Any text is
* converted to lower case.
*
* Several field types are assigned:
2002-09-04 22:31:48 +02:00
* DTK_NUMBER - digits and (possibly) a decimal point
* DTK_DATE - digits and two delimiters, or digits and text
* DTK_TIME - digits, colon delimiters, and possibly a decimal point
* DTK_STRING - text (no digits or punctuation)
2002-09-04 22:31:48 +02:00
* DTK_SPECIAL - leading "+" or "-" followed by text
* DTK_TZ - leading "+" or "-" followed by digits (also eats ':', '.', '-')
*
* Note that some field types can hold unexpected items:
2002-09-04 22:31:48 +02:00
* DTK_NUMBER can hold date fields (yy.ddd)
* DTK_STRING can hold months (January) and time zones (PST)
* DTK_DATE can hold time zone names (America/New_York, GMT-8)
*/
int
ParseDateTime(const char *timestr, char *workbuf, size_t buflen,
char **field, int *ftype, int maxfields, int *numfields)
1997-03-15 00:21:12 +01:00
{
int nf = 0;
const char *cp = timestr;
char *bufp = workbuf;
const char *bufend = workbuf + buflen;
/*
2005-10-15 04:49:52 +02:00
* Set the character pointed-to by "bufptr" to "newchar", and increment
* "bufptr". "end" gives the end of the buffer -- we return an error if
* there is no space left to append a character to the buffer. Note that
* "bufptr" is evaluated twice.
*/
#define APPEND_CHAR(bufptr, end, newchar) \
do \
{ \
if (((bufptr) + 1) >= (end)) \
return DTERR_BAD_FORMAT; \
*(bufptr)++ = newchar; \
} while (0)
/* outer loop through fields */
while (*cp != '\0')
{
/* Ignore spaces between fields */
if (isspace((unsigned char) *cp))
{
cp++;
continue;
}
/* Record start of current field */
if (nf >= maxfields)
return DTERR_BAD_FORMAT;
field[nf] = bufp;
/* leading digit? then date or time */
if (isdigit((unsigned char) *cp))
{
APPEND_CHAR(bufp, bufend, *cp++);
while (isdigit((unsigned char) *cp))
APPEND_CHAR(bufp, bufend, *cp++);
/* time field? */
if (*cp == ':')
{
ftype[nf] = DTK_TIME;
APPEND_CHAR(bufp, bufend, *cp++);
while (isdigit((unsigned char) *cp) ||
(*cp == ':') || (*cp == '.'))
APPEND_CHAR(bufp, bufend, *cp++);
}
/* date field? allow embedded text month */
else if (*cp == '-' || *cp == '/' || *cp == '.')
{
/* save delimiting character to use later */
char delim = *cp;
APPEND_CHAR(bufp, bufend, *cp++);
/* second field is all digits? then no embedded text month */
if (isdigit((unsigned char) *cp))
{
ftype[nf] = ((delim == '.') ? DTK_NUMBER : DTK_DATE);
while (isdigit((unsigned char) *cp))
APPEND_CHAR(bufp, bufend, *cp++);
2002-09-04 22:31:48 +02:00
/*
2005-10-15 04:49:52 +02:00
* insist that the delimiters match to get a three-field
* date.
2002-09-04 22:31:48 +02:00
*/
if (*cp == delim)
{
ftype[nf] = DTK_DATE;
APPEND_CHAR(bufp, bufend, *cp++);
while (isdigit((unsigned char) *cp) || *cp == delim)
APPEND_CHAR(bufp, bufend, *cp++);
}
}
else
{
ftype[nf] = DTK_DATE;
while (isalnum((unsigned char) *cp) || *cp == delim)
APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
}
}
2002-09-04 22:31:48 +02:00
/*
2005-10-15 04:49:52 +02:00
* otherwise, number only and will determine year, month, day, or
* concatenated fields later...
*/
else
ftype[nf] = DTK_NUMBER;
}
/* Leading decimal point? Then fractional seconds... */
else if (*cp == '.')
{
APPEND_CHAR(bufp, bufend, *cp++);
while (isdigit((unsigned char) *cp))
APPEND_CHAR(bufp, bufend, *cp++);
ftype[nf] = DTK_NUMBER;
}
2002-09-04 22:31:48 +02:00
/*
2005-10-15 04:49:52 +02:00
* text? then date string, month, day of week, special, or timezone
*/
else if (isalpha((unsigned char) *cp))
{
2007-11-15 22:14:46 +01:00
bool is_date;
ftype[nf] = DTK_STRING;
APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
while (isalpha((unsigned char) *cp))
APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
/*
* Dates can have embedded '-', '/', or '.' separators. It could
2007-11-15 22:14:46 +01:00
* also be a timezone name containing embedded '/', '+', '-', '_',
* or ':' (but '_' or ':' can't be the first punctuation). If the
* next character is a digit or '+', we need to check whether what
* we have so far is a recognized non-timezone keyword --- if so,
* don't believe that this is the start of a timezone.
*/
is_date = false;
if (*cp == '-' || *cp == '/' || *cp == '.')
is_date = true;
else if (*cp == '+' || isdigit((unsigned char) *cp))
{
*bufp = '\0'; /* null-terminate current field value */
/* we need search only the core token table, not TZ names */
if (datebsearch(field[nf], datetktbl, szdatetktbl) == NULL)
is_date = true;
}
if (is_date)
{
ftype[nf] = DTK_DATE;
do
{
APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
} while (*cp == '+' || *cp == '-' ||
*cp == '/' || *cp == '_' ||
*cp == '.' || *cp == ':' ||
isalnum((unsigned char) *cp));
}
}
/* sign? then special or numeric timezone */
else if (*cp == '+' || *cp == '-')
{
APPEND_CHAR(bufp, bufend, *cp++);
/* soak up leading whitespace */
while (isspace((unsigned char) *cp))
cp++;
/* numeric timezone? */
/* note that "DTK_TZ" could also be a signed float or yyyy-mm */
if (isdigit((unsigned char) *cp))
{
ftype[nf] = DTK_TZ;
APPEND_CHAR(bufp, bufend, *cp++);
while (isdigit((unsigned char) *cp) ||
*cp == ':' || *cp == '.' || *cp == '-')
APPEND_CHAR(bufp, bufend, *cp++);
}
/* special? */
else if (isalpha((unsigned char) *cp))
{
ftype[nf] = DTK_SPECIAL;
APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
while (isalpha((unsigned char) *cp))
APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
}
/* otherwise something wrong... */
else
return DTERR_BAD_FORMAT;
}
/* ignore other punctuation but use as delimiter */
else if (ispunct((unsigned char) *cp))
{
cp++;
continue;
}
/* otherwise, something is not right... */
else
return DTERR_BAD_FORMAT;
/* force in a delimiter after each field */
*bufp++ = '\0';
nf++;
}
*numfields = nf;
1997-03-15 00:21:12 +01:00
return 0;
}
/* DecodeDateTime()
* Interpret previously parsed fields for general date and time.
* Return 0 if full date, 1 if only time, and negative DTERR code if problems.
* (Currently, all callers treat 1 as an error return too.)
*
* External format(s):
* "<weekday> <month>-<day>-<year> <hour>:<minute>:<second>"
* "Fri Feb-7-1997 15:23:27"
* "Feb-7-1997 15:23:27"
* "2-7-1997 15:23:27"
* "1997-2-7 15:23:27"
* "1997.038 15:23:27" (day of year 1-366)
* Also supports input in compact time:
* "970207 152327"
* "97038 152327"
* "20011225T040506.789-07"
*
* Use the system-provided functions to get the current time zone
* if not specified in the input string.
*
* If the date is outside the range of pg_time_t (in practice that could only
* happen if pg_time_t is just 32 bits), then assume UTC time zone - thomas
* 1997-05-27
*/
int
DecodeDateTime(char **field, int *ftype, int nf,
2005-10-15 04:49:52 +02:00
int *dtype, struct pg_tm * tm, fsec_t *fsec, int *tzp)
1997-03-15 00:21:12 +01:00
{
int fmask = 0,
tmask,
type;
2005-10-15 04:49:52 +02:00
int ptype = 0; /* "prefix type" for ISO y2001m02d04 format */
int i;
int val;
int dterr;
int mer = HR24;
bool haveTextMonth = FALSE;
bool isjulian = FALSE;
bool is2digits = FALSE;
bool bc = FALSE;
pg_tz *namedTz = NULL;
/*
* We'll insist on at least all of the date fields, but initialize the
* remaining fields in case they are not set later...
*/
*dtype = DTK_DATE;
tm->tm_hour = 0;
tm->tm_min = 0;
tm->tm_sec = 0;
*fsec = 0;
/* don't know daylight savings time status apriori */
tm->tm_isdst = -1;
if (tzp != NULL)
*tzp = 0;
for (i = 0; i < nf; i++)
{
switch (ftype[i])
{
case DTK_DATE:
/***
* Integral julian day with attached time zone?
* All other forms with JD will be separated into
* distinct fields, so we handle just this case here.
***/
if (ptype == DTK_JULIAN)
{
char *cp;
int val;
if (tzp == NULL)
return DTERR_BAD_FORMAT;
errno = 0;
val = strtoi(field[i], &cp, 10);
if (errno == ERANGE || val < 0)
return DTERR_FIELD_OVERFLOW;
j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
isjulian = TRUE;
/* Get the time zone from the end of the string */
dterr = DecodeTimezone(cp, tzp);
if (dterr)
return dterr;
tmask = DTK_DATE_M | DTK_TIME_M | DTK_M(TZ);
ptype = 0;
break;
}
/***
* Already have a date? Then this might be a time zone name
* with embedded punctuation (e.g. "America/New_York") or a
* run-together time with trailing time zone (e.g. hhmmss-zz).
* - thomas 2001-12-25
*
* We consider it a time zone if we already have month & day.
* This is to allow the form "mmm dd hhmmss tz year", which
* we've historically accepted.
***/
else if (ptype != 0 ||
((fmask & (DTK_M(MONTH) | DTK_M(DAY))) ==
(DTK_M(MONTH) | DTK_M(DAY))))
{
/* No time zone accepted? Then quit... */
if (tzp == NULL)
return DTERR_BAD_FORMAT;
if (isdigit((unsigned char) *field[i]) || ptype != 0)
{
2002-09-04 22:31:48 +02:00
char *cp;
if (ptype != 0)
{
/* Sanity check; should not fail this test */
if (ptype != DTK_TIME)
return DTERR_BAD_FORMAT;
ptype = 0;
}
2002-09-04 22:31:48 +02:00
/*
* Starts with a digit but we already have a time
2005-10-15 04:49:52 +02:00
* field? Then we are in trouble with a date and time
* already...
*/
if ((fmask & DTK_TIME_M) == DTK_TIME_M)
return DTERR_BAD_FORMAT;
if ((cp = strchr(field[i], '-')) == NULL)
return DTERR_BAD_FORMAT;
/* Get the time zone from the end of the string */
dterr = DecodeTimezone(cp, tzp);
if (dterr)
return dterr;
*cp = '\0';
2002-09-04 22:31:48 +02:00
/*
2005-10-15 04:49:52 +02:00
* Then read the rest of the field as a concatenated
* time
2002-09-04 22:31:48 +02:00
*/
dterr = DecodeNumberField(strlen(field[i]), field[i],
fmask,
&tmask, tm,
fsec, &is2digits);
if (dterr < 0)
return dterr;
2002-09-04 22:31:48 +02:00
/*
* modify tmask after returning from
* DecodeNumberField()
*/
tmask |= DTK_M(TZ);
}
else
{
namedTz = pg_tzset(field[i]);
if (!namedTz)
{
/*
* We should return an error code instead of
2007-11-15 22:14:46 +01:00
* ereport'ing directly, but then there is no way
* to report the bad time zone name.
*/
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("time zone \"%s\" not recognized",
field[i])));
}
/* we'll apply the zone setting below */
tmask = DTK_M(TZ);
}
}
else
{
dterr = DecodeDate(field[i], fmask,
&tmask, &is2digits, tm);
if (dterr)
return dterr;
}
break;
case DTK_TIME:
dterr = DecodeTime(field[i], fmask, INTERVAL_FULL_RANGE,
&tmask, tm, fsec);
if (dterr)
return dterr;
/*
* Check upper limit on hours; other limits checked in
* DecodeTime()
*/
/* test for > 24:00:00 */
2005-10-15 04:49:52 +02:00
if (tm->tm_hour > 24 ||
(tm->tm_hour == 24 &&
(tm->tm_min > 0 || tm->tm_sec > 0 || *fsec > 0)))
return DTERR_FIELD_OVERFLOW;
break;
case DTK_TZ:
{
2002-09-04 22:31:48 +02:00
int tz;
if (tzp == NULL)
return DTERR_BAD_FORMAT;
dterr = DecodeTimezone(field[i], &tz);
if (dterr)
return dterr;
*tzp = tz;
tmask = DTK_M(TZ);
}
break;
case DTK_NUMBER:
2002-09-04 22:31:48 +02:00
/*
* Was this an "ISO date" with embedded field labels? An
* example is "y2001m02d04" - thomas 2001-02-04
*/
if (ptype != 0)
{
char *cp;
int val;
errno = 0;
val = strtoi(field[i], &cp, 10);
if (errno == ERANGE)
return DTERR_FIELD_OVERFLOW;
2002-09-04 22:31:48 +02:00
/*
* only a few kinds are allowed to have an embedded
* decimal
*/
if (*cp == '.')
switch (ptype)
{
case DTK_JULIAN:
case DTK_TIME:
case DTK_SECOND:
break;
default:
return DTERR_BAD_FORMAT;
break;
}
else if (*cp != '\0')
return DTERR_BAD_FORMAT;
switch (ptype)
{
case DTK_YEAR:
tm->tm_year = val;
tmask = DTK_M(YEAR);
break;
case DTK_MONTH:
2002-09-04 22:31:48 +02:00
/*
* already have a month and hour? then assume
* minutes
*/
if ((fmask & DTK_M(MONTH)) != 0 &&
(fmask & DTK_M(HOUR)) != 0)
{
tm->tm_min = val;
tmask = DTK_M(MINUTE);
}
else
{
tm->tm_mon = val;
tmask = DTK_M(MONTH);
}
break;
case DTK_DAY:
tm->tm_mday = val;
tmask = DTK_M(DAY);
break;
case DTK_HOUR:
tm->tm_hour = val;
tmask = DTK_M(HOUR);
break;
case DTK_MINUTE:
tm->tm_min = val;
tmask = DTK_M(MINUTE);
break;
case DTK_SECOND:
tm->tm_sec = val;
tmask = DTK_M(SECOND);
if (*cp == '.')
{
dterr = ParseFractionalSecond(cp, fsec);
if (dterr)
return dterr;
tmask = DTK_ALL_SECS_M;
}
break;
case DTK_TZ:
tmask = DTK_M(TZ);
dterr = DecodeTimezone(field[i], tzp);
if (dterr)
return dterr;
break;
case DTK_JULIAN:
/* previous field was a label for "julian date" */
if (val < 0)
return DTERR_FIELD_OVERFLOW;
tmask = DTK_DATE_M;
j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
isjulian = TRUE;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
/* fractional Julian Day? */
if (*cp == '.')
{
2002-09-04 22:31:48 +02:00
double time;
errno = 0;
time = strtod(cp, &cp);
if (*cp != '\0' || errno != 0)
return DTERR_BAD_FORMAT;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#ifdef HAVE_INT64_TIMESTAMP
time *= USECS_PER_DAY;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#else
time *= SECS_PER_DAY;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#endif
dt2time(time,
&tm->tm_hour, &tm->tm_min,
&tm->tm_sec, fsec);
tmask |= DTK_TIME_M;
}
break;
case DTK_TIME:
/* previous field was "t" for ISO time */
dterr = DecodeNumberField(strlen(field[i]), field[i],
2005-10-15 04:49:52 +02:00
(fmask | DTK_DATE_M),
&tmask, tm,
fsec, &is2digits);
if (dterr < 0)
return dterr;
if (tmask != DTK_TIME_M)
return DTERR_BAD_FORMAT;
break;
default:
return DTERR_BAD_FORMAT;
break;
}
ptype = 0;
*dtype = DTK_DATE;
}
else
{
2002-09-04 22:31:48 +02:00
char *cp;
int flen;
flen = strlen(field[i]);
cp = strchr(field[i], '.');
/* Embedded decimal and no date yet? */
if (cp != NULL && !(fmask & DTK_DATE_M))
{
dterr = DecodeDate(field[i], fmask,
&tmask, &is2digits, tm);
if (dterr)
return dterr;
}
/* embedded decimal and several digits before? */
else if (cp != NULL && flen - strlen(cp) > 2)
{
2002-09-04 22:31:48 +02:00
/*
2005-10-15 04:49:52 +02:00
* Interpret as a concatenated date or time Set the
* type field to allow decoding other fields later.
* Example: 20011223 or 040506
*/
dterr = DecodeNumberField(flen, field[i], fmask,
&tmask, tm,
fsec, &is2digits);
if (dterr < 0)
return dterr;
}
else if (flen > 4)
{
dterr = DecodeNumberField(flen, field[i], fmask,
&tmask, tm,
fsec, &is2digits);
if (dterr < 0)
return dterr;
}
/* otherwise it is a single date/time field... */
else
{
dterr = DecodeNumber(flen, field[i],
haveTextMonth, fmask,
&tmask, tm,
fsec, &is2digits);
if (dterr)
return dterr;
}
}
break;
case DTK_STRING:
case DTK_SPECIAL:
type = DecodeSpecial(i, field[i], &val);
if (type == IGNORE_DTF)
continue;
tmask = DTK_M(type);
switch (type)
{
case RESERV:
switch (val)
{
case DTK_CURRENT:
ereport(ERROR,
2005-10-15 04:49:52 +02:00
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("date/time value \"current\" is no longer supported")));
return DTERR_BAD_FORMAT;
break;
case DTK_NOW:
tmask = (DTK_DATE_M | DTK_TIME_M | DTK_M(TZ));
*dtype = DTK_DATE;
GetCurrentTimeUsec(tm, fsec, tzp);
break;
case DTK_YESTERDAY:
tmask = DTK_DATE_M;
*dtype = DTK_DATE;
GetCurrentDateTime(tm);
j2date(date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - 1,
2005-10-15 04:49:52 +02:00
&tm->tm_year, &tm->tm_mon, &tm->tm_mday);
tm->tm_hour = 0;
tm->tm_min = 0;
tm->tm_sec = 0;
break;
case DTK_TODAY:
tmask = DTK_DATE_M;
*dtype = DTK_DATE;
GetCurrentDateTime(tm);
tm->tm_hour = 0;
tm->tm_min = 0;
tm->tm_sec = 0;
break;
case DTK_TOMORROW:
tmask = DTK_DATE_M;
*dtype = DTK_DATE;
GetCurrentDateTime(tm);
j2date(date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) + 1,
2005-10-15 04:49:52 +02:00
&tm->tm_year, &tm->tm_mon, &tm->tm_mday);
tm->tm_hour = 0;
tm->tm_min = 0;
tm->tm_sec = 0;
break;
case DTK_ZULU:
tmask = (DTK_TIME_M | DTK_M(TZ));
*dtype = DTK_DATE;
tm->tm_hour = 0;
tm->tm_min = 0;
tm->tm_sec = 0;
if (tzp != NULL)
*tzp = 0;
break;
default:
*dtype = val;
}
break;
case MONTH:
/*
2005-10-15 04:49:52 +02:00
* already have a (numeric) month? then see if we can
* substitute...
*/
if ((fmask & DTK_M(MONTH)) && !haveTextMonth &&
!(fmask & DTK_M(DAY)) && tm->tm_mon >= 1 &&
tm->tm_mon <= 31)
{
tm->tm_mday = tm->tm_mon;
tmask = DTK_M(DAY);
}
haveTextMonth = TRUE;
tm->tm_mon = val;
break;
case DTZMOD:
/*
2005-10-15 04:49:52 +02:00
* daylight savings time modifier (solves "MET DST"
* syntax)
*/
tmask |= DTK_M(DTZ);
tm->tm_isdst = 1;
if (tzp == NULL)
return DTERR_BAD_FORMAT;
*tzp += val * MINS_PER_HOUR;
break;
case DTZ:
/*
2005-10-15 04:49:52 +02:00
* set mask for TZ here _or_ check for DTZ later when
* getting default timezone
*/
tmask |= DTK_M(TZ);
tm->tm_isdst = 1;
if (tzp == NULL)
return DTERR_BAD_FORMAT;
*tzp = val * MINS_PER_HOUR;
break;
case TZ:
tm->tm_isdst = 0;
if (tzp == NULL)
return DTERR_BAD_FORMAT;
*tzp = val * MINS_PER_HOUR;
break;
case IGNORE_DTF:
break;
case AMPM:
mer = val;
break;
case ADBC:
bc = (val == BC);
break;
case DOW:
tm->tm_wday = val;
break;
case UNITS:
tmask = 0;
ptype = val;
break;
case ISOTIME:
2002-09-04 22:31:48 +02:00
/*
2005-10-15 04:49:52 +02:00
* This is a filler field "t" indicating that the next
* field is time. Try to verify that this is sensible.
*/
tmask = 0;
/* No preceding date? Then quit... */
if ((fmask & DTK_DATE_M) != DTK_DATE_M)
return DTERR_BAD_FORMAT;
/***
* We will need one of the following fields:
2002-09-04 22:31:48 +02:00
* DTK_NUMBER should be hhmmss.fff
* DTK_TIME should be hh:mm:ss.fff
* DTK_DATE should be hhmmss-zz
***/
if (i >= nf - 1 ||
(ftype[i + 1] != DTK_NUMBER &&
ftype[i + 1] != DTK_TIME &&
ftype[i + 1] != DTK_DATE))
return DTERR_BAD_FORMAT;
ptype = val;
break;
case UNKNOWN_FIELD:
2007-11-15 22:14:46 +01:00
/*
* Before giving up and declaring error, check to see
* if it is an all-alpha timezone name.
*/
namedTz = pg_tzset(field[i]);
if (!namedTz)
return DTERR_BAD_FORMAT;
/* we'll apply the zone setting below */
tmask = DTK_M(TZ);
break;
default:
return DTERR_BAD_FORMAT;
}
break;
default:
return DTERR_BAD_FORMAT;
}
if (tmask & fmask)
return DTERR_BAD_FORMAT;
fmask |= tmask;
} /* end loop over fields */
/* do final checking/adjustment of Y/M/D fields */
dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm);
if (dterr)
return dterr;
/* handle AM/PM */
if (mer != HR24 && tm->tm_hour > 12)
return DTERR_FIELD_OVERFLOW;
if (mer == AM && tm->tm_hour == 12)
tm->tm_hour = 0;
else if (mer == PM && tm->tm_hour != 12)
tm->tm_hour += 12;
/* do additional checking for full date specs... */
if (*dtype == DTK_DATE)
{
if ((fmask & DTK_DATE_M) != DTK_DATE_M)
{
if ((fmask & DTK_TIME_M) == DTK_TIME_M)
return 1;
return DTERR_BAD_FORMAT;
}
/*
2007-11-15 22:14:46 +01:00
* If we had a full timezone spec, compute the offset (we could not do
* it before, because we need the date to resolve DST status).
*/
if (namedTz != NULL)
{
/* daylight savings time modifier disallowed with full TZ */
if (fmask & DTK_M(DTZMOD))
return DTERR_BAD_FORMAT;
*tzp = DetermineTimeZoneOffset(tm, namedTz);
}
/* timezone not specified? then find local timezone if possible */
if (tzp != NULL && !(fmask & DTK_M(TZ)))
{
/*
2005-10-15 04:49:52 +02:00
* daylight savings time modifier but no standard timezone? then
* error
*/
if (fmask & DTK_M(DTZMOD))
return DTERR_BAD_FORMAT;
*tzp = DetermineTimeZoneOffset(tm, session_timezone);
}
}
return 0;
}
/* DetermineTimeZoneOffset()
*
* Given a struct pg_tm in which tm_year, tm_mon, tm_mday, tm_hour, tm_min, and
* tm_sec fields are set, attempt to determine the applicable time zone
* (ie, regular or daylight-savings time) at that time. Set the struct pg_tm's
* tm_isdst field accordingly, and return the actual timezone offset.
*
* Note: it might seem that we should use mktime() for this, but bitter
* experience teaches otherwise. This code is much faster than most versions
* of mktime(), anyway.
*/
int
2005-10-15 04:49:52 +02:00
DetermineTimeZoneOffset(struct pg_tm * tm, pg_tz *tzp)
{
int date,
sec;
pg_time_t day,
mytime,
prevtime,
boundary,
beforetime,
aftertime;
long int before_gmtoff,
after_gmtoff;
int before_isdst,
after_isdst;
int res;
if (tzp == session_timezone && HasCTZSet)
{
tm->tm_isdst = 0; /* for lack of a better idea */
return CTimeZone;
}
/*
* First, generate the pg_time_t value corresponding to the given
2005-10-15 04:49:52 +02:00
* y/m/d/h/m/s taken as GMT time. If this overflows, punt and decide the
* timezone is GMT. (We only need to worry about overflow on machines
* where pg_time_t is 32 bits.)
*/
if (!IS_VALID_JULIAN(tm->tm_year, tm->tm_mon, tm->tm_mday))
goto overflow;
date = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - UNIX_EPOCH_JDATE;
2005-10-15 04:49:52 +02:00
day = ((pg_time_t) date) * SECS_PER_DAY;
2005-05-23 23:54:02 +02:00
if (day / SECS_PER_DAY != date)
goto overflow;
sec = tm->tm_sec + (tm->tm_min + tm->tm_hour * MINS_PER_HOUR) * SECS_PER_MINUTE;
mytime = day + sec;
/* since sec >= 0, overflow could only be from +day to -mytime */
if (mytime < 0 && day > 0)
goto overflow;
/*
2005-10-15 04:49:52 +02:00
* Find the DST time boundary just before or following the target time. We
* assume that all zones have GMT offsets less than 24 hours, and that DST
* boundaries can't be closer together than 48 hours, so backing up 24
* hours and finding the "next" boundary will work.
*/
prevtime = mytime - SECS_PER_DAY;
if (mytime < 0 && prevtime > 0)
goto overflow;
res = pg_next_dst_boundary(&prevtime,
&before_gmtoff, &before_isdst,
&boundary,
&after_gmtoff, &after_isdst,
2005-10-15 04:49:52 +02:00
tzp);
if (res < 0)
goto overflow; /* failure? */
if (res == 0)
{
/* Non-DST zone, life is simple */
tm->tm_isdst = before_isdst;
2005-10-15 04:49:52 +02:00
return -(int) before_gmtoff;
}
/*
* Form the candidate pg_time_t values with local-time adjustment
*/
beforetime = mytime - before_gmtoff;
if ((before_gmtoff > 0 &&
mytime < 0 && beforetime > 0) ||
(before_gmtoff <= 0 &&
mytime > 0 && beforetime < 0))
goto overflow;
aftertime = mytime - after_gmtoff;
if ((after_gmtoff > 0 &&
mytime < 0 && aftertime > 0) ||
(after_gmtoff <= 0 &&
mytime > 0 && aftertime < 0))
goto overflow;
/*
* If both before or both after the boundary time, we know what to do
*/
if (beforetime <= boundary && aftertime < boundary)
{
tm->tm_isdst = before_isdst;
2005-10-15 04:49:52 +02:00
return -(int) before_gmtoff;
}
if (beforetime > boundary && aftertime >= boundary)
{
tm->tm_isdst = after_isdst;
2005-10-15 04:49:52 +02:00
return -(int) after_gmtoff;
}
2005-10-15 04:49:52 +02:00
/*
2005-10-15 04:49:52 +02:00
* It's an invalid or ambiguous time due to timezone transition. Prefer
* the standard-time interpretation.
*/
if (after_isdst == 0)
{
tm->tm_isdst = after_isdst;
2005-10-15 04:49:52 +02:00
return -(int) after_gmtoff;
}
tm->tm_isdst = before_isdst;
2005-10-15 04:49:52 +02:00
return -(int) before_gmtoff;
overflow:
/* Given date is out of range, so assume UTC */
tm->tm_isdst = 0;
return 0;
}
/* DecodeTimeOnly()
* Interpret parsed string as time fields only.
* Returns 0 if successful, DTERR code if bogus input detected.
*
* Note that support for time zone is here for
* SQL92 TIME WITH TIME ZONE, but it reveals
* bogosity with SQL92 date/time standards, since
* we must infer a time zone from current time.
* - thomas 2000-03-10
* Allow specifying date to get a better time zone,
* if time zones are allowed. - thomas 2001-12-26
*/
int
DecodeTimeOnly(char **field, int *ftype, int nf,
2005-10-15 04:49:52 +02:00
int *dtype, struct pg_tm * tm, fsec_t *fsec, int *tzp)
{
int fmask = 0,
tmask,
type;
2002-09-04 22:31:48 +02:00
int ptype = 0; /* "prefix type" for ISO h04mm05s06 format */
int i;
int val;
int dterr;
bool isjulian = FALSE;
bool is2digits = FALSE;
bool bc = FALSE;
int mer = HR24;
pg_tz *namedTz = NULL;
*dtype = DTK_TIME;
tm->tm_hour = 0;
tm->tm_min = 0;
tm->tm_sec = 0;
*fsec = 0;
/* don't know daylight savings time status apriori */
tm->tm_isdst = -1;
if (tzp != NULL)
*tzp = 0;
for (i = 0; i < nf; i++)
{
switch (ftype[i])
{
case DTK_DATE:
2002-09-04 22:31:48 +02:00
/*
2005-10-15 04:49:52 +02:00
* Time zone not allowed? Then should not accept dates or time
* zones no matter what else!
*/
if (tzp == NULL)
return DTERR_BAD_FORMAT;
/* Under limited circumstances, we will accept a date... */
if (i == 0 && nf >= 2 &&
(ftype[nf - 1] == DTK_DATE || ftype[1] == DTK_TIME))
{
dterr = DecodeDate(field[i], fmask,
&tmask, &is2digits, tm);
if (dterr)
return dterr;
}
/* otherwise, this is a time and/or time zone */
else
{
if (isdigit((unsigned char) *field[i]))
{
2002-09-04 22:31:48 +02:00
char *cp;
2002-09-04 22:31:48 +02:00
/*
* Starts with a digit but we already have a time
2005-10-15 04:49:52 +02:00
* field? Then we are in trouble with time already...
*/
if ((fmask & DTK_TIME_M) == DTK_TIME_M)
return DTERR_BAD_FORMAT;
2002-09-04 22:31:48 +02:00
/*
2005-10-15 04:49:52 +02:00
* Should not get here and fail. Sanity check only...
2002-09-04 22:31:48 +02:00
*/
if ((cp = strchr(field[i], '-')) == NULL)
return DTERR_BAD_FORMAT;
/* Get the time zone from the end of the string */
dterr = DecodeTimezone(cp, tzp);
if (dterr)
return dterr;
*cp = '\0';
2002-09-04 22:31:48 +02:00
/*
2005-10-15 04:49:52 +02:00
* Then read the rest of the field as a concatenated
* time
2002-09-04 22:31:48 +02:00
*/
dterr = DecodeNumberField(strlen(field[i]), field[i],
(fmask | DTK_DATE_M),
&tmask, tm,
fsec, &is2digits);
if (dterr < 0)
return dterr;
ftype[i] = dterr;
tmask |= DTK_M(TZ);
}
else
{
namedTz = pg_tzset(field[i]);
if (!namedTz)
{
/*
* We should return an error code instead of
2007-11-15 22:14:46 +01:00
* ereport'ing directly, but then there is no way
* to report the bad time zone name.
*/
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("time zone \"%s\" not recognized",
field[i])));
}
/* we'll apply the zone setting below */
ftype[i] = DTK_TZ;
tmask = DTK_M(TZ);
}
}
break;
case DTK_TIME:
dterr = DecodeTime(field[i], (fmask | DTK_DATE_M),
INTERVAL_FULL_RANGE,
&tmask, tm, fsec);
if (dterr)
return dterr;
break;
case DTK_TZ:
{
int tz;
if (tzp == NULL)
return DTERR_BAD_FORMAT;
dterr = DecodeTimezone(field[i], &tz);
if (dterr)
return dterr;
*tzp = tz;
tmask = DTK_M(TZ);
}
break;
case DTK_NUMBER:
2002-09-04 22:31:48 +02:00
/*
* Was this an "ISO time" with embedded field labels? An
* example is "h04m05s06" - thomas 2001-02-04
*/
if (ptype != 0)
{
char *cp;
int val;
/* Only accept a date under limited circumstances */
switch (ptype)
{
case DTK_JULIAN:
case DTK_YEAR:
case DTK_MONTH:
case DTK_DAY:
if (tzp == NULL)
return DTERR_BAD_FORMAT;
default:
break;
}
errno = 0;
val = strtoi(field[i], &cp, 10);
if (errno == ERANGE)
return DTERR_FIELD_OVERFLOW;
2002-09-04 22:31:48 +02:00
/*
* only a few kinds are allowed to have an embedded
* decimal
*/
if (*cp == '.')
switch (ptype)
{
case DTK_JULIAN:
case DTK_TIME:
case DTK_SECOND:
break;
default:
return DTERR_BAD_FORMAT;
break;
}
else if (*cp != '\0')
return DTERR_BAD_FORMAT;
switch (ptype)
{
case DTK_YEAR:
tm->tm_year = val;
tmask = DTK_M(YEAR);
break;
case DTK_MONTH:
2002-09-04 22:31:48 +02:00
/*
* already have a month and hour? then assume
* minutes
*/
if ((fmask & DTK_M(MONTH)) != 0 &&
(fmask & DTK_M(HOUR)) != 0)
{
tm->tm_min = val;
tmask = DTK_M(MINUTE);
}
else
{
tm->tm_mon = val;
tmask = DTK_M(MONTH);
}
break;
case DTK_DAY:
tm->tm_mday = val;
tmask = DTK_M(DAY);
break;
case DTK_HOUR:
tm->tm_hour = val;
tmask = DTK_M(HOUR);
break;
case DTK_MINUTE:
tm->tm_min = val;
tmask = DTK_M(MINUTE);
break;
case DTK_SECOND:
tm->tm_sec = val;
tmask = DTK_M(SECOND);
if (*cp == '.')
{
dterr = ParseFractionalSecond(cp, fsec);
if (dterr)
return dterr;
tmask = DTK_ALL_SECS_M;
}
break;
case DTK_TZ:
tmask = DTK_M(TZ);
dterr = DecodeTimezone(field[i], tzp);
if (dterr)
return dterr;
break;
case DTK_JULIAN:
/* previous field was a label for "julian date" */
if (val < 0)
return DTERR_FIELD_OVERFLOW;
tmask = DTK_DATE_M;
j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
isjulian = TRUE;
if (*cp == '.')
{
2002-09-04 22:31:48 +02:00
double time;
errno = 0;
time = strtod(cp, &cp);
if (*cp != '\0' || errno != 0)
return DTERR_BAD_FORMAT;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#ifdef HAVE_INT64_TIMESTAMP
time *= USECS_PER_DAY;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#else
time *= SECS_PER_DAY;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#endif
dt2time(time,
&tm->tm_hour, &tm->tm_min,
&tm->tm_sec, fsec);
tmask |= DTK_TIME_M;
}
break;
case DTK_TIME:
/* previous field was "t" for ISO time */
dterr = DecodeNumberField(strlen(field[i]), field[i],
2005-10-15 04:49:52 +02:00
(fmask | DTK_DATE_M),
&tmask, tm,
fsec, &is2digits);
if (dterr < 0)
return dterr;
ftype[i] = dterr;
if (tmask != DTK_TIME_M)
return DTERR_BAD_FORMAT;
break;
default:
return DTERR_BAD_FORMAT;
break;
}
ptype = 0;
*dtype = DTK_DATE;
}
else
{
2002-09-04 22:31:48 +02:00
char *cp;
int flen;
flen = strlen(field[i]);
cp = strchr(field[i], '.');
/* Embedded decimal? */
if (cp != NULL)
{
2002-09-04 22:31:48 +02:00
/*
* Under limited circumstances, we will accept a
* date...
*/
if (i == 0 && nf >= 2 && ftype[nf - 1] == DTK_DATE)
{
dterr = DecodeDate(field[i], fmask,
&tmask, &is2digits, tm);
if (dterr)
return dterr;
}
/* embedded decimal and several digits before? */
else if (flen - strlen(cp) > 2)
{
2002-09-04 22:31:48 +02:00
/*
2005-10-15 04:49:52 +02:00
* Interpret as a concatenated date or time Set
* the type field to allow decoding other fields
* later. Example: 20011223 or 040506
*/
dterr = DecodeNumberField(flen, field[i],
2005-10-15 04:49:52 +02:00
(fmask | DTK_DATE_M),
&tmask, tm,
fsec, &is2digits);
if (dterr < 0)
return dterr;
ftype[i] = dterr;
}
else
return DTERR_BAD_FORMAT;
}
else if (flen > 4)
{
dterr = DecodeNumberField(flen, field[i],
(fmask | DTK_DATE_M),
&tmask, tm,
fsec, &is2digits);
if (dterr < 0)
return dterr;
ftype[i] = dterr;
}
/* otherwise it is a single date/time field... */
else
{
dterr = DecodeNumber(flen, field[i],
FALSE,
(fmask | DTK_DATE_M),
&tmask, tm,
fsec, &is2digits);
if (dterr)
return dterr;
}
}
break;
case DTK_STRING:
case DTK_SPECIAL:
type = DecodeSpecial(i, field[i], &val);
if (type == IGNORE_DTF)
continue;
tmask = DTK_M(type);
switch (type)
{
case RESERV:
switch (val)
{
case DTK_CURRENT:
ereport(ERROR,
2005-10-15 04:49:52 +02:00
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("date/time value \"current\" is no longer supported")));
return DTERR_BAD_FORMAT;
break;
case DTK_NOW:
tmask = DTK_TIME_M;
*dtype = DTK_TIME;
GetCurrentTimeUsec(tm, fsec, NULL);
break;
case DTK_ZULU:
tmask = (DTK_TIME_M | DTK_M(TZ));
*dtype = DTK_TIME;
tm->tm_hour = 0;
tm->tm_min = 0;
tm->tm_sec = 0;
tm->tm_isdst = 0;
break;
default:
return DTERR_BAD_FORMAT;
}
break;
case DTZMOD:
/*
2005-10-15 04:49:52 +02:00
* daylight savings time modifier (solves "MET DST"
* syntax)
*/
tmask |= DTK_M(DTZ);
tm->tm_isdst = 1;
if (tzp == NULL)
return DTERR_BAD_FORMAT;
*tzp += val * MINS_PER_HOUR;
break;
case DTZ:
/*
2005-10-15 04:49:52 +02:00
* set mask for TZ here _or_ check for DTZ later when
* getting default timezone
*/
tmask |= DTK_M(TZ);
tm->tm_isdst = 1;
if (tzp == NULL)
return DTERR_BAD_FORMAT;
*tzp = val * MINS_PER_HOUR;
ftype[i] = DTK_TZ;
break;
case TZ:
tm->tm_isdst = 0;
if (tzp == NULL)
return DTERR_BAD_FORMAT;
*tzp = val * MINS_PER_HOUR;
ftype[i] = DTK_TZ;
break;
case IGNORE_DTF:
break;
case AMPM:
mer = val;
break;
case ADBC:
bc = (val == BC);
break;
case UNITS:
tmask = 0;
ptype = val;
break;
case ISOTIME:
tmask = 0;
/***
* We will need one of the following fields:
2002-09-04 22:31:48 +02:00
* DTK_NUMBER should be hhmmss.fff
* DTK_TIME should be hh:mm:ss.fff
* DTK_DATE should be hhmmss-zz
***/
if (i >= nf - 1 ||
(ftype[i + 1] != DTK_NUMBER &&
ftype[i + 1] != DTK_TIME &&
ftype[i + 1] != DTK_DATE))
return DTERR_BAD_FORMAT;
ptype = val;
break;
case UNKNOWN_FIELD:
2007-11-15 22:14:46 +01:00
/*
* Before giving up and declaring error, check to see
* if it is an all-alpha timezone name.
*/
namedTz = pg_tzset(field[i]);
if (!namedTz)
return DTERR_BAD_FORMAT;
/* we'll apply the zone setting below */
tmask = DTK_M(TZ);
break;
default:
return DTERR_BAD_FORMAT;
}
break;
default:
return DTERR_BAD_FORMAT;
}
if (tmask & fmask)
return DTERR_BAD_FORMAT;
fmask |= tmask;
} /* end loop over fields */
/* do final checking/adjustment of Y/M/D fields */
dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm);
if (dterr)
return dterr;
/* handle AM/PM */
if (mer != HR24 && tm->tm_hour > 12)
return DTERR_FIELD_OVERFLOW;
if (mer == AM && tm->tm_hour == 12)
tm->tm_hour = 0;
else if (mer == PM && tm->tm_hour != 12)
tm->tm_hour += 12;
if (tm->tm_hour < 0 || tm->tm_min < 0 || tm->tm_min > 59 ||
tm->tm_sec < 0 || tm->tm_sec > 60 || tm->tm_hour > 24 ||
/* test for > 24:00:00 */
(tm->tm_hour == 24 &&
(tm->tm_min > 0 || tm->tm_sec > 0 || *fsec > 0)) ||
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#ifdef HAVE_INT64_TIMESTAMP
*fsec < INT64CONST(0) || *fsec > USECS_PER_SEC
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#else
*fsec < 0 || *fsec > 1
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#endif
)
return DTERR_FIELD_OVERFLOW;
if ((fmask & DTK_TIME_M) != DTK_TIME_M)
return DTERR_BAD_FORMAT;
/*
2007-11-15 22:14:46 +01:00
* If we had a full timezone spec, compute the offset (we could not do it
* before, because we may need the date to resolve DST status).
*/
if (namedTz != NULL)
{
long int gmtoff;
/* daylight savings time modifier disallowed with full TZ */
if (fmask & DTK_M(DTZMOD))
return DTERR_BAD_FORMAT;
/* if non-DST zone, we do not need to know the date */
if (pg_get_timezone_offset(namedTz, &gmtoff))
{
*tzp = -(int) gmtoff;
}
else
{
/* a date has to be specified */
if ((fmask & DTK_DATE_M) != DTK_DATE_M)
return DTERR_BAD_FORMAT;
*tzp = DetermineTimeZoneOffset(tm, namedTz);
}
}
/* timezone not specified? then find local timezone if possible */
if (tzp != NULL && !(fmask & DTK_M(TZ)))
{
2004-08-29 07:07:03 +02:00
struct pg_tm tt,
*tmp = &tt;
/*
2005-10-15 04:49:52 +02:00
* daylight savings time modifier but no standard timezone? then error
*/
if (fmask & DTK_M(DTZMOD))
return DTERR_BAD_FORMAT;
if ((fmask & DTK_DATE_M) == 0)
GetCurrentDateTime(tmp);
else
{
tmp->tm_year = tm->tm_year;
tmp->tm_mon = tm->tm_mon;
tmp->tm_mday = tm->tm_mday;
}
tmp->tm_hour = tm->tm_hour;
tmp->tm_min = tm->tm_min;
tmp->tm_sec = tm->tm_sec;
*tzp = DetermineTimeZoneOffset(tmp, session_timezone);
tm->tm_isdst = tmp->tm_isdst;
}
return 0;
}
/* DecodeDate()
* Decode date string which includes delimiters.
* Return 0 if okay, a DTERR code if not.
*
* str: field to be parsed
* fmask: bitmask for field types already seen
* *tmask: receives bitmask for fields found here
* *is2digits: set to TRUE if we find 2-digit year
* *tm: field values are stored into appropriate members of this struct
*/
static int
DecodeDate(char *str, int fmask, int *tmask, bool *is2digits,
struct pg_tm * tm)
{
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
fsec_t fsec;
int nf = 0;
int i,
len;
int dterr;
bool haveTextMonth = FALSE;
int type,
val,
dmask = 0;
char *field[MAXDATEFIELDS];
*tmask = 0;
/* parse this string... */
while (*str != '\0' && nf < MAXDATEFIELDS)
{
/* skip field separators */
while (!isalnum((unsigned char) *str))
str++;
field[nf] = str;
if (isdigit((unsigned char) *str))
{
while (isdigit((unsigned char) *str))
str++;
}
else if (isalpha((unsigned char) *str))
{
while (isalpha((unsigned char) *str))
str++;
}
/* Just get rid of any non-digit, non-alpha characters... */
if (*str != '\0')
*str++ = '\0';
nf++;
}
/* look first for text fields, since that will be unambiguous month */
for (i = 0; i < nf; i++)
{
if (isalpha((unsigned char) *field[i]))
{
type = DecodeSpecial(i, field[i], &val);
if (type == IGNORE_DTF)
continue;
dmask = DTK_M(type);
switch (type)
{
case MONTH:
tm->tm_mon = val;
haveTextMonth = TRUE;
break;
default:
return DTERR_BAD_FORMAT;
}
if (fmask & dmask)
return DTERR_BAD_FORMAT;
fmask |= dmask;
*tmask |= dmask;
/* mark this field as being completed */
field[i] = NULL;
}
}
/* now pick up remaining numeric fields */
for (i = 0; i < nf; i++)
{
if (field[i] == NULL)
continue;
if ((len = strlen(field[i])) <= 0)
return DTERR_BAD_FORMAT;
dterr = DecodeNumber(len, field[i], haveTextMonth, fmask,
&dmask, tm,
&fsec, is2digits);
if (dterr)
return dterr;
if (fmask & dmask)
return DTERR_BAD_FORMAT;
fmask |= dmask;
*tmask |= dmask;
}
if ((fmask & ~(DTK_M(DOY) | DTK_M(TZ))) != DTK_DATE_M)
return DTERR_BAD_FORMAT;
/* validation of the field values must wait until ValidateDate() */
return 0;
}
/* ValidateDate()
* Check valid year/month/day values, handle BC and DOY cases
* Return 0 if okay, a DTERR code if not.
*/
static int
ValidateDate(int fmask, bool isjulian, bool is2digits, bool bc,
struct pg_tm * tm)
{
if (fmask & DTK_M(YEAR))
{
if (isjulian)
{
/* tm_year is correct and should not be touched */
}
else if (bc)
{
/* there is no year zero in AD/BC notation */
if (tm->tm_year <= 0)
return DTERR_FIELD_OVERFLOW;
/* internally, we represent 1 BC as year zero, 2 BC as -1, etc */
tm->tm_year = -(tm->tm_year - 1);
}
else if (is2digits)
{
2009-03-17 19:39:39 +01:00
/* process 1 or 2-digit input as 1970-2069 AD, allow '0' and '00' */
if (tm->tm_year < 0) /* just paranoia */
return DTERR_FIELD_OVERFLOW;
if (tm->tm_year < 70)
tm->tm_year += 2000;
else if (tm->tm_year < 100)
tm->tm_year += 1900;
}
else
{
/* there is no year zero in AD/BC notation */
if (tm->tm_year <= 0)
return DTERR_FIELD_OVERFLOW;
}
}
/* now that we have correct year, decode DOY */
if (fmask & DTK_M(DOY))
{
j2date(date2j(tm->tm_year, 1, 1) + tm->tm_yday - 1,
&tm->tm_year, &tm->tm_mon, &tm->tm_mday);
}
/* check for valid month */
if (fmask & DTK_M(MONTH))
{
if (tm->tm_mon < 1 || tm->tm_mon > MONTHS_PER_YEAR)
return DTERR_MD_FIELD_OVERFLOW;
}
/* minimal check for valid day */
if (fmask & DTK_M(DAY))
{
if (tm->tm_mday < 1 || tm->tm_mday > 31)
return DTERR_MD_FIELD_OVERFLOW;
}
if ((fmask & DTK_DATE_M) == DTK_DATE_M)
{
/*
* Check for valid day of month, now that we know for sure the month
* and year. Note we don't use MD_FIELD_OVERFLOW here, since it seems
* unlikely that "Feb 29" is a YMD-order error.
*/
if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1])
return DTERR_FIELD_OVERFLOW;
}
return 0;
}
/* DecodeTime()
* Decode time string which includes delimiters.
* Return 0 if okay, a DTERR code if not.
*
* Only check the lower limit on hours, since this same code can be
* used to represent time spans.
*/
static int
DecodeTime(char *str, int fmask, int range,
int *tmask, struct pg_tm * tm, fsec_t *fsec)
{
char *cp;
int dterr;
*tmask = DTK_TIME_M;
errno = 0;
tm->tm_hour = strtoi(str, &cp, 10);
if (errno == ERANGE)
return DTERR_FIELD_OVERFLOW;
if (*cp != ':')
return DTERR_BAD_FORMAT;
errno = 0;
tm->tm_min = strtoi(cp + 1, &cp, 10);
if (errno == ERANGE)
return DTERR_FIELD_OVERFLOW;
if (*cp == '\0')
{
tm->tm_sec = 0;
*fsec = 0;
/* If it's a MINUTE TO SECOND interval, take 2 fields as being mm:ss */
if (range == (INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND)))
{
tm->tm_sec = tm->tm_min;
tm->tm_min = tm->tm_hour;
tm->tm_hour = 0;
}
}
else if (*cp == '.')
{
/* always assume mm:ss.sss is MINUTE TO SECOND */
dterr = ParseFractionalSecond(cp, fsec);
if (dterr)
return dterr;
tm->tm_sec = tm->tm_min;
tm->tm_min = tm->tm_hour;
tm->tm_hour = 0;
}
else if (*cp == ':')
{
errno = 0;
tm->tm_sec = strtoi(cp + 1, &cp, 10);
if (errno == ERANGE)
return DTERR_FIELD_OVERFLOW;
if (*cp == '\0')
*fsec = 0;
else if (*cp == '.')
{
dterr = ParseFractionalSecond(cp, fsec);
if (dterr)
return dterr;
}
else
return DTERR_BAD_FORMAT;
}
else
return DTERR_BAD_FORMAT;
/* do a sanity check */
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#ifdef HAVE_INT64_TIMESTAMP
if (tm->tm_hour < 0 || tm->tm_min < 0 || tm->tm_min > 59 ||
tm->tm_sec < 0 || tm->tm_sec > 60 || *fsec < INT64CONST(0) ||
*fsec > USECS_PER_SEC)
return DTERR_FIELD_OVERFLOW;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#else
if (tm->tm_hour < 0 || tm->tm_min < 0 || tm->tm_min > 59 ||
tm->tm_sec < 0 || tm->tm_sec > 60 || *fsec < 0 || *fsec > 1)
return DTERR_FIELD_OVERFLOW;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#endif
return 0;
}
/* DecodeNumber()
* Interpret plain numeric field as a date value in context.
* Return 0 if okay, a DTERR code if not.
*/
static int
DecodeNumber(int flen, char *str, bool haveTextMonth, int fmask,
int *tmask, struct pg_tm * tm, fsec_t *fsec, bool *is2digits)
{
int val;
char *cp;
int dterr;
*tmask = 0;
errno = 0;
val = strtoi(str, &cp, 10);
if (errno == ERANGE)
return DTERR_FIELD_OVERFLOW;
if (cp == str)
return DTERR_BAD_FORMAT;
if (*cp == '.')
{
2002-09-04 22:31:48 +02:00
/*
2005-10-15 04:49:52 +02:00
* More than two digits before decimal point? Then could be a date or
* a run-together time: 2001.360 20011225 040506.789
*/
if (cp - str > 2)
{
dterr = DecodeNumberField(flen, str,
(fmask | DTK_DATE_M),
tmask, tm,
fsec, is2digits);
if (dterr < 0)
return dterr;
return 0;
}
dterr = ParseFractionalSecond(cp, fsec);
if (dterr)
return dterr;
}
else if (*cp != '\0')
return DTERR_BAD_FORMAT;
/* Special case for day of year */
if (flen == 3 && (fmask & DTK_DATE_M) == DTK_M(YEAR) && val >= 1 &&
val <= 366)
{
*tmask = (DTK_M(DOY) | DTK_M(MONTH) | DTK_M(DAY));
tm->tm_yday = val;
/* tm_mon and tm_mday can't actually be set yet ... */
return 0;
}
/* Switch based on what we have so far */
switch (fmask & DTK_DATE_M)
{
case 0:
2003-08-04 02:43:34 +02:00
/*
2005-10-15 04:49:52 +02:00
* Nothing so far; make a decision about what we think the input
* is. There used to be lots of heuristics here, but the
* consensus now is to be paranoid. It *must* be either
* YYYY-MM-DD (with a more-than-two-digit year field), or the
* field order defined by DateOrder.
*/
if (flen >= 3 || DateOrder == DATEORDER_YMD)
{
*tmask = DTK_M(YEAR);
tm->tm_year = val;
}
else if (DateOrder == DATEORDER_DMY)
{
*tmask = DTK_M(DAY);
tm->tm_mday = val;
}
else
{
*tmask = DTK_M(MONTH);
tm->tm_mon = val;
}
break;
case (DTK_M(YEAR)):
/* Must be at second field of YY-MM-DD */
*tmask = DTK_M(MONTH);
tm->tm_mon = val;
break;
case (DTK_M(MONTH)):
if (haveTextMonth)
{
/*
2005-10-15 04:49:52 +02:00
* We are at the first numeric field of a date that included a
* textual month name. We want to support the variants
* MON-DD-YYYY, DD-MON-YYYY, and YYYY-MON-DD as unambiguous
* inputs. We will also accept MON-DD-YY or DD-MON-YY in
* either DMY or MDY modes, as well as YY-MON-DD in YMD mode.
*/
if (flen >= 3 || DateOrder == DATEORDER_YMD)
{
*tmask = DTK_M(YEAR);
tm->tm_year = val;
}
else
{
*tmask = DTK_M(DAY);
tm->tm_mday = val;
}
}
else
{
/* Must be at second field of MM-DD-YY */
*tmask = DTK_M(DAY);
tm->tm_mday = val;
}
break;
case (DTK_M(YEAR) | DTK_M(MONTH)):
if (haveTextMonth)
{
/* Need to accept DD-MON-YYYY even in YMD mode */
if (flen >= 3 && *is2digits)
{
/* Guess that first numeric field is day was wrong */
2004-08-29 07:07:03 +02:00
*tmask = DTK_M(DAY); /* YEAR is already set */
tm->tm_mday = tm->tm_year;
tm->tm_year = val;
*is2digits = FALSE;
}
else
{
*tmask = DTK_M(DAY);
tm->tm_mday = val;
}
}
else
{
/* Must be at third field of YY-MM-DD */
*tmask = DTK_M(DAY);
tm->tm_mday = val;
}
break;
case (DTK_M(DAY)):
/* Must be at second field of DD-MM-YY */
*tmask = DTK_M(MONTH);
tm->tm_mon = val;
break;
case (DTK_M(MONTH) | DTK_M(DAY)):
/* Must be at third field of DD-MM-YY or MM-DD-YY */
*tmask = DTK_M(YEAR);
tm->tm_year = val;
break;
case (DTK_M(YEAR) | DTK_M(MONTH) | DTK_M(DAY)):
/* we have all the date, so it must be a time field */
dterr = DecodeNumberField(flen, str, fmask,
tmask, tm,
fsec, is2digits);
if (dterr < 0)
return dterr;
return 0;
default:
/* Anything else is bogus input */
return DTERR_BAD_FORMAT;
}
/*
2005-10-15 04:49:52 +02:00
* When processing a year field, mark it for adjustment if it's only one
* or two digits.
*/
if (*tmask == DTK_M(YEAR))
*is2digits = (flen <= 2);
return 0;
}
/* DecodeNumberField()
* Interpret numeric string as a concatenated date or time field.
* Return a DTK token (>= 0) if successful, a DTERR code (< 0) if not.
*
* Use the context of previously decoded fields to help with
* the interpretation.
*/
static int
DecodeNumberField(int len, char *str, int fmask,
2007-11-15 22:14:46 +01:00
int *tmask, struct pg_tm * tm, fsec_t *fsec, bool *is2digits)
{
char *cp;
2002-09-04 22:31:48 +02:00
/*
2005-10-15 04:49:52 +02:00
* Have a decimal point? Then this is a date or something with a seconds
* field...
*/
if ((cp = strchr(str, '.')) != NULL)
{
/*
* Can we use ParseFractionalSecond here? Not clear whether trailing
* junk should be rejected ...
*/
double frac;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
errno = 0;
frac = strtod(cp, NULL);
if (errno != 0)
return DTERR_BAD_FORMAT;
#ifdef HAVE_INT64_TIMESTAMP
*fsec = rint(frac * 1000000);
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#else
*fsec = frac;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#endif
/* Now truncate off the fraction for further processing */
*cp = '\0';
len = strlen(str);
}
/* No decimal point and no complete date yet? */
else if ((fmask & DTK_DATE_M) != DTK_DATE_M)
{
/* yyyymmdd? */
if (len == 8)
{
*tmask = DTK_DATE_M;
tm->tm_mday = atoi(str + 6);
*(str + 6) = '\0';
tm->tm_mon = atoi(str + 4);
*(str + 4) = '\0';
tm->tm_year = atoi(str + 0);
return DTK_DATE;
}
/* yymmdd? */
else if (len == 6)
{
*tmask = DTK_DATE_M;
tm->tm_mday = atoi(str + 4);
*(str + 4) = '\0';
tm->tm_mon = atoi(str + 2);
*(str + 2) = '\0';
tm->tm_year = atoi(str + 0);
*is2digits = TRUE;
return DTK_DATE;
}
}
/* not all time fields are specified? */
if ((fmask & DTK_TIME_M) != DTK_TIME_M)
{
/* hhmmss */
if (len == 6)
{
*tmask = DTK_TIME_M;
tm->tm_sec = atoi(str + 4);
*(str + 4) = '\0';
tm->tm_min = atoi(str + 2);
*(str + 2) = '\0';
tm->tm_hour = atoi(str + 0);
return DTK_TIME;
}
/* hhmm? */
else if (len == 4)
{
*tmask = DTK_TIME_M;
tm->tm_sec = 0;
tm->tm_min = atoi(str + 2);
*(str + 2) = '\0';
tm->tm_hour = atoi(str + 0);
return DTK_TIME;
}
}
return DTERR_BAD_FORMAT;
}
/* DecodeTimezone()
* Interpret string as a numeric timezone.
*
* Return 0 if okay (and set *tzp), a DTERR code if not okay.
*
* NB: this must *not* ereport on failure; see commands/variable.c.
*
* Note: we allow timezone offsets up to 13:59. There are places that
* use +1300 summer time.
*/
static int
DecodeTimezone(char *str, int *tzp)
{
int tz;
int hr,
min,
sec = 0;
char *cp;
/* leading character must be "+" or "-" */
if (*str != '+' && *str != '-')
return DTERR_BAD_FORMAT;
errno = 0;
hr = strtoi(str + 1, &cp, 10);
if (errno == ERANGE)
return DTERR_TZDISP_OVERFLOW;
/* explicit delimiter? */
if (*cp == ':')
{
errno = 0;
min = strtoi(cp + 1, &cp, 10);
if (errno == ERANGE)
return DTERR_TZDISP_OVERFLOW;
if (*cp == ':')
{
errno = 0;
sec = strtoi(cp + 1, &cp, 10);
if (errno == ERANGE)
return DTERR_TZDISP_OVERFLOW;
}
}
/* otherwise, might have run things together... */
else if (*cp == '\0' && strlen(str) > 3)
{
min = hr % 100;
hr = hr / 100;
/* we could, but don't, support a run-together hhmmss format */
}
else
min = 0;
if (hr < 0 || hr > 14)
return DTERR_TZDISP_OVERFLOW;
if (min < 0 || min >= 60)
return DTERR_TZDISP_OVERFLOW;
if (sec < 0 || sec >= 60)
return DTERR_TZDISP_OVERFLOW;
tz = (hr * MINS_PER_HOUR + min) * SECS_PER_MINUTE + sec;
if (*str == '-')
tz = -tz;
*tzp = -tz;
if (*cp != '\0')
return DTERR_BAD_FORMAT;
return 0;
}
/* DecodeSpecial()
* Decode text string using lookup table.
*
* Implement a cache lookup since it is likely that dates
* will be related in format.
*
* NB: this must *not* ereport on failure;
* see commands/variable.c.
*/
int
DecodeSpecial(int field, char *lowtoken, int *val)
{
int type;
const datetkn *tp;
tp = datecache[field];
if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
{
tp = datebsearch(lowtoken, timezonetktbl, sztimezonetktbl);
if (tp == NULL)
tp = datebsearch(lowtoken, datetktbl, szdatetktbl);
}
if (tp == NULL)
{
type = UNKNOWN_FIELD;
*val = 0;
}
else
{
datecache[field] = tp;
type = tp->type;
switch (type)
{
case TZ:
case DTZ:
case DTZMOD:
*val = FROMVAL(tp);
break;
default:
*val = tp->value;
break;
}
}
return type;
}
1997-03-15 00:21:12 +01:00
/* ClearPgTM
*
* Zero out a pg_tm and associated fsec_t
*/
static inline void
ClearPgTm(struct pg_tm * tm, fsec_t *fsec)
{
tm->tm_year = 0;
tm->tm_mon = 0;
tm->tm_mday = 0;
tm->tm_hour = 0;
tm->tm_min = 0;
tm->tm_sec = 0;
*fsec = 0;
}
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
/* DecodeInterval()
* Interpret previously parsed fields for general time interval.
* Returns 0 if successful, DTERR code if bogus input detected.
* dtype, tm, fsec are output parameters.
*
* Allow "date" field DTK_DATE since this could be just
* an unsigned floating point number. - thomas 1997-11-16
*
* Allow ISO-style time span, with implicit units on number of days
* preceding an hh:mm:ss field. - thomas 1998-04-30
*/
int
DecodeInterval(char **field, int *ftype, int nf, int range,
int *dtype, struct pg_tm * tm, fsec_t *fsec)
1997-03-15 00:21:12 +01:00
{
bool is_before = FALSE;
char *cp;
int fmask = 0,
tmask,
type;
int i;
int dterr;
int val;
double fval;
*dtype = DTK_DELTA;
type = IGNORE_DTF;
ClearPgTm(tm, fsec);
1997-03-15 00:21:12 +01:00
/* read through list backwards to pick up units before values */
for (i = nf - 1; i >= 0; i--)
{
switch (ftype[i])
{
case DTK_TIME:
dterr = DecodeTime(field[i], fmask, range,
&tmask, tm, fsec);
if (dterr)
return dterr;
type = DTK_DAY;
break;
case DTK_TZ:
2001-03-22 05:01:46 +01:00
/*
* Timezone is a token with a leading sign character and at
* least one digit; there could be ':', '.', '-' embedded in
* it as well.
*/
Assert(*field[i] == '-' || *field[i] == '+');
2001-03-22 05:01:46 +01:00
/*
* Try for hh:mm or hh:mm:ss. If not, fall through to
* DTK_NUMBER case, which can handle signed float numbers and
* signed year-month values.
*/
if (strchr(field[i] + 1, ':') != NULL &&
DecodeTime(field[i] + 1, fmask, INTERVAL_FULL_RANGE,
&tmask, tm, fsec) == 0)
2001-03-22 05:01:46 +01:00
{
if (*field[i] == '-')
{
/* flip the sign on all fields */
tm->tm_hour = -tm->tm_hour;
tm->tm_min = -tm->tm_min;
tm->tm_sec = -tm->tm_sec;
*fsec = -(*fsec);
}
2001-03-22 05:01:46 +01:00
/*
* Set the next type to be a day, if units are not
2005-10-15 04:49:52 +02:00
* specified. This handles the case of '1 +02:03' since we
* are reading right to left.
*/
type = DTK_DAY;
tmask = DTK_M(TZ);
break;
2001-03-22 05:01:46 +01:00
}
/* FALL THROUGH */
case DTK_DATE:
case DTK_NUMBER:
if (type == IGNORE_DTF)
{
/* use typmod to decide what rightmost field is */
switch (range)
{
case INTERVAL_MASK(YEAR):
type = DTK_YEAR;
break;
case INTERVAL_MASK(MONTH):
case INTERVAL_MASK(YEAR) | INTERVAL_MASK(MONTH):
type = DTK_MONTH;
break;
case INTERVAL_MASK(DAY):
type = DTK_DAY;
break;
case INTERVAL_MASK(HOUR):
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR):
type = DTK_HOUR;
break;
case INTERVAL_MASK(MINUTE):
case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE):
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE):
type = DTK_MINUTE;
break;
case INTERVAL_MASK(SECOND):
case INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
type = DTK_SECOND;
break;
default:
type = DTK_SECOND;
break;
}
}
errno = 0;
val = strtoi(field[i], &cp, 10);
if (errno == ERANGE)
return DTERR_FIELD_OVERFLOW;
if (*cp == '-')
{
/* SQL "years-months" syntax */
int val2;
val2 = strtoi(cp + 1, &cp, 10);
if (errno == ERANGE || val2 < 0 || val2 >= MONTHS_PER_YEAR)
return DTERR_FIELD_OVERFLOW;
if (*cp != '\0')
return DTERR_BAD_FORMAT;
type = DTK_MONTH;
if (*field[i] == '-')
val2 = -val2;
val = val * MONTHS_PER_YEAR + val2;
fval = 0;
}
else if (*cp == '.')
{
errno = 0;
fval = strtod(cp, &cp);
if (*cp != '\0' || errno != 0)
return DTERR_BAD_FORMAT;
if (*field[i] == '-')
fval = -fval;
}
else if (*cp == '\0')
fval = 0;
else
return DTERR_BAD_FORMAT;
tmask = 0; /* DTK_M(type); */
switch (type)
{
case DTK_MICROSEC:
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#ifdef HAVE_INT64_TIMESTAMP
*fsec += rint(val + fval);
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#else
*fsec += (val + fval) * 1e-6;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#endif
tmask = DTK_M(MICROSECOND);
break;
case DTK_MILLISEC:
/* avoid overflowing the fsec field */
tm->tm_sec += val / 1000;
val -= (val / 1000) * 1000;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#ifdef HAVE_INT64_TIMESTAMP
*fsec += rint((val + fval) * 1000);
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#else
*fsec += (val + fval) * 1e-3;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#endif
tmask = DTK_M(MILLISECOND);
break;
case DTK_SECOND:
tm->tm_sec += val;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#ifdef HAVE_INT64_TIMESTAMP
*fsec += rint(fval * 1000000);
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#else
*fsec += fval;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#endif
2007-11-15 22:14:46 +01:00
/*
2007-11-15 22:14:46 +01:00
* If any subseconds were specified, consider this
* microsecond and millisecond input as well.
*/
if (fval == 0)
tmask = DTK_M(SECOND);
else
tmask = DTK_ALL_SECS_M;
break;
case DTK_MINUTE:
tm->tm_min += val;
AdjustFractSeconds(fval, tm, fsec, SECS_PER_MINUTE);
tmask = DTK_M(MINUTE);
break;
case DTK_HOUR:
tm->tm_hour += val;
AdjustFractSeconds(fval, tm, fsec, SECS_PER_HOUR);
tmask = DTK_M(HOUR);
type = DTK_DAY; /* set for next field */
break;
case DTK_DAY:
tm->tm_mday += val;
AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY);
tmask = DTK_M(DAY);
break;
case DTK_WEEK:
tm->tm_mday += val * 7;
AdjustFractDays(fval, tm, fsec, 7);
tmask = DTK_M(WEEK);
break;
case DTK_MONTH:
tm->tm_mon += val;
AdjustFractDays(fval, tm, fsec, DAYS_PER_MONTH);
tmask = DTK_M(MONTH);
break;
case DTK_YEAR:
tm->tm_year += val;
if (fval != 0)
tm->tm_mon += fval * MONTHS_PER_YEAR;
tmask = DTK_M(YEAR);
break;
case DTK_DECADE:
tm->tm_year += val * 10;
if (fval != 0)
tm->tm_mon += fval * MONTHS_PER_YEAR * 10;
tmask = DTK_M(DECADE);
break;
case DTK_CENTURY:
tm->tm_year += val * 100;
if (fval != 0)
tm->tm_mon += fval * MONTHS_PER_YEAR * 100;
tmask = DTK_M(CENTURY);
break;
case DTK_MILLENNIUM:
tm->tm_year += val * 1000;
if (fval != 0)
tm->tm_mon += fval * MONTHS_PER_YEAR * 1000;
tmask = DTK_M(MILLENNIUM);
break;
default:
return DTERR_BAD_FORMAT;
}
break;
case DTK_STRING:
case DTK_SPECIAL:
type = DecodeUnits(i, field[i], &val);
if (type == IGNORE_DTF)
continue;
tmask = 0; /* DTK_M(type); */
switch (type)
{
case UNITS:
type = val;
break;
case AGO:
is_before = TRUE;
type = val;
break;
case RESERV:
tmask = (DTK_DATE_M | DTK_TIME_M);
*dtype = val;
break;
default:
return DTERR_BAD_FORMAT;
}
break;
default:
return DTERR_BAD_FORMAT;
}
if (tmask & fmask)
return DTERR_BAD_FORMAT;
fmask |= tmask;
}
1997-03-15 00:21:12 +01:00
/* ensure that at least one time field has been found */
if (fmask == 0)
return DTERR_BAD_FORMAT;
/* ensure fractional seconds are fractional */
if (*fsec != 0)
{
2002-09-04 22:31:48 +02:00
int sec;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#ifdef HAVE_INT64_TIMESTAMP
sec = *fsec / USECS_PER_SEC;
*fsec -= sec * USECS_PER_SEC;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#else
2005-07-12 17:17:44 +02:00
TMODULO(*fsec, sec, 1.0);
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
#endif
tm->tm_sec += sec;
}
1997-03-15 00:21:12 +01:00
/*----------
* The SQL standard defines the interval literal
* '-1 1:00:00'
* to mean "negative 1 days and negative 1 hours", while Postgres
* traditionally treats this as meaning "negative 1 days and positive
* 1 hours". In SQL_STANDARD intervalstyle, we apply the leading sign
* to all fields if there are no other explicit signs.
*
* We leave the signs alone if there are additional explicit signs.
* This protects us against misinterpreting postgres-style dump output,
* since the postgres-style output code has always put an explicit sign on
* all fields following a negative field. But note that SQL-spec output
* is ambiguous and can be misinterpreted on load! (So it's best practice
* to dump in postgres style, not SQL style.)
*----------
*/
if (IntervalStyle == INTSTYLE_SQL_STANDARD && *field[0] == '-')
{
/* Check for additional explicit signs */
bool more_signs = false;
for (i = 1; i < nf; i++)
{
if (*field[i] == '-' || *field[i] == '+')
{
more_signs = true;
break;
}
}
if (!more_signs)
{
/*
* Rather than re-determining which field was field[0], just force
* 'em all negative.
*/
if (*fsec > 0)
*fsec = -(*fsec);
if (tm->tm_sec > 0)
tm->tm_sec = -tm->tm_sec;
if (tm->tm_min > 0)
tm->tm_min = -tm->tm_min;
if (tm->tm_hour > 0)
tm->tm_hour = -tm->tm_hour;
if (tm->tm_mday > 0)
tm->tm_mday = -tm->tm_mday;
if (tm->tm_mon > 0)
tm->tm_mon = -tm->tm_mon;
if (tm->tm_year > 0)
tm->tm_year = -tm->tm_year;
}
}
/* finally, AGO negates everything */
if (is_before)
{
*fsec = -(*fsec);
tm->tm_sec = -tm->tm_sec;
tm->tm_min = -tm->tm_min;
tm->tm_hour = -tm->tm_hour;
tm->tm_mday = -tm->tm_mday;
tm->tm_mon = -tm->tm_mon;
tm->tm_year = -tm->tm_year;
}
1997-03-15 00:21:12 +01:00
return 0;
}
1997-03-15 00:21:12 +01:00
/*
* Helper functions to avoid duplicated code in DecodeISO8601Interval.
*
* Parse a decimal value and break it into integer and fractional parts.
* Returns 0 or DTERR code.
*/
static int
ParseISO8601Number(char *str, char **endptr, int *ipart, double *fpart)
{
double val;
if (!(isdigit((unsigned char) *str) || *str == '-' || *str == '.'))
return DTERR_BAD_FORMAT;
errno = 0;
val = strtod(str, endptr);
/* did we not see anything that looks like a double? */
if (*endptr == str || errno != 0)
return DTERR_BAD_FORMAT;
/* watch out for overflow */
if (val < INT_MIN || val > INT_MAX)
return DTERR_FIELD_OVERFLOW;
/* be very sure we truncate towards zero (cf dtrunc()) */
if (val >= 0)
*ipart = (int) floor(val);
else
*ipart = (int) -floor(-val);
*fpart = val - *ipart;
return 0;
}
/*
* Determine number of integral digits in a valid ISO 8601 number field
* (we should ignore sign and any fraction part)
*/
static int
ISO8601IntegerWidth(char *fieldstart)
{
/* We might have had a leading '-' */
if (*fieldstart == '-')
fieldstart++;
return strspn(fieldstart, "0123456789");
}
/* DecodeISO8601Interval()
* Decode an ISO 8601 time interval of the "format with designators"
* (section 4.4.3.2) or "alternative format" (section 4.4.3.3)
* Examples: P1D for 1 day
* PT1H for 1 hour
* P2Y6M7DT1H30M for 2 years, 6 months, 7 days 1 hour 30 min
* P0002-06-07T01:30:00 the same value in alternative format
*
* Returns 0 if successful, DTERR code if bogus input detected.
* Note: error code should be DTERR_BAD_FORMAT if input doesn't look like
* ISO8601, otherwise this could cause unexpected error messages.
* dtype, tm, fsec are output parameters.
*
* A couple exceptions from the spec:
* - a week field ('W') may coexist with other units
* - allows decimals in fields other than the least significant unit.
*/
int
DecodeISO8601Interval(char *str,
int *dtype, struct pg_tm * tm, fsec_t *fsec)
{
bool datepart = true;
bool havefield = false;
*dtype = DTK_DELTA;
ClearPgTm(tm, fsec);
if (strlen(str) < 2 || str[0] != 'P')
return DTERR_BAD_FORMAT;
str++;
while (*str)
{
char *fieldstart;
int val;
double fval;
char unit;
int dterr;
if (*str == 'T') /* T indicates the beginning of the time part */
{
datepart = false;
havefield = false;
str++;
continue;
}
fieldstart = str;
dterr = ParseISO8601Number(str, &str, &val, &fval);
if (dterr)
return dterr;
/*
* Note: we could step off the end of the string here. Code below
* *must* exit the loop if unit == '\0'.
*/
unit = *str++;
if (datepart)
{
switch (unit) /* before T: Y M W D */
{
case 'Y':
tm->tm_year += val;
tm->tm_mon += (fval * 12);
break;
case 'M':
tm->tm_mon += val;
AdjustFractDays(fval, tm, fsec, DAYS_PER_MONTH);
break;
case 'W':
tm->tm_mday += val * 7;
AdjustFractDays(fval, tm, fsec, 7);
break;
case 'D':
tm->tm_mday += val;
AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY);
break;
case 'T': /* ISO 8601 4.4.3.3 Alternative Format / Basic */
case '\0':
if (ISO8601IntegerWidth(fieldstart) == 8 && !havefield)
{
tm->tm_year += val / 10000;
tm->tm_mon += (val / 100) % 100;
tm->tm_mday += val % 100;
AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY);
if (unit == '\0')
return 0;
datepart = false;
havefield = false;
continue;
}
/* Else fall through to extended alternative format */
case '-': /* ISO 8601 4.4.3.3 Alternative Format,
* Extended */
if (havefield)
return DTERR_BAD_FORMAT;
tm->tm_year += val;
tm->tm_mon += (fval * 12);
if (unit == '\0')
return 0;
if (unit == 'T')
{
datepart = false;
havefield = false;
continue;
}
dterr = ParseISO8601Number(str, &str, &val, &fval);
if (dterr)
return dterr;
tm->tm_mon += val;
AdjustFractDays(fval, tm, fsec, DAYS_PER_MONTH);
if (*str == '\0')
return 0;
if (*str == 'T')
{
datepart = false;
havefield = false;
continue;
}
if (*str != '-')
return DTERR_BAD_FORMAT;
str++;
dterr = ParseISO8601Number(str, &str, &val, &fval);
if (dterr)
return dterr;
tm->tm_mday += val;
AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY);
if (*str == '\0')
return 0;
if (*str == 'T')
{
datepart = false;
havefield = false;
continue;
}
return DTERR_BAD_FORMAT;
default:
/* not a valid date unit suffix */
return DTERR_BAD_FORMAT;
}
}
else
{
switch (unit) /* after T: H M S */
{
case 'H':
tm->tm_hour += val;
AdjustFractSeconds(fval, tm, fsec, SECS_PER_HOUR);
break;
case 'M':
tm->tm_min += val;
AdjustFractSeconds(fval, tm, fsec, SECS_PER_MINUTE);
break;
case 'S':
tm->tm_sec += val;
AdjustFractSeconds(fval, tm, fsec, 1);
break;
case '\0': /* ISO 8601 4.4.3.3 Alternative Format */
if (ISO8601IntegerWidth(fieldstart) == 6 && !havefield)
{
tm->tm_hour += val / 10000;
tm->tm_min += (val / 100) % 100;
tm->tm_sec += val % 100;
AdjustFractSeconds(fval, tm, fsec, 1);
return 0;
}
/* Else fall through to extended alternative format */
case ':': /* ISO 8601 4.4.3.3 Alternative Format,
* Extended */
if (havefield)
return DTERR_BAD_FORMAT;
tm->tm_hour += val;
AdjustFractSeconds(fval, tm, fsec, SECS_PER_HOUR);
if (unit == '\0')
return 0;
dterr = ParseISO8601Number(str, &str, &val, &fval);
if (dterr)
return dterr;
tm->tm_min += val;
AdjustFractSeconds(fval, tm, fsec, SECS_PER_MINUTE);
if (*str == '\0')
return 0;
if (*str != ':')
return DTERR_BAD_FORMAT;
str++;
dterr = ParseISO8601Number(str, &str, &val, &fval);
if (dterr)
return dterr;
tm->tm_sec += val;
AdjustFractSeconds(fval, tm, fsec, 1);
if (*str == '\0')
return 0;
return DTERR_BAD_FORMAT;
default:
/* not a valid time unit suffix */
return DTERR_BAD_FORMAT;
}
}
havefield = true;
}
return 0;
}
/* DecodeUnits()
* Decode text string using lookup table.
* This routine supports time interval decoding
* (hence, it need not recognize timezone names).
*/
int
DecodeUnits(int field, char *lowtoken, int *val)
{
int type;
const datetkn *tp;
1997-03-15 00:21:12 +01:00
tp = deltacache[field];
if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
{
tp = datebsearch(lowtoken, deltatktbl, szdeltatktbl);
}
if (tp == NULL)
{
type = UNKNOWN_FIELD;
*val = 0;
}
else
{
deltacache[field] = tp;
type = tp->type;
if (type == TZ || type == DTZ)
*val = FROMVAL(tp);
else
*val = tp->value;
}
return type;
} /* DecodeUnits() */
1997-03-15 00:21:12 +01:00
/*
* Report an error detected by one of the datetime input processing routines.
*
* dterr is the error code, str is the original input string, datatype is
* the name of the datatype we were trying to accept.
*
* Note: it might seem useless to distinguish DTERR_INTERVAL_OVERFLOW and
* DTERR_TZDISP_OVERFLOW from DTERR_FIELD_OVERFLOW, but SQL99 mandates three
* separate SQLSTATE codes, so ...
*/
void
DateTimeParseError(int dterr, const char *str, const char *datatype)
{
switch (dterr)
{
case DTERR_FIELD_OVERFLOW:
ereport(ERROR,
(errcode(ERRCODE_DATETIME_FIELD_OVERFLOW),
errmsg("date/time field value out of range: \"%s\"",
str)));
break;
case DTERR_MD_FIELD_OVERFLOW:
/* <nanny>same as above, but add hint about DateStyle</nanny> */
ereport(ERROR,
(errcode(ERRCODE_DATETIME_FIELD_OVERFLOW),
errmsg("date/time field value out of range: \"%s\"",
str),
2005-10-15 04:49:52 +02:00
errhint("Perhaps you need a different \"datestyle\" setting.")));
break;
case DTERR_INTERVAL_OVERFLOW:
ereport(ERROR,
(errcode(ERRCODE_INTERVAL_FIELD_OVERFLOW),
errmsg("interval field value out of range: \"%s\"",
str)));
break;
case DTERR_TZDISP_OVERFLOW:
ereport(ERROR,
2005-10-15 04:49:52 +02:00
(errcode(ERRCODE_INVALID_TIME_ZONE_DISPLACEMENT_VALUE),
errmsg("time zone displacement out of range: \"%s\"",
str)));
break;
case DTERR_BAD_FORMAT:
default:
ereport(ERROR,
(errcode(ERRCODE_INVALID_DATETIME_FORMAT),
errmsg("invalid input syntax for type %s: \"%s\"",
datatype, str)));
break;
}
}
1997-03-15 00:21:12 +01:00
/* datebsearch()
* Binary search -- from Knuth (6.2.1) Algorithm B. Special case like this
* is WAY faster than the generic bsearch().
*/
static const datetkn *
datebsearch(const char *key, const datetkn *base, int nel)
1997-03-15 00:21:12 +01:00
{
const datetkn *last = base + nel - 1,
*position;
int result;
while (last >= base)
{
position = base + ((last - base) >> 1);
result = key[0] - position->token[0];
if (result == 0)
{
result = strncmp(key, position->token, TOKMAXLEN);
if (result == 0)
return position;
}
if (result < 0)
last = position - 1;
else
base = position + 1;
}
return NULL;
}
1997-03-15 00:21:12 +01:00
/* EncodeTimezone()
* Append representation of a numeric timezone offset to str.
*/
static void
EncodeTimezone(char *str, int tz, int style)
{
int hour,
min,
sec;
sec = abs(tz);
min = sec / SECS_PER_MINUTE;
sec -= min * SECS_PER_MINUTE;
hour = min / MINS_PER_HOUR;
min -= hour * MINS_PER_HOUR;
str += strlen(str);
/* TZ is negated compared to sign we wish to display ... */
*str++ = (tz <= 0 ? '+' : '-');
if (sec != 0)
sprintf(str, "%02d:%02d:%02d", hour, min, sec);
else if (min != 0 || style == USE_XSD_DATES)
sprintf(str, "%02d:%02d", hour, min);
else
sprintf(str, "%02d", hour);
}
1997-03-15 00:21:12 +01:00
/* EncodeDateOnly()
* Encode date as local time.
*/
void
2005-10-15 04:49:52 +02:00
EncodeDateOnly(struct pg_tm * tm, int style, char *str)
{
Assert(tm->tm_mon >= 1 && tm->tm_mon <= MONTHS_PER_YEAR);
switch (style)
{
case USE_ISO_DATES:
case USE_XSD_DATES:
/* compatible with ISO date formats */
if (tm->tm_year > 0)
sprintf(str, "%04d-%02d-%02d",
tm->tm_year, tm->tm_mon, tm->tm_mday);
else
sprintf(str, "%04d-%02d-%02d %s",
2005-10-15 04:49:52 +02:00
-(tm->tm_year - 1), tm->tm_mon, tm->tm_mday, "BC");
break;
case USE_SQL_DATES:
/* compatible with Oracle/Ingres date formats */
if (DateOrder == DATEORDER_DMY)
sprintf(str, "%02d/%02d", tm->tm_mday, tm->tm_mon);
else
sprintf(str, "%02d/%02d", tm->tm_mon, tm->tm_mday);
if (tm->tm_year > 0)
sprintf(str + 5, "/%04d", tm->tm_year);
else
sprintf(str + 5, "/%04d %s", -(tm->tm_year - 1), "BC");
break;
case USE_GERMAN_DATES:
/* German-style date format */
sprintf(str, "%02d.%02d", tm->tm_mday, tm->tm_mon);
if (tm->tm_year > 0)
sprintf(str + 5, ".%04d", tm->tm_year);
else
sprintf(str + 5, ".%04d %s", -(tm->tm_year - 1), "BC");
break;
1997-03-15 00:21:12 +01:00
case USE_POSTGRES_DATES:
default:
/* traditional date-only style for Postgres */
if (DateOrder == DATEORDER_DMY)
sprintf(str, "%02d-%02d", tm->tm_mday, tm->tm_mon);
else
sprintf(str, "%02d-%02d", tm->tm_mon, tm->tm_mday);
if (tm->tm_year > 0)
sprintf(str + 5, "-%04d", tm->tm_year);
else
sprintf(str + 5, "-%04d %s", -(tm->tm_year - 1), "BC");
break;
}
}
1997-03-15 00:21:12 +01:00
/* EncodeTimeOnly()
* Encode time fields only.
*/
void
2005-10-15 04:49:52 +02:00
EncodeTimeOnly(struct pg_tm * tm, fsec_t fsec, int *tzp, int style, char *str)
1997-03-15 00:21:12 +01:00
{
sprintf(str, "%02d:%02d:", tm->tm_hour, tm->tm_min);
str += strlen(str);
AppendSeconds(str, tm->tm_sec, fsec, MAX_TIME_PRECISION, true);
1997-03-15 00:21:12 +01:00
if (tzp != NULL)
EncodeTimezone(str, *tzp, style);
}
1997-03-15 00:21:12 +01:00
/* EncodeDateTime()
* Encode date and time interpreted as local time.
* Support several date styles:
* Postgres - day mon hh:mm:ss yyyy tz
* SQL - mm/dd/yyyy hh:mm:ss.ss tz
* ISO - yyyy-mm-dd hh:mm:ss+/-tz
* German - dd.mm.yyyy hh:mm:ss tz
* XSD - yyyy-mm-ddThh:mm:ss.ss+/-tz
* Variants (affects order of month and day for Postgres and SQL styles):
* US - mm/dd/yyyy
* European - dd/mm/yyyy
*/
void
2005-10-15 04:49:52 +02:00
EncodeDateTime(struct pg_tm * tm, fsec_t fsec, int *tzp, char **tzn, int style, char *str)
1997-03-15 00:21:12 +01:00
{
int day;
2002-09-04 22:31:48 +02:00
Assert(tm->tm_mon >= 1 && tm->tm_mon <= MONTHS_PER_YEAR);
1997-03-15 00:21:12 +01:00
switch (style)
{
case USE_ISO_DATES:
case USE_XSD_DATES:
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
/* Compatible with ISO-8601 date formats */
if (style == USE_ISO_DATES)
sprintf(str, "%04d-%02d-%02d %02d:%02d:",
2007-11-15 22:14:46 +01:00
(tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1),
tm->tm_mon, tm->tm_mday, tm->tm_hour, tm->tm_min);
else
sprintf(str, "%04d-%02d-%02dT%02d:%02d:",
2007-11-15 22:14:46 +01:00
(tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1),
tm->tm_mon, tm->tm_mday, tm->tm_hour, tm->tm_min);
AppendTimestampSeconds(str + strlen(str), tm, fsec);
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
/*
2005-10-15 04:49:52 +02:00
* tzp == NULL indicates that we don't want *any* time zone info
* in the output string. *tzn != NULL indicates that we have alpha
* time zone info available. tm_isdst != -1 indicates that we have
* a valid time zone translation.
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
*/
if (tzp != NULL && tm->tm_isdst >= 0)
EncodeTimezone(str, *tzp, style);
if (tm->tm_year <= 0)
sprintf(str + strlen(str), " BC");
break;
1997-03-15 00:21:12 +01:00
case USE_SQL_DATES:
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
/* Compatible with Oracle/Ingres date formats */
if (DateOrder == DATEORDER_DMY)
sprintf(str, "%02d/%02d", tm->tm_mday, tm->tm_mon);
else
sprintf(str, "%02d/%02d", tm->tm_mon, tm->tm_mday);
sprintf(str + 5, "/%04d %02d:%02d:",
(tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1),
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
tm->tm_hour, tm->tm_min);
AppendTimestampSeconds(str + strlen(str), tm, fsec);
/*
* Note: the uses of %.*s in this function would be risky if the
* timezone names ever contain non-ASCII characters. However, all
* TZ abbreviations in the Olson database are plain ASCII.
*/
if (tzp != NULL && tm->tm_isdst >= 0)
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
{
if (*tzn != NULL)
sprintf(str + strlen(str), " %.*s", MAXTZLEN, *tzn);
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
else
EncodeTimezone(str, *tzp, style);
}
if (tm->tm_year <= 0)
sprintf(str + strlen(str), " BC");
break;
1997-03-15 00:21:12 +01:00
case USE_GERMAN_DATES:
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
/* German variant on European style */
sprintf(str, "%02d.%02d", tm->tm_mday, tm->tm_mon);
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
sprintf(str + 5, ".%04d %02d:%02d:",
(tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1),
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
tm->tm_hour, tm->tm_min);
AppendTimestampSeconds(str + strlen(str), tm, fsec);
if (tzp != NULL && tm->tm_isdst >= 0)
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
{
if (*tzn != NULL)
sprintf(str + strlen(str), " %.*s", MAXTZLEN, *tzn);
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
else
EncodeTimezone(str, *tzp, style);
}
if (tm->tm_year <= 0)
sprintf(str + strlen(str), " BC");
break;
1997-03-15 00:21:12 +01:00
case USE_POSTGRES_DATES:
default:
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
/* Backward-compatible with traditional Postgres abstime dates */
day = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
tm->tm_wday = j2day(day);
strncpy(str, days[tm->tm_wday], 3);
strcpy(str + 3, " ");
2005-10-15 04:49:52 +02:00
if (DateOrder == DATEORDER_DMY)
sprintf(str + 4, "%02d %3s", tm->tm_mday, months[tm->tm_mon - 1]);
else
sprintf(str + 4, "%3s %02d", months[tm->tm_mon - 1], tm->tm_mday);
sprintf(str + 10, " %02d:%02d:", tm->tm_hour, tm->tm_min);
AppendTimestampSeconds(str + strlen(str), tm, fsec);
sprintf(str + strlen(str), " %04d",
2005-10-15 04:49:52 +02:00
(tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1));
if (tzp != NULL && tm->tm_isdst >= 0)
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
{
if (*tzn != NULL)
sprintf(str + strlen(str), " %.*s", MAXTZLEN, *tzn);
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
else
{
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
/*
2002-09-04 22:31:48 +02:00
* We have a time zone, but no string version. Use the
2005-10-15 04:49:52 +02:00
* numeric form, but be sure to include a leading space to
* avoid formatting something which would be rejected by
* the date/time parser later. - thomas 2001-10-19
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
*/
sprintf(str + strlen(str), " ");
EncodeTimezone(str, *tzp, style);
}
}
if (tm->tm_year <= 0)
sprintf(str + strlen(str), " BC");
break;
}
}
/*
* Helper functions to avoid duplicated code in EncodeInterval.
*/
/* Append an ISO-8601-style interval field, but only if value isn't zero */
static char *
AddISO8601IntPart(char *cp, int value, char units)
{
if (value == 0)
return cp;
sprintf(cp, "%d%c", value, units);
return cp + strlen(cp);
}
/* Append a postgres-style interval field, but only if value isn't zero */
static char *
AddPostgresIntPart(char *cp, int value, const char *units,
bool *is_zero, bool *is_before)
{
if (value == 0)
return cp;
sprintf(cp, "%s%s%d %s%s",
(!*is_zero) ? " " : "",
(*is_before && value > 0) ? "+" : "",
value,
units,
(value != 1) ? "s" : "");
/*
* Each nonzero field sets is_before for (only) the next one. This is a
* tad bizarre but it's how it worked before...
*/
*is_before = (value < 0);
*is_zero = FALSE;
return cp + strlen(cp);
}
/* Append a verbose-style interval field, but only if value isn't zero */
static char *
AddVerboseIntPart(char *cp, int value, const char *units,
bool *is_zero, bool *is_before)
{
if (value == 0)
return cp;
/* first nonzero value sets is_before */
if (*is_zero)
{
*is_before = (value < 0);
value = abs(value);
}
else if (*is_before)
value = -value;
sprintf(cp, " %d %s%s", value, units, (value == 1) ? "" : "s");
*is_zero = FALSE;
return cp + strlen(cp);
}
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
2002-04-21 21:52:18 +02:00
/* EncodeInterval()
* Interpret time structure as a delta time and convert to string.
*
* Support "traditional Postgres" and ISO-8601 styles.
* Actually, afaik ISO does not address time interval formatting,
* but this looks similar to the spec for absolute date/time.
* - thomas 1998-04-30
*
* Actually, afaik, ISO 8601 does specify formats for "time
* intervals...[of the]...format with time-unit designators", which
* are pretty ugly. The format looks something like
* P1Y1M1DT1H1M1.12345S
* but useful for exchanging data with computers instead of humans.
* - ron 2003-07-14
*
* And ISO's SQL 2008 standard specifies standards for
* "year-month literal"s (that look like '2-3') and
* "day-time literal"s (that look like ('4 5:6:7')
*/
void
2005-10-15 04:49:52 +02:00
EncodeInterval(struct pg_tm * tm, fsec_t fsec, int style, char *str)
{
char *cp = str;
int year = tm->tm_year;
int mon = tm->tm_mon;
int mday = tm->tm_mday;
int hour = tm->tm_hour;
int min = tm->tm_min;
int sec = tm->tm_sec;
bool is_before = FALSE;
bool is_zero = TRUE;
2001-03-22 05:01:46 +01:00
/*
* The sign of year and month are guaranteed to match, since they are
2005-10-15 04:49:52 +02:00
* stored internally as "month". But we'll need to check for is_before and
* is_zero when determining the signs of day and hour/minute/seconds
* fields.
*/
switch (style)
{
/* SQL Standard interval format */
case INTSTYLE_SQL_STANDARD:
{
bool has_negative = year < 0 || mon < 0 ||
mday < 0 || hour < 0 ||
min < 0 || sec < 0 || fsec < 0;
bool has_positive = year > 0 || mon > 0 ||
mday > 0 || hour > 0 ||
min > 0 || sec > 0 || fsec > 0;
bool has_year_month = year != 0 || mon != 0;
bool has_day_time = mday != 0 || hour != 0 ||
min != 0 || sec != 0 || fsec != 0;
bool has_day = mday != 0;
bool sql_standard_value = !(has_negative && has_positive) &&
!(has_year_month && has_day_time);
/*
* SQL Standard wants only 1 "<sign>" preceding the whole
* interval ... but can't do that if mixed signs.
*/
if (has_negative && sql_standard_value)
{
*cp++ = '-';
year = -year;
mon = -mon;
mday = -mday;
hour = -hour;
min = -min;
sec = -sec;
fsec = -fsec;
}
if (!has_negative && !has_positive)
{
sprintf(cp, "0");
}
else if (!sql_standard_value)
{
/*
* For non sql-standard interval values, force outputting
* the signs to avoid ambiguities with intervals with
* mixed sign components.
*/
char year_sign = (year < 0 || mon < 0) ? '-' : '+';
char day_sign = (mday < 0) ? '-' : '+';
char sec_sign = (hour < 0 || min < 0 ||
sec < 0 || fsec < 0) ? '-' : '+';
sprintf(cp, "%c%d-%d %c%d %c%d:%02d:",
year_sign, abs(year), abs(mon),
day_sign, abs(mday),
sec_sign, abs(hour), abs(min));
cp += strlen(cp);
AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
}
else if (has_year_month)
{
sprintf(cp, "%d-%d", year, mon);
}
else if (has_day)
{
sprintf(cp, "%d %d:%02d:", mday, hour, min);
cp += strlen(cp);
AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
}
else
{
sprintf(cp, "%d:%02d:", hour, min);
cp += strlen(cp);
AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
}
}
break;
/* ISO 8601 "time-intervals by duration only" */
case INTSTYLE_ISO_8601:
/* special-case zero to avoid printing nothing */
if (year == 0 && mon == 0 && mday == 0 &&
hour == 0 && min == 0 && sec == 0 && fsec == 0)
{
sprintf(cp, "PT0S");
break;
}
*cp++ = 'P';
cp = AddISO8601IntPart(cp, year, 'Y');
cp = AddISO8601IntPart(cp, mon, 'M');
cp = AddISO8601IntPart(cp, mday, 'D');
if (hour != 0 || min != 0 || sec != 0 || fsec != 0)
*cp++ = 'T';
cp = AddISO8601IntPart(cp, hour, 'H');
cp = AddISO8601IntPart(cp, min, 'M');
if (sec != 0 || fsec != 0)
{
if (sec < 0 || fsec < 0)
*cp++ = '-';
AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, false);
cp += strlen(cp);
*cp++ = 'S';
*cp++ = '\0';
}
break;
/* Compatible with postgresql < 8.4 when DateStyle = 'iso' */
case INTSTYLE_POSTGRES:
cp = AddPostgresIntPart(cp, year, "year", &is_zero, &is_before);
cp = AddPostgresIntPart(cp, mon, "mon", &is_zero, &is_before);
cp = AddPostgresIntPart(cp, mday, "day", &is_zero, &is_before);
if (is_zero || hour != 0 || min != 0 || sec != 0 || fsec != 0)
{
bool minus = (hour < 0 || min < 0 || sec < 0 || fsec < 0);
sprintf(cp, "%s%s%02d:%02d:",
is_zero ? "" : " ",
(minus ? "-" : (is_before ? "+" : "")),
abs(hour), abs(min));
cp += strlen(cp);
AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
}
break;
/* Compatible with postgresql < 8.4 when DateStyle != 'iso' */
case INTSTYLE_POSTGRES_VERBOSE:
default:
strcpy(cp, "@");
cp++;
cp = AddVerboseIntPart(cp, year, "year", &is_zero, &is_before);
cp = AddVerboseIntPart(cp, mon, "mon", &is_zero, &is_before);
cp = AddVerboseIntPart(cp, mday, "day", &is_zero, &is_before);
cp = AddVerboseIntPart(cp, hour, "hour", &is_zero, &is_before);
cp = AddVerboseIntPart(cp, min, "min", &is_zero, &is_before);
if (sec != 0 || fsec != 0)
{
*cp++ = ' ';
if (sec < 0 || (sec == 0 && fsec < 0))
{
if (is_zero)
is_before = TRUE;
else if (!is_before)
*cp++ = '-';
}
else if (is_before)
*cp++ = '-';
AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, false);
cp += strlen(cp);
sprintf(cp, " sec%s",
(abs(sec) != 1 || fsec != 0) ? "s" : "");
is_zero = FALSE;
}
/* identically zero? then put in a unitless zero... */
if (is_zero)
strcat(cp, " 0");
if (is_before)
strcat(cp, " ago");
break;
}
}
/*
* We've been burnt by stupid errors in the ordering of the datetkn tables
2003-08-04 02:43:34 +02:00
* once too often. Arrange to check them during postmaster start.
*/
static bool
CheckDateTokenTable(const char *tablename, const datetkn *base, int nel)
{
bool ok = true;
int i;
for (i = 1; i < nel; i++)
{
2003-08-04 02:43:34 +02:00
if (strncmp(base[i - 1].token, base[i].token, TOKMAXLEN) >= 0)
{
/* %.*s is safe since all our tokens are ASCII */
elog(LOG, "ordering error in %s table: \"%.*s\" >= \"%.*s\"",
tablename,
2003-08-04 02:43:34 +02:00
TOKMAXLEN, base[i - 1].token,
TOKMAXLEN, base[i].token);
ok = false;
}
}
return ok;
}
bool
CheckDateTokenTables(void)
{
bool ok = true;
Assert(UNIX_EPOCH_JDATE == date2j(1970, 1, 1));
Assert(POSTGRES_EPOCH_JDATE == date2j(2000, 1, 1));
ok &= CheckDateTokenTable("datetktbl", datetktbl, szdatetktbl);
ok &= CheckDateTokenTable("deltatktbl", deltatktbl, szdeltatktbl);
return ok;
}
/*
* This function gets called during timezone config file load or reload
* to create the final array of timezone tokens. The argument array
* is already sorted in name order. This data is in a temporary memory
* context and must be copied to somewhere permanent.
*/
void
InstallTimeZoneAbbrevs(tzEntry *abbrevs, int n)
{
2006-10-04 02:30:14 +02:00
datetkn *newtbl;
int i;
/*
* Copy the data into TopMemoryContext and convert to datetkn format.
*/
newtbl = (datetkn *) MemoryContextAlloc(TopMemoryContext,
n * sizeof(datetkn));
for (i = 0; i < n; i++)
{
strncpy(newtbl[i].token, abbrevs[i].abbrev, TOKMAXLEN);
newtbl[i].type = abbrevs[i].is_dst ? DTZ : TZ;
TOVAL(&newtbl[i], abbrevs[i].offset / 60);
}
/* Check the ordering, if testing */
Assert(CheckDateTokenTable("timezone offset", newtbl, n));
/* Now safe to replace existing table (if any) */
if (timezonetktbl)
pfree(timezonetktbl);
timezonetktbl = newtbl;
sztimezonetktbl = n;
/* clear date cache in case it contains any stale timezone names */
for (i = 0; i < MAXDATEFIELDS; i++)
datecache[i] = NULL;
}
/*
* This set-returning function reads all the available time zone abbreviations
* and returns a set of (abbrev, utc_offset, is_dst).
*/
Datum
pg_timezone_abbrevs(PG_FUNCTION_ARGS)
{
2006-10-04 02:30:14 +02:00
FuncCallContext *funcctx;
int *pindex;
Datum result;
HeapTuple tuple;
Datum values[3];
bool nulls[3];
char buffer[TOKMAXLEN + 1];
unsigned char *p;
struct pg_tm tm;
Interval *resInterval;
/* stuff done only on the first call of the function */
if (SRF_IS_FIRSTCALL())
{
2006-10-04 02:30:14 +02:00
TupleDesc tupdesc;
MemoryContext oldcontext;
/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();
/*
2006-10-04 02:30:14 +02:00
* switch to memory context appropriate for multiple function calls
*/
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* allocate memory for user context */
pindex = (int *) palloc(sizeof(int));
*pindex = 0;
funcctx->user_fctx = (void *) pindex;
/*
* build tupdesc for result tuples. This must match this function's
* pg_proc entry!
*/
tupdesc = CreateTemplateTupleDesc(3, false);
TupleDescInitEntry(tupdesc, (AttrNumber) 1, "abbrev",
TEXTOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 2, "utc_offset",
INTERVALOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 3, "is_dst",
BOOLOID, -1, 0);
funcctx->tuple_desc = BlessTupleDesc(tupdesc);
MemoryContextSwitchTo(oldcontext);
}
/* stuff done on every call of the function */
funcctx = SRF_PERCALL_SETUP();
pindex = (int *) funcctx->user_fctx;
if (*pindex >= sztimezonetktbl)
SRF_RETURN_DONE(funcctx);
MemSet(nulls, 0, sizeof(nulls));
/*
2006-10-04 02:30:14 +02:00
* Convert name to text, using upcasing conversion that is the inverse of
* what ParseDateTime() uses.
*/
strncpy(buffer, timezonetktbl[*pindex].token, TOKMAXLEN);
buffer[TOKMAXLEN] = '\0'; /* may not be null-terminated */
for (p = (unsigned char *) buffer; *p; p++)
*p = pg_toupper(*p);
values[0] = CStringGetTextDatum(buffer);
MemSet(&tm, 0, sizeof(struct pg_tm));
tm.tm_min = (-1) * FROMVAL(&timezonetktbl[*pindex]);
resInterval = (Interval *) palloc(sizeof(Interval));
tm2interval(&tm, 0, resInterval);
values[1] = IntervalPGetDatum(resInterval);
Assert(timezonetktbl[*pindex].type == DTZ ||
timezonetktbl[*pindex].type == TZ);
values[2] = BoolGetDatum(timezonetktbl[*pindex].type == DTZ);
(*pindex)++;
tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls);
result = HeapTupleGetDatum(tuple);
SRF_RETURN_NEXT(funcctx, result);
}
/*
* This set-returning function reads all the available full time zones
* and returns a set of (name, abbrev, utc_offset, is_dst).
*/
Datum
pg_timezone_names(PG_FUNCTION_ARGS)
{
2006-10-04 02:30:14 +02:00
MemoryContext oldcontext;
FuncCallContext *funcctx;
pg_tzenum *tzenum;
pg_tz *tz;
Datum result;
HeapTuple tuple;
Datum values[4];
bool nulls[4];
int tzoff;
2006-10-04 02:30:14 +02:00
struct pg_tm tm;
fsec_t fsec;
char *tzn;
2006-10-04 02:30:14 +02:00
Interval *resInterval;
struct pg_tm itm;
/* stuff done only on the first call of the function */
if (SRF_IS_FIRSTCALL())
{
2006-10-04 02:30:14 +02:00
TupleDesc tupdesc;
/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();
/*
2006-10-04 02:30:14 +02:00
* switch to memory context appropriate for multiple function calls
*/
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* initialize timezone scanning code */
tzenum = pg_tzenumerate_start();
funcctx->user_fctx = (void *) tzenum;
/*
* build tupdesc for result tuples. This must match this function's
* pg_proc entry!
*/
tupdesc = CreateTemplateTupleDesc(4, false);
TupleDescInitEntry(tupdesc, (AttrNumber) 1, "name",
TEXTOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 2, "abbrev",
TEXTOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 3, "utc_offset",
INTERVALOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 4, "is_dst",
BOOLOID, -1, 0);
funcctx->tuple_desc = BlessTupleDesc(tupdesc);
MemoryContextSwitchTo(oldcontext);
}
/* stuff done on every call of the function */
funcctx = SRF_PERCALL_SETUP();
tzenum = (pg_tzenum *) funcctx->user_fctx;
/* search for another zone to display */
for (;;)
{
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
tz = pg_tzenumerate_next(tzenum);
MemoryContextSwitchTo(oldcontext);
if (!tz)
{
pg_tzenumerate_end(tzenum);
funcctx->user_fctx = NULL;
SRF_RETURN_DONE(funcctx);
}
/* Convert now() to local time in this zone */
if (timestamp2tm(GetCurrentTransactionStartTimestamp(),
&tzoff, &tm, &fsec, &tzn, tz) != 0)
continue; /* ignore if conversion fails */
/* Ignore zic's rather silly "Factory" time zone */
if (tzn && strcmp(tzn, "Local time zone must be set--see zic manual page") == 0)
continue;
/* Found a displayable zone */
break;
}
MemSet(nulls, 0, sizeof(nulls));
values[0] = CStringGetTextDatum(pg_get_timezone_name(tz));
values[1] = CStringGetTextDatum(tzn ? tzn : "");
MemSet(&itm, 0, sizeof(struct pg_tm));
itm.tm_sec = -tzoff;
resInterval = (Interval *) palloc(sizeof(Interval));
tm2interval(&itm, 0, resInterval);
values[2] = IntervalPGetDatum(resInterval);
values[3] = BoolGetDatum(tm.tm_isdst > 0);
tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls);
result = HeapTupleGetDatum(tuple);
SRF_RETURN_NEXT(funcctx, result);
}