postgresql/src/backend/utils/cache/catcache.c

1124 lines
28 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* catcache.c
* System catalog cache for tuples matching a key.
*
* Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/utils/cache/catcache.c,v 1.78 2001/06/01 02:41:36 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/genam.h"
#include "access/hash.h"
1999-07-16 07:00:38 +02:00
#include "access/heapam.h"
1997-11-24 06:09:50 +01:00
#include "access/valid.h"
#include "catalog/pg_operator.h"
1999-07-16 05:14:30 +02:00
#include "catalog/pg_type.h"
#include "catalog/catname.h"
#include "catalog/indexing.h"
1999-07-16 07:00:38 +02:00
#include "miscadmin.h"
#include "utils/builtins.h"
#include "utils/fmgroids.h"
1999-07-16 07:00:38 +02:00
#include "utils/catcache.h"
#include "utils/syscache.h"
static void CatCacheRemoveCTup(CatCache *cache, CatCTup *ct);
static Index CatalogCacheComputeHashIndex(CatCache *cache,
2001-03-22 05:01:46 +01:00
ScanKey cur_skey);
static Index CatalogCacheComputeTupleHashIndex(CatCache *cache,
2001-03-22 05:01:46 +01:00
HeapTuple tuple);
static void CatalogCacheInitializeCache(CatCache *cache);
static Datum cc_hashname(PG_FUNCTION_ARGS);
/*
* variables, macros and other stuff
*
*/
#ifdef CACHEDEBUG
#define CACHE1_elog(a,b) elog(a,b)
#define CACHE2_elog(a,b,c) elog(a,b,c)
#define CACHE3_elog(a,b,c,d) elog(a,b,c,d)
#define CACHE4_elog(a,b,c,d,e) elog(a,b,c,d,e)
#define CACHE5_elog(a,b,c,d,e,f) elog(a,b,c,d,e,f)
#define CACHE6_elog(a,b,c,d,e,f,g) elog(a,b,c,d,e,f,g)
#else
#define CACHE1_elog(a,b)
#define CACHE2_elog(a,b,c)
#define CACHE3_elog(a,b,c,d)
#define CACHE4_elog(a,b,c,d,e)
#define CACHE5_elog(a,b,c,d,e,f)
#define CACHE6_elog(a,b,c,d,e,f,g)
#endif
static CatCache *Caches = NULL; /* head of list of caches */
/*
* EQPROC is used in CatalogCacheInitializeCache to find the equality
* functions for system types that are used as cache key fields.
* See also GetCCHashFunc, which should support the same set of types.
*
* XXX this should be replaced by catalog lookups,
* but that seems to pose considerable risk of circularity...
*
*/
static const Oid eqproc[] = {
F_BOOLEQ, InvalidOid, F_CHAREQ, F_NAMEEQ, InvalidOid,
F_INT2EQ, F_INT2VECTOREQ, F_INT4EQ, F_OIDEQ, F_TEXTEQ,
F_OIDEQ, InvalidOid, InvalidOid, InvalidOid, F_OIDVECTOREQ
};
#define EQPROC(SYSTEMTYPEOID) eqproc[(SYSTEMTYPEOID)-BOOLOID]
/*
* internal support functions
*
*/
static PGFunction
GetCCHashFunc(Oid keytype)
{
switch (keytype)
{
2001-03-22 05:01:46 +01:00
case BOOLOID:
case CHAROID:
return hashchar;
case NAMEOID:
return cc_hashname;
case INT2OID:
return hashint2;
case INT2VECTOROID:
return hashint2vector;
case INT4OID:
return hashint4;
case TEXTOID:
return hashvarlena;
case REGPROCOID:
case OIDOID:
return hashoid;
case OIDVECTOROID:
return hashoidvector;
default:
elog(FATAL, "GetCCHashFunc: type %u unsupported as catcache key",
keytype);
return (PGFunction) NULL;
}
}
static Datum
cc_hashname(PG_FUNCTION_ARGS)
{
/*
* We need our own variant of hashname because we want to accept
* null-terminated C strings as search values for name fields. So, we
* have to make sure the data is correctly padded before we compute
* the hash value.
*/
NameData my_n;
2001-03-22 05:01:46 +01:00
namestrcpy(&my_n, NameStr(*PG_GETARG_NAME(0)));
return DirectFunctionCall1(hashname, NameGetDatum(&my_n));
}
/*
* Standard routine for creating cache context if it doesn't exist yet
*
* There are a lot of places (probably far more than necessary) that check
* whether CacheMemoryContext exists yet and want to create it if not.
* We centralize knowledge of exactly how to create it here.
*/
void
CreateCacheMemoryContext(void)
{
2001-03-22 05:01:46 +01:00
/*
* Purely for paranoia, check that context doesn't exist; caller
* probably did so already.
*/
if (!CacheMemoryContext)
CacheMemoryContext = AllocSetContextCreate(TopMemoryContext,
"CacheMemoryContext",
2001-03-22 05:01:46 +01:00
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
}
/*
* CatalogCacheInitializeCache
*
* This function does final initialization of a catcache: obtain the tuple
2001-03-22 05:01:46 +01:00
* descriptor and set up the hash and equality function links. We assume
* that the relcache entry can be opened at this point!
*
*/
#ifdef CACHEDEBUG
#define CatalogCacheInitializeCache_DEBUG1 \
elog(DEBUG, "CatalogCacheInitializeCache: cache @%p %s", cache, \
cache->cc_relname)
#define CatalogCacheInitializeCache_DEBUG2 \
do { \
if (cache->cc_key[i] > 0) { \
elog(DEBUG, "CatalogCacheInitializeCache: load %d/%d w/%d, %u", \
i+1, cache->cc_nkeys, cache->cc_key[i], \
tupdesc->attrs[cache->cc_key[i] - 1]->atttypid); \
} else { \
elog(DEBUG, "CatalogCacheInitializeCache: load %d/%d w/%d", \
i+1, cache->cc_nkeys, cache->cc_key[i]); \
} \
} while(0)
#else
#define CatalogCacheInitializeCache_DEBUG1
#define CatalogCacheInitializeCache_DEBUG2
#endif
static void
CatalogCacheInitializeCache(CatCache *cache)
{
Relation relation;
MemoryContext oldcxt;
TupleDesc tupdesc;
short i;
CatalogCacheInitializeCache_DEBUG1;
/*
* Open the relation without locking --- we only need the tupdesc,
* which we assume will never change ...
*/
relation = heap_openr(cache->cc_relname, NoLock);
Assert(RelationIsValid(relation));
/*
2001-03-22 05:01:46 +01:00
* switch to the cache context so our allocations do not vanish at the
* end of a transaction
*/
if (!CacheMemoryContext)
CreateCacheMemoryContext();
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
/*
2001-03-22 05:01:46 +01:00
* copy the relcache's tuple descriptor to permanent cache storage
*/
tupdesc = CreateTupleDescCopyConstr(RelationGetDescr(relation));
/*
2001-03-22 05:01:46 +01:00
* return to the caller's memory context and close the rel
*/
MemoryContextSwitchTo(oldcxt);
heap_close(relation, NoLock);
CACHE3_elog(DEBUG, "CatalogCacheInitializeCache: %s, %d keys",
cache->cc_relname, cache->cc_nkeys);
/*
2001-03-22 05:01:46 +01:00
* initialize cache's key information
*/
for (i = 0; i < cache->cc_nkeys; ++i)
{
Oid keytype;
CatalogCacheInitializeCache_DEBUG2;
if (cache->cc_key[i] > 0)
keytype = tupdesc->attrs[cache->cc_key[i] - 1]->atttypid;
else
{
if (cache->cc_key[i] != ObjectIdAttributeNumber)
elog(FATAL, "CatalogCacheInit: only sys attr supported is OID");
keytype = OIDOID;
}
1999-05-25 18:15:34 +02:00
cache->cc_hashfunc[i] = GetCCHashFunc(keytype);
2001-03-22 05:01:46 +01:00
/*
* If GetCCHashFunc liked the type, safe to index into eqproc[]
*/
cache->cc_skey[i].sk_procedure = EQPROC(keytype);
/*
* Note: to avoid any possible leakage of scan temporary data into
* the cache context, we do not switch into CacheMemoryContext while
* calling fmgr_info here. Instead set fn_mcxt on return. This
* would fail to work correctly if fmgr_info allocated any subsidiary
* data structures to attach to the FmgrInfo record; but it doesn't
* do so for built-in functions, and all the comparator functions
* for system caches should most assuredly be built-in functions.
* Currently there's no real need to fix fn_mcxt either, but let's do
* that anyway just to make sure it's not pointing to a dead context
* later on.
*/
fmgr_info(cache->cc_skey[i].sk_procedure,
&cache->cc_skey[i].sk_func);
cache->cc_skey[i].sk_func.fn_mcxt = CacheMemoryContext;
/* Initialize sk_attno suitably for HeapKeyTest() and heap scans */
cache->cc_skey[i].sk_attno = cache->cc_key[i];
CACHE4_elog(DEBUG, "CatalogCacheInit %s %d %p",
cache->cc_relname,
i,
cache);
}
/*
2001-03-22 05:01:46 +01:00
* mark this cache fully initialized
*/
cache->cc_tupdesc = tupdesc;
}
/*
* CatalogCacheComputeHashIndex
*
*/
static Index
CatalogCacheComputeHashIndex(CatCache *cache, ScanKey cur_skey)
{
uint32 hashIndex = 0;
CACHE4_elog(DEBUG, "CatalogCacheComputeHashIndex %s %d %p",
cache->cc_relname,
cache->cc_nkeys,
cache);
switch (cache->cc_nkeys)
{
case 4:
hashIndex ^=
DatumGetUInt32(DirectFunctionCall1(cache->cc_hashfunc[3],
2001-03-22 05:01:46 +01:00
cur_skey[3].sk_argument)) << 9;
/* FALLTHROUGH */
case 3:
hashIndex ^=
DatumGetUInt32(DirectFunctionCall1(cache->cc_hashfunc[2],
2001-03-22 05:01:46 +01:00
cur_skey[2].sk_argument)) << 6;
/* FALLTHROUGH */
case 2:
hashIndex ^=
DatumGetUInt32(DirectFunctionCall1(cache->cc_hashfunc[1],
2001-03-22 05:01:46 +01:00
cur_skey[1].sk_argument)) << 3;
/* FALLTHROUGH */
case 1:
hashIndex ^=
DatumGetUInt32(DirectFunctionCall1(cache->cc_hashfunc[0],
2001-03-22 05:01:46 +01:00
cur_skey[0].sk_argument));
break;
default:
elog(FATAL, "CCComputeHashIndex: %d cc_nkeys", cache->cc_nkeys);
break;
}
hashIndex %= (uint32) cache->cc_size;
return (Index) hashIndex;
}
/*
* CatalogCacheComputeTupleHashIndex
*
*/
static Index
CatalogCacheComputeTupleHashIndex(CatCache *cache,
HeapTuple tuple)
{
ScanKeyData cur_skey[4];
bool isNull = false;
/* Copy pre-initialized overhead data for scankey */
memcpy(cur_skey, cache->cc_skey, sizeof(cur_skey));
/* Now extract key fields from tuple, insert into scankey */
switch (cache->cc_nkeys)
{
case 4:
cur_skey[3].sk_argument =
(cache->cc_key[3] == ObjectIdAttributeNumber)
? ObjectIdGetDatum(tuple->t_data->t_oid)
: fastgetattr(tuple,
cache->cc_key[3],
cache->cc_tupdesc,
&isNull);
Assert(!isNull);
/* FALLTHROUGH */
case 3:
cur_skey[2].sk_argument =
(cache->cc_key[2] == ObjectIdAttributeNumber)
? ObjectIdGetDatum(tuple->t_data->t_oid)
: fastgetattr(tuple,
cache->cc_key[2],
cache->cc_tupdesc,
&isNull);
Assert(!isNull);
/* FALLTHROUGH */
case 2:
cur_skey[1].sk_argument =
(cache->cc_key[1] == ObjectIdAttributeNumber)
? ObjectIdGetDatum(tuple->t_data->t_oid)
: fastgetattr(tuple,
cache->cc_key[1],
cache->cc_tupdesc,
&isNull);
Assert(!isNull);
/* FALLTHROUGH */
case 1:
cur_skey[0].sk_argument =
(cache->cc_key[0] == ObjectIdAttributeNumber)
? ObjectIdGetDatum(tuple->t_data->t_oid)
: fastgetattr(tuple,
cache->cc_key[0],
cache->cc_tupdesc,
&isNull);
Assert(!isNull);
break;
default:
elog(FATAL, "CCComputeTupleHashIndex: %d cc_nkeys",
cache->cc_nkeys);
break;
}
return CatalogCacheComputeHashIndex(cache, cur_skey);
}
/*
* CatCacheRemoveCTup
*
*/
static void
CatCacheRemoveCTup(CatCache *cache, CatCTup *ct)
{
Assert(ct->refcount == 0);
/* delink from linked lists */
DLRemove(&ct->lrulist_elem);
DLRemove(&ct->cache_elem);
/* free associated tuple data */
if (ct->tuple.t_data != NULL)
pfree(ct->tuple.t_data);
pfree(ct);
--cache->cc_ntup;
}
/*
* CatalogCacheIdInvalidate()
*
* Invalidate a tuple given a cache id. In this case the id should always
* be found (whether the cache has opened its relation or not). Of course,
* if the cache has yet to open its relation, there will be no tuples so
* no problem.
*
*/
void
CatalogCacheIdInvalidate(int cacheId,
Index hashIndex,
ItemPointer pointer)
{
CatCache *ccp;
/*
2001-03-22 05:01:46 +01:00
* sanity checks
*
*/
Assert(hashIndex < NCCBUCK);
Assert(ItemPointerIsValid(pointer));
CACHE1_elog(DEBUG, "CatalogCacheIdInvalidate: called");
/*
2001-03-22 05:01:46 +01:00
* inspect caches to find the proper cache
*
*/
for (ccp = Caches; ccp; ccp = ccp->cc_next)
{
Dlelem *elt,
*nextelt;
if (cacheId != ccp->id)
continue;
2001-03-22 05:01:46 +01:00
/*
2001-03-22 05:01:46 +01:00
* inspect the hash bucket until we find a match or exhaust
*
*/
for (elt = DLGetHead(&ccp->cc_cache[hashIndex]); elt; elt = nextelt)
{
CatCTup *ct = (CatCTup *) DLE_VAL(elt);
nextelt = DLGetSucc(elt);
if (ItemPointerEquals(pointer, &ct->tuple.t_self))
{
if (ct->refcount > 0)
ct->dead = true;
else
CatCacheRemoveCTup(ccp, ct);
CACHE1_elog(DEBUG, "CatalogCacheIdInvalidate: invalidated");
/* could be multiple matches, so keep looking! */
}
}
break; /* need only search this one cache */
}
}
/* ----------------------------------------------------------------
* public functions
*
* AtEOXact_CatCache
* ResetSystemCache
* InitCatCache
* SearchCatCache
* ReleaseCatCache
* RelationInvalidateCatalogCacheTuple
* ----------------------------------------------------------------
*/
/*
* AtEOXact_CatCache
*
* Clean up catcaches at end of transaction (either commit or abort)
*
* We scan the caches to reset refcounts to zero. This is of course
* necessary in the abort case, since elog() may have interrupted routines.
* In the commit case, any nonzero counts indicate failure to call
* ReleaseSysCache, so we put out a notice for debugging purposes.
*
*/
void
AtEOXact_CatCache(bool isCommit)
{
2001-03-22 05:01:46 +01:00
CatCache *cache;
for (cache = Caches; cache; cache = cache->cc_next)
{
Dlelem *elt,
*nextelt;
for (elt = DLGetHead(&cache->cc_lrulist); elt; elt = nextelt)
{
CatCTup *ct = (CatCTup *) DLE_VAL(elt);
nextelt = DLGetSucc(elt);
if (ct->refcount != 0)
{
if (isCommit)
elog(NOTICE, "Cache reference leak: cache %s (%d), tuple %u has count %d",
cache->cc_relname, cache->id,
ct->tuple.t_data->t_oid,
ct->refcount);
ct->refcount = 0;
}
/* Clean up any now-deletable dead entries */
if (ct->dead)
CatCacheRemoveCTup(cache, ct);
}
}
}
/*
* ResetSystemCache
*
* Reset caches when a shared cache inval event forces it
*
*/
void
ResetSystemCache(void)
{
2001-03-22 05:01:46 +01:00
CatCache *cache;
CACHE1_elog(DEBUG, "ResetSystemCache called");
/* ----------------
* here we purge the contents of all the caches
*
* for each system cache
* for each tuple
* remove the tuple, or at least mark it dead
* ----------------
*/
for (cache = Caches; cache; cache = cache->cc_next)
{
Dlelem *elt,
*nextelt;
for (elt = DLGetHead(&cache->cc_lrulist); elt; elt = nextelt)
{
CatCTup *ct = (CatCTup *) DLE_VAL(elt);
nextelt = DLGetSucc(elt);
if (ct->refcount > 0)
ct->dead = true;
else
CatCacheRemoveCTup(cache, ct);
}
}
CACHE1_elog(DEBUG, "end of ResetSystemCache call");
}
/*
* SystemCacheRelationFlushed
*
* This is called by RelationFlushRelation() to clear out cached information
* about a relation being dropped. (This could be a DROP TABLE command,
* or a temp table being dropped at end of transaction, or a table created
* during the current transaction that is being dropped because of abort.)
* Remove all cache entries relevant to the specified relation OID.
*
* A special case occurs when relId is itself one of the cacheable system
* tables --- although those'll never be dropped, they can get flushed from
* the relcache (VACUUM causes this, for example). In that case we need
* to flush all cache entries from that table. The brute-force method
* currently used takes care of that quite handily. (At one point we
* also tried to force re-execution of CatalogCacheInitializeCache for
* the cache(s) on that table. This is a bad idea since it leads to all
* kinds of trouble if a cache flush occurs while loading cache entries.
* We now avoid the need to do it by copying cc_tupdesc out of the relcache,
* rather than relying on the relcache to keep a tupdesc for us. Of course
* this assumes the tupdesc of a cachable system table will not change...)
*
*/
void
SystemCacheRelationFlushed(Oid relId)
{
/*
* XXX Ideally we'd search the caches and just zap entries that
* actually refer to or come from the indicated relation. For now, we
* take the brute-force approach: just flush the caches entirely.
*/
ResetSystemCache();
}
/*
* InitCatCache
*
* This allocates and initializes a cache for a system catalog relation.
* Actually, the cache is only partially initialized to avoid opening the
* relation. The relation will be opened and the rest of the cache
* structure initialized on the first access.
*
*/
#ifdef CACHEDEBUG
#define InitCatCache_DEBUG1 \
do { \
elog(DEBUG, "InitCatCache: rel=%s id=%d nkeys=%d size=%d\n", \
cp->cc_relname, cp->id, cp->cc_nkeys, cp->cc_size); \
} while(0)
#else
#define InitCatCache_DEBUG1
#endif
2001-03-22 05:01:46 +01:00
CatCache *
InitCatCache(int id,
char *relname,
char *indname,
int nkeys,
int *key)
{
CatCache *cp;
MemoryContext oldcxt;
int i;
/*
2001-03-22 05:01:46 +01:00
* first switch to the cache context so our allocations do not vanish
* at the end of a transaction
*
*/
if (!CacheMemoryContext)
CreateCacheMemoryContext();
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
/*
2001-03-22 05:01:46 +01:00
* allocate a new cache structure
*
*/
cp = (CatCache *) palloc(sizeof(CatCache));
1997-09-18 22:22:58 +02:00
MemSet((char *) cp, 0, sizeof(CatCache));
/*
2001-03-22 05:01:46 +01:00
* initialize the cache buckets (each bucket is a list header) and the
* LRU tuple list
*
*/
DLInitList(&cp->cc_lrulist);
for (i = 0; i < NCCBUCK; ++i)
DLInitList(&cp->cc_cache[i]);
/*
2001-03-22 05:01:46 +01:00
* Caches is the pointer to the head of the list of all the system
* caches. here we add the new cache to the top of the list.
*
*/
cp->cc_next = Caches; /* list of caches (single link) */
Caches = cp;
/*
2001-03-22 05:01:46 +01:00
* initialize the cache's relation information for the relation
* corresponding to this cache, and initialize some of the new cache's
* other internal fields. But don't open the relation yet.
*
*/
cp->cc_relname = relname;
cp->cc_indname = indname;
cp->cc_tupdesc = (TupleDesc) NULL;
cp->id = id;
cp->cc_maxtup = MAXTUP;
cp->cc_size = NCCBUCK;
cp->cc_nkeys = nkeys;
for (i = 0; i < nkeys; ++i)
cp->cc_key[i] = key[i];
/*
2001-03-22 05:01:46 +01:00
* all done. new cache is initialized. print some debugging
* information, if appropriate.
*
*/
InitCatCache_DEBUG1;
/*
2001-03-22 05:01:46 +01:00
* back to the old context before we return...
*
*/
MemoryContextSwitchTo(oldcxt);
1998-09-01 05:29:17 +02:00
return cp;
}
/*
* IndexScanOK
*
* This function checks for tuples that will be fetched by
* IndexSupportInitialize() during relcache initialization for
* certain system indexes that support critical syscaches.
* We can't use an indexscan to fetch these, else we'll get into
* infinite recursion. A plain heap scan will work, however.
*/
static bool
IndexScanOK(CatCache *cache, ScanKey cur_skey)
{
if (cache->id == INDEXRELID)
{
static Oid indexSelfOid = InvalidOid;
/* One-time lookup of the OID of pg_index_indexrelid_index */
if (!OidIsValid(indexSelfOid))
{
Relation rel;
ScanKeyData key;
HeapScanDesc sd;
HeapTuple ntp;
rel = heap_openr(RelationRelationName, AccessShareLock);
2000-02-18 10:30:20 +01:00
ScanKeyEntryInitialize(&key, 0, Anum_pg_class_relname,
F_NAMEEQ,
PointerGetDatum(IndexRelidIndex));
2000-02-18 10:30:20 +01:00
sd = heap_beginscan(rel, false, SnapshotNow, 1, &key);
ntp = heap_getnext(sd, 0);
if (!HeapTupleIsValid(ntp))
elog(ERROR, "SearchSelfReferences: %s not found in %s",
IndexRelidIndex, RelationRelationName);
indexSelfOid = ntp->t_data->t_oid;
2000-02-18 10:30:20 +01:00
heap_endscan(sd);
heap_close(rel, AccessShareLock);
}
/* Looking for pg_index_indexrelid_index? */
if (DatumGetObjectId(cur_skey[0].sk_argument) == indexSelfOid)
return false;
}
else if (cache->id == OPEROID)
{
/* Looking for an OID comparison function? */
Oid lookup_oid = DatumGetObjectId(cur_skey[0].sk_argument);
if (lookup_oid >= MIN_OIDCMP && lookup_oid <= MAX_OIDCMP)
return false;
}
/* Normal case, allow index scan */
return true;
}
/*
* SearchCatCache
*
* This call searches a system cache for a tuple, opening the relation
* if necessary (the first access to a particular cache).
*
*/
HeapTuple
SearchCatCache(CatCache *cache,
Datum v1,
Datum v2,
Datum v3,
Datum v4)
{
ScanKeyData cur_skey[4];
Index hash;
Dlelem *elt;
CatCTup *ct;
HeapTuple ntp;
Relation relation;
MemoryContext oldcxt;
/*
2001-03-22 05:01:46 +01:00
* one-time startup overhead
*
*/
if (cache->cc_tupdesc == NULL)
CatalogCacheInitializeCache(cache);
/*
2001-03-22 05:01:46 +01:00
* initialize the search key information
*
*/
memcpy(cur_skey, cache->cc_skey, sizeof(cur_skey));
cur_skey[0].sk_argument = v1;
cur_skey[1].sk_argument = v2;
cur_skey[2].sk_argument = v3;
cur_skey[3].sk_argument = v4;
/*
2001-03-22 05:01:46 +01:00
* find the hash bucket in which to look for the tuple
*
*/
hash = CatalogCacheComputeHashIndex(cache, cur_skey);
/*
2001-03-22 05:01:46 +01:00
* scan the hash bucket until we find a match or exhaust our tuples
*
*/
for (elt = DLGetHead(&cache->cc_cache[hash]);
elt;
elt = DLGetSucc(elt))
{
bool res;
ct = (CatCTup *) DLE_VAL(elt);
if (ct->dead)
continue; /* ignore dead entries */
/*
2001-03-22 05:01:46 +01:00
* see if the cached tuple matches our key. (should we be worried
* about time ranges? -cim 10/2/90)
*
*/
HeapKeyTest(&ct->tuple,
cache->cc_tupdesc,
cache->cc_nkeys,
cur_skey,
res);
2001-03-22 05:01:46 +01:00
if (!res)
continue;
/*
2001-03-22 05:01:46 +01:00
* we found a tuple in the cache: bump its refcount, move it to
* the front of the LRU list, and return it. We also move it to
* the front of the list for its hashbucket, in order to speed
* subsequent searches. (The most frequently accessed elements in
* any hashbucket will tend to be near the front of the
* hashbucket's list.)
*
*/
ct->refcount++;
DLMoveToFront(&ct->lrulist_elem);
DLMoveToFront(&ct->cache_elem);
#ifdef CACHEDEBUG
CACHE3_elog(DEBUG, "SearchCatCache(%s): found in bucket %d",
cache->cc_relname, hash);
#endif /* CACHEDEBUG */
return &ct->tuple;
}
/*
2001-03-22 05:01:46 +01:00
* Tuple was not found in cache, so we have to try and retrieve it
* directly from the relation. If it's found, we add it to the cache.
*
2001-03-22 05:01:46 +01:00
* NOTE: it is possible for recursive cache lookups to occur while
* reading the relation --- for example, due to shared-cache-inval
* messages being processed during heap_open(). This is OK. It's
* even possible for one of those lookups to find and enter the very
* same tuple we are trying to fetch here. If that happens, we will
* enter a second copy of the tuple into the cache. The first copy
* will never be referenced again, and will eventually age out of the
* cache, so there's no functional problem. This case is rare enough
* that it's not worth expending extra cycles to detect.
*
*/
/*
2001-03-22 05:01:46 +01:00
* open the relation associated with the cache
*
*/
relation = heap_openr(cache->cc_relname, AccessShareLock);
/*
2001-03-22 05:01:46 +01:00
* Scan the relation to find the tuple. If there's an index, and if
* it's safe to do so, use the index. Else do a heap scan.
*
*/
ct = NULL;
if ((RelationGetForm(relation))->relhasindex &&
!IsIgnoringSystemIndexes() &&
IndexScanOK(cache, cur_skey))
{
Relation idesc;
IndexScanDesc isd;
RetrieveIndexResult indexRes;
HeapTupleData tuple;
Buffer buffer;
int i;
CACHE2_elog(DEBUG, "SearchCatCache(%s): performing index scan",
cache->cc_relname);
/*
2001-03-22 05:01:46 +01:00
* For an index scan, sk_attno has to be set to the index
* attribute number(s), not the heap attribute numbers. We assume
* that the index corresponds exactly to the cache keys (or its
* first N keys do, anyway).
*/
for (i = 0; i < cache->cc_nkeys; ++i)
2001-03-22 05:01:46 +01:00
cur_skey[i].sk_attno = i + 1;
idesc = index_openr(cache->cc_indname);
isd = index_beginscan(idesc, false, cache->cc_nkeys, cur_skey);
tuple.t_datamcxt = CurrentMemoryContext;
tuple.t_data = NULL;
while ((indexRes = index_getnext(isd, ForwardScanDirection)))
{
tuple.t_self = indexRes->heap_iptr;
heap_fetch(relation, SnapshotNow, &tuple, &buffer);
pfree(indexRes);
if (tuple.t_data != NULL)
{
/* Copy tuple into our context */
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
ct = (CatCTup *) palloc(sizeof(CatCTup));
heap_copytuple_with_tuple(&tuple, &ct->tuple);
MemoryContextSwitchTo(oldcxt);
ReleaseBuffer(buffer);
break;
}
}
index_endscan(isd);
index_close(idesc);
}
else
{
HeapScanDesc sd;
CACHE2_elog(DEBUG, "SearchCatCache(%s): performing heap scan",
cache->cc_relname);
1998-07-27 21:38:40 +02:00
sd = heap_beginscan(relation, 0, SnapshotNow,
cache->cc_nkeys, cur_skey);
ntp = heap_getnext(sd, 0);
if (HeapTupleIsValid(ntp))
{
/* Copy tuple into our context */
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
ct = (CatCTup *) palloc(sizeof(CatCTup));
heap_copytuple_with_tuple(ntp, &ct->tuple);
MemoryContextSwitchTo(oldcxt);
/* We should not free the result of heap_getnext... */
}
heap_endscan(sd);
}
/*
2001-03-22 05:01:46 +01:00
* close the relation
*
*/
heap_close(relation, AccessShareLock);
/*
2001-03-22 05:01:46 +01:00
* scan is complete. if tup was found, we can add it to the cache.
*
*/
if (ct == NULL)
return NULL;
/*
2001-03-22 05:01:46 +01:00
* Finish initializing the CatCTup header, and add it to the linked
* lists.
*
*/
CACHE1_elog(DEBUG, "SearchCatCache: found tuple");
ct->ct_magic = CT_MAGIC;
DLInitElem(&ct->lrulist_elem, (void *) ct);
DLInitElem(&ct->cache_elem, (void *) ct);
ct->refcount = 1; /* count this first reference */
ct->dead = false;
DLAddHead(&cache->cc_lrulist, &ct->lrulist_elem);
DLAddHead(&cache->cc_cache[hash], &ct->cache_elem);
/*
2001-03-22 05:01:46 +01:00
* If we've exceeded the desired size of this cache, try to throw away
* the least recently used entry.
*
*/
if (++cache->cc_ntup > cache->cc_maxtup)
{
for (elt = DLGetTail(&cache->cc_lrulist);
elt;
elt = DLGetPred(elt))
{
CatCTup *oldct = (CatCTup *) DLE_VAL(elt);
if (oldct->refcount == 0)
{
CACHE2_elog(DEBUG, "SearchCatCache(%s): Overflow, LRU removal",
cache->cc_relname);
CatCacheRemoveCTup(cache, oldct);
break;
}
}
}
CACHE4_elog(DEBUG, "SearchCatCache(%s): Contains %d/%d tuples",
cache->cc_relname, cache->cc_ntup, cache->cc_maxtup);
CACHE3_elog(DEBUG, "SearchCatCache(%s): put in bucket %d",
cache->cc_relname, hash);
return &ct->tuple;
}
/*
* ReleaseCatCache()
*
* Decrement the reference count of a catcache entry (releasing the
* hold grabbed by a successful SearchCatCache).
*
* NOTE: if compiled with -DCATCACHE_FORCE_RELEASE then catcache entries
* will be freed as soon as their refcount goes to zero. In combination
* with aset.c's CLOBBER_FREED_MEMORY option, this provides a good test
* to catch references to already-released catcache entries.
*
*/
void
ReleaseCatCache(HeapTuple tuple)
{
2001-03-22 05:01:46 +01:00
CatCTup *ct = (CatCTup *) (((char *) tuple) -
offsetof(CatCTup, tuple));
/* Safety checks to ensure we were handed a cache entry */
Assert(ct->ct_magic == CT_MAGIC);
Assert(ct->refcount > 0);
ct->refcount--;
if (ct->refcount == 0
#ifndef CATCACHE_FORCE_RELEASE
&& ct->dead
#endif
)
{
/* We can find the associated cache using the dllist pointers */
2001-03-22 05:01:46 +01:00
Dllist *lru = DLGetListHdr(&ct->lrulist_elem);
CatCache *cache = (CatCache *) (((char *) lru) -
offsetof(CatCache, cc_lrulist));
CatCacheRemoveCTup(cache, ct);
}
}
/*
* PrepareToInvalidateCacheTuple()
*
* This is part of a rather subtle chain of events, so pay attention:
*
* When a tuple is updated or deleted, it cannot be flushed from the
* catcaches immediately, for reasons explained at the top of inval.c.
* Instead we have to add entry(s) for the tuple to a list of pending tuple
* invalidations that will be done at the end of the command or transaction.
*
* The lists of tuples that need to be flushed are kept by inval.c. This
* routine is a helper routine for inval.c. Given a tuple belonging to
* the specified relation, find all catcaches it could be in, compute the
* correct hashindex for each such catcache, and call the specified function
* to record the cache id, hashindex, and tuple ItemPointer in inval.c's
2001-03-22 05:01:46 +01:00
* lists. CatalogCacheIdInvalidate will be called later, if appropriate,
* using the recorded information.
*
* Note that it is irrelevant whether the given tuple is actually loaded
* into the catcache at the moment. Even if it's not there now, it might
* be by the end of the command, so we have to be prepared to flush it.
*
* Also note that it's not an error if there are no catcaches for the
* specified relation. inval.c doesn't know exactly which rels have
* catcaches --- it will call this routine for any tuple that's in a
* system relation.
*
*/
void
PrepareToInvalidateCacheTuple(Relation relation,
HeapTuple tuple,
void (*function) (int, Index, ItemPointer))
{
CatCache *ccp;
/*
2001-03-22 05:01:46 +01:00
* sanity checks
*
*/
Assert(RelationIsValid(relation));
Assert(HeapTupleIsValid(tuple));
Assert(PointerIsValid(function));
CACHE1_elog(DEBUG, "PrepareToInvalidateCacheTuple: called");
/* ----------------
* for each cache
* if the cache contains tuples from the specified relation
* compute the tuple's hash index in this cache,
* and call the passed function to register the information.
* ----------------
*/
for (ccp = Caches; ccp; ccp = ccp->cc_next)
{
if (strcmp(ccp->cc_relname, RelationGetRelationName(relation)) != 0)
continue;
/* Just in case cache hasn't finished initialization yet... */
if (ccp->cc_tupdesc == NULL)
CatalogCacheInitializeCache(ccp);
(*function) (ccp->id,
CatalogCacheComputeTupleHashIndex(ccp, tuple),
1998-11-27 20:52:36 +01:00
&tuple->t_self);
}
}