postgresql/src/backend/optimizer/util/pathnode.c

656 lines
18 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* pathnode.c--
* Routines to manipulate pathlists and create path nodes
*
* Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
1999-02-12 06:57:08 +01:00
* $Header: /cvsroot/pgsql/src/backend/optimizer/util/pathnode.c,v 1.33 1999/02/12 05:56:57 momjian Exp $
*
*-------------------------------------------------------------------------
*/
#include <math.h>
#include "postgres.h"
#include "nodes/relation.h"
#include "utils/elog.h"
#include "optimizer/internal.h"
#include "optimizer/pathnode.h"
#include "optimizer/restrictinfo.h"
#include "optimizer/plancat.h"
#include "optimizer/cost.h"
#include "optimizer/keys.h"
#include "optimizer/xfunc.h"
#include "optimizer/ordering.h"
#include "parser/parsetree.h" /* for getrelid() */
1999-02-11 22:05:28 +01:00
static Path *better_path(Path *new_path, List *unique_paths, bool *is_new);
/*****************************************************************************
* MISC. PATH UTILITIES
*****************************************************************************/
/*
* path-is-cheaper--
* Returns t iff 'path1' is cheaper than 'path2'.
*
*/
bool
path_is_cheaper(Path *path1, Path *path2)
{
Cost cost1 = path1->path_cost;
Cost cost2 = path2->path_cost;
1998-09-01 05:29:17 +02:00
return (bool) (cost1 < cost2);
}
/*
* set_cheapest--
* Finds the minimum cost path from among a relation's paths.
*
* 'parent-rel' is the parent relation
* 'pathlist' is a list of path nodes corresponding to 'parent-rel'
*
* Returns and sets the relation entry field with the pathnode that
* is minimum.
*
*/
Path *
set_cheapest(RelOptInfo *parent_rel, List *pathlist)
{
List *p;
Path *cheapest_so_far;
Assert(pathlist != NIL);
1998-07-18 06:22:52 +02:00
Assert(IsA(parent_rel, RelOptInfo));
cheapest_so_far = (Path *) lfirst(pathlist);
foreach(p, lnext(pathlist))
{
Path *path = (Path *) lfirst(p);
if (path_is_cheaper(path, cheapest_so_far))
cheapest_so_far = path;
}
parent_rel->cheapestpath = cheapest_so_far;
1998-09-01 05:29:17 +02:00
return cheapest_so_far;
}
/*
* add_pathlist--
* For each path in the list 'new-paths', add to the list 'unique-paths'
* only those paths that are unique (i.e., unique ordering and ordering
* keys). Should a conflict arise, the more expensive path is thrown out,
* thereby pruning the plan space. But we don't prune if xfunc
* told us not to.
*
* 'parent-rel' is the relation entry to which these paths correspond.
*
* Returns the list of unique pathnodes.
*
*/
List *
add_pathlist(RelOptInfo *parent_rel, List *unique_paths, List *new_paths)
{
1999-02-04 20:20:12 +01:00
List *p1;
1999-02-04 20:20:12 +01:00
foreach(p1, new_paths)
{
1999-02-04 20:20:12 +01:00
Path *new_path = (Path *) lfirst(p1);
Path *old_path;
bool is_new;
1999-02-04 20:20:12 +01:00
/* Is this new path already in unique_paths? */
if (member(new_path, unique_paths))
continue;
1999-02-04 20:20:12 +01:00
/* Find best matching path */
old_path = better_path(new_path, unique_paths, &is_new);
if (is_new)
{
1999-02-04 20:20:12 +01:00
/* This is a brand new path. */
new_path->parent = parent_rel;
unique_paths = lcons(new_path, unique_paths);
}
else if (old_path == NULL)
{
; /* do nothing if path is not cheaper */
}
else if (old_path != NULL)
{ /* (IsA(old_path,Path)) { */
new_path->parent = parent_rel;
if (!parent_rel->pruneable)
unique_paths = lcons(new_path, unique_paths);
else
unique_paths = lcons(new_path,
LispRemove(old_path, unique_paths));
}
}
1998-09-01 05:29:17 +02:00
return unique_paths;
}
/*
* better_path--
* Determines whether 'new-path' has the same ordering and keys as some
* path in the list 'unique-paths'. If there is a redundant path,
* eliminate the more expensive path.
*
* Returns:
* The old path - if 'new-path' matches some path in 'unique-paths' and is
* cheaper
* nil - if 'new-path' matches but isn't cheaper
* t - if there is no path in the list with the same ordering and keys
*
*/
static Path *
better_path(Path *new_path, List *unique_paths, bool *is_new)
{
Path *path = (Path *) NULL;
List *temp = NIL;
1999-02-11 18:00:49 +01:00
int better_key;
int better_sort;
1999-02-12 06:57:08 +01:00
#ifdef OPTDUP_DEBUG
printf("better_path entry\n");
printf("new\n");
pprint(new_path);
printf("unique_paths\n");
pprint(unique_paths);
#endif
foreach(temp, unique_paths)
{
path = (Path *) lfirst(temp);
1999-02-12 06:57:08 +01:00
#if 0
/*def OPTDUP_DEBUG*/
1999-02-11 18:00:49 +01:00
if (!pathkeys_match(new_path->pathkeys, path->pathkeys, &better_key) ||
better_key != 0)
{
printf("oldpath\n");
pprint(path->pathkeys);
printf("newpath\n");
pprint(new_path->pathkeys);
if (path->pathkeys && new_path->pathkeys &&
1999-02-11 22:05:28 +01:00
length(lfirst(path->pathkeys)) >= 2/* &&
length(lfirst(path->pathkeys)) <
length(lfirst(new_path->pathkeys))*/)
sleep(0); /* set breakpoint here */
}
1999-02-11 22:05:28 +01:00
if (!pathorder_match(new_path->pathorder, path->pathorder,
&better_sort) ||
better_sort != 0)
{
printf("oldord\n");
1999-02-11 15:59:09 +01:00
pprint(path->pathorder);
printf("neword\n");
1999-02-11 15:59:09 +01:00
pprint(new_path->pathorder);
}
#endif
1999-02-11 22:05:28 +01:00
if (pathkeys_match(new_path->pathkeys, path->pathkeys,
&better_key) &&
pathorder_match(new_path->pathorder, path->pathorder,
&better_sort))
{
1999-02-11 22:05:28 +01:00
/*
* Replace pathkeys that match exactly, (1,2), (1,2).
* Replace pathkeys (1,2) with (1,2,3) if the latter is not
* more expensive and replace unordered path with ordered
* path if it is not more expensive. Favor sorted keys
* over unsorted keys in the same way.
*/
/* same keys, and new is cheaper, use it */
if ((better_key == 0 && better_sort == 0 &&
new_path->path_cost < path->path_cost) ||
/* new is better, and cheaper, use it */
(((better_key == 1 && better_sort != 2) ||
(better_key != 2 && better_sort == 1)) &&
new_path->path_cost <= path->path_cost))
{
1999-02-12 06:57:08 +01:00
#ifdef OPTDUP_DEBUG
printf("replace with new %p old %p better key %d better sort %d\n", &new_path, &path, better_key, better_sort);
printf("old\n");
pprint(path);
printf("new\n");
pprint(new_path);
#endif
1999-02-11 22:05:28 +01:00
*is_new = false;
1999-02-12 03:37:52 +01:00
return path;
1999-02-11 22:05:28 +01:00
}
/* same keys, new is more expensive, stop */
1999-02-12 03:37:52 +01:00
if ((better_key == 0 && better_sort == 0 &&
new_path->path_cost >= path->path_cost) ||
1999-02-11 22:05:28 +01:00
/* old is better, and less expensive, stop */
(((better_key == 2 && better_sort != 1) ||
(better_key != 1 && better_sort == 2)) &&
new_path->path_cost >= path->path_cost))
{
1999-02-12 06:57:08 +01:00
#ifdef OPTDUP_DEBUG
printf("skip new %p old %p better key %d better sort %d\n", &new_path, &path, better_key, better_sort);
1999-02-12 03:37:52 +01:00
printf("old\n");
pprint(path);
1999-02-12 06:57:08 +01:00
printf("new\n");
pprint(new_path);
1999-02-12 03:37:52 +01:00
#endif
1999-02-11 22:05:28 +01:00
*is_new = false;
return NULL;
}
}
}
1999-02-12 06:57:08 +01:00
#ifdef OPTDUP_DEBUG
printf("add new %p old %p better key %d better sort %d\n", &new_path, &path, better_key, better_sort);
printf("new\n");
pprint(new_path);
#endif
*is_new = true;
return NULL;
}
/*****************************************************************************
* PATH NODE CREATION ROUTINES
*****************************************************************************/
/*
* create_seqscan_path--
* Creates a path corresponding to a sequential scan, returning the
* pathnode.
*
*/
Path *
1999-02-10 22:02:50 +01:00
create_seqscan_path(RelOptInfo *rel)
{
int relid = 0;
Path *pathnode = makeNode(Path);
pathnode->pathtype = T_SeqScan;
pathnode->parent = rel;
pathnode->path_cost = 0.0;
1999-02-11 15:59:09 +01:00
pathnode->pathorder = makeNode(PathOrder);
pathnode->pathorder->ordtype = SORTOP_ORDER;
pathnode->pathorder->ord.sortop = NULL;
pathnode->pathkeys = NIL;
/*
* copy restrictinfo list into path for expensive function processing --
* JMH, 7/7/92
*/
pathnode->loc_restrictinfo = (List *) copyObject((Node *) rel->restrictinfo);
if (rel->relids != NULL)
relid = lfirsti(rel->relids);
pathnode->path_cost = cost_seqscan(relid,
rel->pages, rel->tuples);
/* add in expensive functions cost! -- JMH, 7/7/92 */
#if 0
if (XfuncMode != XFUNC_OFF)
{
pathnode->path_cost += xfunc_get_path_cost(pathnode);
}
#endif
1998-09-01 05:29:17 +02:00
return pathnode;
}
/*
* create_index_path--
* Creates a single path node for an index scan.
*
* 'rel' is the parent rel
* 'index' is the pathnode for the index on 'rel'
* 'restriction-clauses' is a list of restriction clause nodes.
* 'is-join-scan' is a flag indicating whether or not the index is being
* considered because of its sort order.
*
* Returns the new path node.
*
*/
IndexPath *
create_index_path(Query *root,
1999-02-10 22:02:50 +01:00
RelOptInfo *rel,
RelOptInfo *index,
List *restriction_clauses,
bool is_join_scan)
{
IndexPath *pathnode = makeNode(IndexPath);
pathnode->path.pathtype = T_IndexScan;
pathnode->path.parent = rel;
1999-02-11 15:59:09 +01:00
pathnode->path.pathorder = makeNode(PathOrder);
pathnode->path.pathorder->ordtype = SORTOP_ORDER;
pathnode->path.pathorder->ord.sortop = index->ordering;
pathnode->indexid = index->relids;
pathnode->indexkeys = index->indexkeys;
pathnode->indexqual = NIL;
/*
* copy restrictinfo list into path for expensive function processing --
* JMH, 7/7/92
*/
pathnode->path.loc_restrictinfo = set_difference((List *) copyObject((Node *) rel->restrictinfo),
(List *) restriction_clauses);
/*
* The index must have an ordering for the path to have (ordering)
* keys, and vice versa.
*/
1999-02-11 15:59:09 +01:00
if (pathnode->path.pathorder->ord.sortop)
{
pathnode->path.pathkeys = collect_index_pathkeys(index->indexkeys,
rel->targetlist);
/*
* Check that the keys haven't 'disappeared', since they may no
* longer be in the target list (i.e., index keys that are not
* relevant to the scan are not applied to the scan path node, so
* if no index keys were found, we can't order the path).
*/
if (pathnode->path.pathkeys == NULL)
1999-02-11 15:59:09 +01:00
pathnode->path.pathorder->ord.sortop = NULL;
}
else
pathnode->path.pathkeys = NULL;
if (is_join_scan || restriction_clauses == NULL)
{
/*
* Indices used for joins or sorting result nodes don't restrict
* the result at all, they simply order it, so compute the scan
* cost accordingly -- use a selectivity of 1.0.
*/
/* is the statement above really true? what about IndexScan as the
inner of a join? */
pathnode->path.path_cost = cost_index(lfirsti(index->relids),
index->pages,
1.0,
rel->pages,
rel->tuples,
index->pages,
index->tuples,
false);
/* add in expensive functions cost! -- JMH, 7/7/92 */
#if 0
if (XfuncMode != XFUNC_OFF)
{
pathnode->path_cost = (pathnode->path_cost +
xfunc_get_path_cost((Path *) pathnode));
}
#endif
}
else
{
/*
* Compute scan cost for the case when 'index' is used with a
* restriction clause.
*/
List *attnos;
List *values;
List *flags;
float npages;
float selec;
Cost clausesel;
get_relattvals(restriction_clauses,
&attnos,
&values,
&flags);
index_selectivity(lfirsti(index->relids),
index->classlist,
get_opnos(restriction_clauses),
getrelid(lfirsti(rel->relids),
root->rtable),
attnos,
values,
flags,
length(restriction_clauses),
&npages,
&selec);
/* each clause gets an equal selectivity */
1998-09-21 17:41:28 +02:00
clausesel = pow(selec, 1.0 / (double) length(restriction_clauses));
pathnode->indexqual = restriction_clauses;
1998-09-21 17:41:28 +02:00
pathnode->path.path_cost = cost_index(lfirsti(index->relids),
(int) npages,
selec,
rel->pages,
rel->tuples,
index->pages,
index->tuples,
false);
#if 0
/* add in expensive functions cost! -- JMH, 7/7/92 */
if (XfuncMode != XFUNC_OFF)
{
pathnode->path_cost += xfunc_get_path_cost((Path *) pathnode);
}
#endif
/*
* Set selectivities of clauses used with index to the selectivity
* of this index, subdividing the selectivity equally over each of
* the clauses.
*/
/* XXX Can this divide the selectivities in a better way? */
set_clause_selectivities(restriction_clauses, clausesel);
}
1998-09-01 05:29:17 +02:00
return pathnode;
}
/*
* create_nestloop_path--
* Creates a pathnode corresponding to a nestloop join between two
* relations.
*
* 'joinrel' is the join relation.
* 'outer_rel' is the outer join relation
* 'outer_path' is the outer join path.
* 'inner_path' is the inner join path.
* 'pathkeys' are the keys of the path
*
* Returns the resulting path node.
*
*/
JoinPath *
1999-02-10 22:02:50 +01:00
create_nestloop_path(RelOptInfo *joinrel,
RelOptInfo *outer_rel,
Path *outer_path,
Path *inner_path,
List *pathkeys)
{
JoinPath *pathnode = makeNode(JoinPath);
pathnode->path.pathtype = T_NestLoop;
pathnode->path.parent = joinrel;
pathnode->outerjoinpath = outer_path;
pathnode->innerjoinpath = inner_path;
pathnode->pathinfo = joinrel->restrictinfo;
pathnode->path.pathkeys = pathkeys;
pathnode->path.joinid = NIL;
pathnode->path.outerjoincost = (Cost) 0.0;
pathnode->path.loc_restrictinfo = NIL;
1999-02-11 15:59:09 +01:00
pathnode->path.pathorder = makeNode(PathOrder);
if (pathkeys)
{
1999-02-11 15:59:09 +01:00
pathnode->path.pathorder->ordtype = outer_path->pathorder->ordtype;
if (outer_path->pathorder->ordtype == SORTOP_ORDER)
pathnode->path.pathorder->ord.sortop = outer_path->pathorder->ord.sortop;
else
1999-02-11 15:59:09 +01:00
pathnode->path.pathorder->ord.merge = outer_path->pathorder->ord.merge;
}
else
{
1999-02-11 15:59:09 +01:00
pathnode->path.pathorder->ordtype = SORTOP_ORDER;
pathnode->path.pathorder->ord.sortop = NULL;
}
pathnode->path.path_cost = cost_nestloop(outer_path->path_cost,
inner_path->path_cost,
outer_rel->size,
inner_path->parent->size,
page_size(outer_rel->size,
outer_rel->width),
IsA(inner_path, IndexPath));
/* add in expensive function costs -- JMH 7/7/92 */
#if 0
if (XfuncMode != XFUNC_OFF)
pathnode->path_cost += xfunc_get_path_cost((Path *) pathnode);
#endif
1998-09-01 05:29:17 +02:00
return pathnode;
}
/*
* create_mergejoin_path--
* Creates a pathnode corresponding to a mergejoin join between
* two relations
*
* 'joinrel' is the join relation
* 'outersize' is the number of tuples in the outer relation
* 'innersize' is the number of tuples in the inner relation
* 'outerwidth' is the number of bytes per tuple in the outer relation
* 'innerwidth' is the number of bytes per tuple in the inner relation
* 'outer_path' is the outer path
* 'inner_path' is the inner path
* 'pathkeys' are the new keys of the join relation
* 'order' is the sort order required for the merge
* 'mergeclauses' are the applicable join/restriction clauses
* 'outersortkeys' are the sort varkeys for the outer relation
* 'innersortkeys' are the sort varkeys for the inner relation
*
*/
MergePath *
1999-02-10 22:02:50 +01:00
create_mergejoin_path(RelOptInfo *joinrel,
int outersize,
int innersize,
int outerwidth,
int innerwidth,
Path *outer_path,
Path *inner_path,
List *pathkeys,
MergeOrder *order,
List *mergeclauses,
List *outersortkeys,
List *innersortkeys)
{
MergePath *pathnode = makeNode(MergePath);
pathnode->jpath.path.pathtype = T_MergeJoin;
pathnode->jpath.path.parent = joinrel;
pathnode->jpath.outerjoinpath = outer_path;
pathnode->jpath.innerjoinpath = inner_path;
pathnode->jpath.pathinfo = joinrel->restrictinfo;
pathnode->jpath.path.pathkeys = pathkeys;
1999-02-11 15:59:09 +01:00
pathnode->jpath.path.pathorder = makeNode(PathOrder);
pathnode->jpath.path.pathorder->ordtype = MERGE_ORDER;
pathnode->jpath.path.pathorder->ord.merge = order;
pathnode->path_mergeclauses = mergeclauses;
pathnode->jpath.path.loc_restrictinfo = NIL;
pathnode->outersortkeys = outersortkeys;
pathnode->innersortkeys = innersortkeys;
pathnode->jpath.path.path_cost = cost_mergejoin(outer_path->path_cost,
inner_path->path_cost,
outersortkeys,
innersortkeys,
outersize,
innersize,
outerwidth,
innerwidth);
/* add in expensive function costs -- JMH 7/7/92 */
#if 0
if (XfuncMode != XFUNC_OFF)
{
pathnode->path_cost += xfunc_get_path_cost((Path *) pathnode);
}
#endif
1998-09-01 05:29:17 +02:00
return pathnode;
}
/*
* create_hashjoin_path-- XXX HASH
* Creates a pathnode corresponding to a hash join between two relations.
*
* 'joinrel' is the join relation
* 'outersize' is the number of tuples in the outer relation
* 'innersize' is the number of tuples in the inner relation
* 'outerwidth' is the number of bytes per tuple in the outer relation
* 'innerwidth' is the number of bytes per tuple in the inner relation
* 'outer_path' is the outer path
* 'inner_path' is the inner path
* 'pathkeys' are the new keys of the join relation
* 'operator' is the hashjoin operator
* 'hashclauses' are the applicable join/restriction clauses
* 'outerkeys' are the sort varkeys for the outer relation
* 'innerkeys' are the sort varkeys for the inner relation
*
*/
HashPath *
1999-02-10 22:02:50 +01:00
create_hashjoin_path(RelOptInfo *joinrel,
int outersize,
int innersize,
int outerwidth,
int innerwidth,
Path *outer_path,
Path *inner_path,
List *pathkeys,
Oid operator,
List *hashclauses,
List *outerkeys,
List *innerkeys)
{
HashPath *pathnode = makeNode(HashPath);
pathnode->jpath.path.pathtype = T_HashJoin;
pathnode->jpath.path.parent = joinrel;
pathnode->jpath.outerjoinpath = outer_path;
pathnode->jpath.innerjoinpath = inner_path;
pathnode->jpath.pathinfo = joinrel->restrictinfo;
pathnode->jpath.path.loc_restrictinfo = NIL;
pathnode->jpath.path.pathkeys = pathkeys;
1999-02-11 15:59:09 +01:00
pathnode->jpath.path.pathorder = makeNode(PathOrder);
pathnode->jpath.path.pathorder->ordtype = SORTOP_ORDER;
pathnode->jpath.path.pathorder->ord.sortop = NULL;
pathnode->jpath.path.outerjoincost = (Cost) 0.0;
pathnode->jpath.path.joinid = (Relid) NULL;
/* pathnode->hashjoinoperator = operator; */
pathnode->path_hashclauses = hashclauses;
pathnode->outerhashkeys = outerkeys;
pathnode->innerhashkeys = innerkeys;
pathnode->jpath.path.path_cost = cost_hashjoin(outer_path->path_cost,
inner_path->path_cost,
outerkeys,
innerkeys,
outersize, innersize,
outerwidth, innerwidth);
/* add in expensive function costs -- JMH 7/7/92 */
#if 0
if (XfuncMode != XFUNC_OFF)
{
pathnode->path_cost += xfunc_get_path_cost((Path *) pathnode);
}
#endif
1998-09-01 05:29:17 +02:00
return pathnode;
}