postgresql/src/backend/replication/slot.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1843 lines
51 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* slot.c
* Replication slot management.
*
*
* Copyright (c) 2012-2021, PostgreSQL Global Development Group
*
*
* IDENTIFICATION
* src/backend/replication/slot.c
*
* NOTES
*
* Replication slots are used to keep state about replication streams
* originating from this cluster. Their primary purpose is to prevent the
* premature removal of WAL or of old tuple versions in a manner that would
* interfere with replication; they are also useful for monitoring purposes.
* Slots need to be permanent (to allow restarts), crash-safe, and allocatable
* on standbys (to support cascading setups). The requirement that slots be
* usable on standbys precludes storing them in the system catalogs.
*
* Each replication slot gets its own directory inside the $PGDATA/pg_replslot
* directory. Inside that directory the state file will contain the slot's
* own data. Additional data can be stored alongside that file if required.
* While the server is running, the state data is also cached in memory for
* efficiency.
*
* ReplicationSlotAllocationLock must be taken in exclusive mode to allocate
* or free a slot. ReplicationSlotControlLock must be taken in shared mode
* to iterate over the slots, and in exclusive mode to change the in_use flag
* of a slot. The remaining data in each slot is protected by its mutex.
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <unistd.h>
#include <sys/stat.h>
#include "access/transam.h"
#include "access/xlog_internal.h"
#include "common/string.h"
#include "miscadmin.h"
#include "pgstat.h"
#include "replication/slot.h"
#include "storage/fd.h"
#include "storage/proc.h"
#include "storage/procarray.h"
#include "utils/builtins.h"
/*
* Replication slot on-disk data structure.
*/
typedef struct ReplicationSlotOnDisk
{
/* first part of this struct needs to be version independent */
/* data not covered by checksum */
uint32 magic;
pg_crc32c checksum;
/* data covered by checksum */
uint32 version;
uint32 length;
/*
* The actual data in the slot that follows can differ based on the above
* 'version'.
*/
ReplicationSlotPersistentData slotdata;
} ReplicationSlotOnDisk;
/* size of version independent data */
#define ReplicationSlotOnDiskConstantSize \
offsetof(ReplicationSlotOnDisk, slotdata)
/* size of the part of the slot not covered by the checksum */
#define SnapBuildOnDiskNotChecksummedSize \
offsetof(ReplicationSlotOnDisk, version)
/* size of the part covered by the checksum */
#define SnapBuildOnDiskChecksummedSize \
sizeof(ReplicationSlotOnDisk) - SnapBuildOnDiskNotChecksummedSize
/* size of the slot data that is version dependent */
#define ReplicationSlotOnDiskV2Size \
sizeof(ReplicationSlotOnDisk) - ReplicationSlotOnDiskConstantSize
#define SLOT_MAGIC 0x1051CA1 /* format identifier */
#define SLOT_VERSION 2 /* version for new files */
/* Control array for replication slot management */
ReplicationSlotCtlData *ReplicationSlotCtl = NULL;
/* My backend's replication slot in the shared memory array */
ReplicationSlot *MyReplicationSlot = NULL;
/* GUCs */
int max_replication_slots = 0; /* the maximum number of replication
* slots */
static void ReplicationSlotDropAcquired(void);
static void ReplicationSlotDropPtr(ReplicationSlot *slot);
/* internal persistency functions */
static void RestoreSlotFromDisk(const char *name);
static void CreateSlotOnDisk(ReplicationSlot *slot);
static void SaveSlotToPath(ReplicationSlot *slot, const char *path, int elevel);
/*
* Report shared-memory space needed by ReplicationSlotsShmemInit.
*/
Size
ReplicationSlotsShmemSize(void)
{
Size size = 0;
if (max_replication_slots == 0)
return size;
size = offsetof(ReplicationSlotCtlData, replication_slots);
size = add_size(size,
mul_size(max_replication_slots, sizeof(ReplicationSlot)));
return size;
}
/*
* Allocate and initialize shared memory for replication slots.
*/
void
ReplicationSlotsShmemInit(void)
{
bool found;
if (max_replication_slots == 0)
return;
ReplicationSlotCtl = (ReplicationSlotCtlData *)
ShmemInitStruct("ReplicationSlot Ctl", ReplicationSlotsShmemSize(),
&found);
if (!found)
{
int i;
/* First time through, so initialize */
MemSet(ReplicationSlotCtl, 0, ReplicationSlotsShmemSize());
for (i = 0; i < max_replication_slots; i++)
{
ReplicationSlot *slot = &ReplicationSlotCtl->replication_slots[i];
/* everything else is zeroed by the memset above */
SpinLockInit(&slot->mutex);
LWLockInitialize(&slot->io_in_progress_lock,
LWTRANCHE_REPLICATION_SLOT_IO);
ConditionVariableInit(&slot->active_cv);
}
}
}
/*
* Check whether the passed slot name is valid and report errors at elevel.
*
* Slot names may consist out of [a-z0-9_]{1,NAMEDATALEN-1} which should allow
* the name to be used as a directory name on every supported OS.
*
* Returns whether the directory name is valid or not if elevel < ERROR.
*/
bool
ReplicationSlotValidateName(const char *name, int elevel)
{
const char *cp;
if (strlen(name) == 0)
{
ereport(elevel,
(errcode(ERRCODE_INVALID_NAME),
errmsg("replication slot name \"%s\" is too short",
name)));
return false;
}
if (strlen(name) >= NAMEDATALEN)
{
ereport(elevel,
(errcode(ERRCODE_NAME_TOO_LONG),
errmsg("replication slot name \"%s\" is too long",
name)));
return false;
}
for (cp = name; *cp; cp++)
{
if (!((*cp >= 'a' && *cp <= 'z')
|| (*cp >= '0' && *cp <= '9')
|| (*cp == '_')))
{
ereport(elevel,
(errcode(ERRCODE_INVALID_NAME),
errmsg("replication slot name \"%s\" contains invalid character",
name),
errhint("Replication slot names may only contain lower case letters, numbers, and the underscore character.")));
return false;
}
}
return true;
}
/*
* Create a new replication slot and mark it as used by this backend.
*
* name: Name of the slot
* db_specific: logical decoding is db specific; if the slot is going to
* be used for that pass true, otherwise false.
* two_phase: Allows decoding of prepared transactions. We allow this option
* to be enabled only at the slot creation time. If we allow this option
* to be changed during decoding then it is quite possible that we skip
* prepare first time because this option was not enabled. Now next time
* during getting changes, if the two_phase option is enabled it can skip
* prepare because by that time start decoding point has been moved. So the
* user will only get commit prepared.
*/
void
ReplicationSlotCreate(const char *name, bool db_specific,
ReplicationSlotPersistency persistency, bool two_phase)
{
ReplicationSlot *slot = NULL;
int i;
Assert(MyReplicationSlot == NULL);
ReplicationSlotValidateName(name, ERROR);
/*
2015-06-11 03:30:17 +02:00
* If some other backend ran this code concurrently with us, we'd likely
* both allocate the same slot, and that would be bad. We'd also be at
* risk of missing a name collision. Also, we don't want to try to create
* a new slot while somebody's busy cleaning up an old one, because we
* might both be monkeying with the same directory.
*/
LWLockAcquire(ReplicationSlotAllocationLock, LW_EXCLUSIVE);
/*
* Check for name collision, and identify an allocatable slot. We need to
* hold ReplicationSlotControlLock in shared mode for this, so that nobody
* else can change the in_use flags while we're looking at them.
*/
LWLockAcquire(ReplicationSlotControlLock, LW_SHARED);
for (i = 0; i < max_replication_slots; i++)
{
ReplicationSlot *s = &ReplicationSlotCtl->replication_slots[i];
if (s->in_use && strcmp(name, NameStr(s->data.name)) == 0)
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_OBJECT),
errmsg("replication slot \"%s\" already exists", name)));
if (!s->in_use && slot == NULL)
slot = s;
}
LWLockRelease(ReplicationSlotControlLock);
/* If all slots are in use, we're out of luck. */
if (slot == NULL)
ereport(ERROR,
(errcode(ERRCODE_CONFIGURATION_LIMIT_EXCEEDED),
errmsg("all replication slots are in use"),
errhint("Free one or increase max_replication_slots.")));
/*
* Since this slot is not in use, nobody should be looking at any part of
* it other than the in_use field unless they're trying to allocate it.
* And since we hold ReplicationSlotAllocationLock, nobody except us can
* be doing that. So it's safe to initialize the slot.
*/
Assert(!slot->in_use);
Assert(slot->active_pid == 0);
/* first initialize persistent data */
memset(&slot->data, 0, sizeof(ReplicationSlotPersistentData));
namestrcpy(&slot->data.name, name);
slot->data.database = db_specific ? MyDatabaseId : InvalidOid;
slot->data.persistency = persistency;
slot->data.two_phase = two_phase;
Add support for prepared transactions to built-in logical replication. To add support for streaming transactions at prepare time into the built-in logical replication, we need to do the following things: * Modify the output plugin (pgoutput) to implement the new two-phase API callbacks, by leveraging the extended replication protocol. * Modify the replication apply worker, to properly handle two-phase transactions by replaying them on prepare. * Add a new SUBSCRIPTION option "two_phase" to allow users to enable two-phase transactions. We enable the two_phase once the initial data sync is over. We however must explicitly disable replication of two-phase transactions during replication slot creation, even if the plugin supports it. We don't need to replicate the changes accumulated during this phase, and moreover, we don't have a replication connection open so we don't know where to send the data anyway. The streaming option is not allowed with this new two_phase option. This can be done as a separate patch. We don't allow to toggle two_phase option of a subscription because it can lead to an inconsistent replica. For the same reason, we don't allow to refresh the publication once the two_phase is enabled for a subscription unless copy_data option is false. Author: Peter Smith, Ajin Cherian and Amit Kapila based on previous work by Nikhil Sontakke and Stas Kelvich Reviewed-by: Amit Kapila, Sawada Masahiko, Vignesh C, Dilip Kumar, Takamichi Osumi, Greg Nancarrow Tested-By: Haiying Tang Discussion: https://postgr.es/m/02DA5F5E-CECE-4D9C-8B4B-418077E2C010@postgrespro.ru Discussion: https://postgr.es/m/CAA4eK1+opiV4aFTmWWUF9h_32=HfPOW9vZASHarT0UA5oBrtGw@mail.gmail.com
2021-07-14 04:03:50 +02:00
slot->data.two_phase_at = InvalidXLogRecPtr;
/* and then data only present in shared memory */
slot->just_dirtied = false;
slot->dirty = false;
slot->effective_xmin = InvalidTransactionId;
slot->effective_catalog_xmin = InvalidTransactionId;
slot->candidate_catalog_xmin = InvalidTransactionId;
slot->candidate_xmin_lsn = InvalidXLogRecPtr;
slot->candidate_restart_valid = InvalidXLogRecPtr;
slot->candidate_restart_lsn = InvalidXLogRecPtr;
/*
* Create the slot on disk. We haven't actually marked the slot allocated
* yet, so no special cleanup is required if this errors out.
*/
CreateSlotOnDisk(slot);
/*
* We need to briefly prevent any other backend from iterating over the
* slots while we flip the in_use flag. We also need to set the active
* flag while holding the ControlLock as otherwise a concurrent
* ReplicationSlotAcquire() could acquire the slot as well.
*/
LWLockAcquire(ReplicationSlotControlLock, LW_EXCLUSIVE);
slot->in_use = true;
/* We can now mark the slot active, and that makes it our slot. */
SpinLockAcquire(&slot->mutex);
Assert(slot->active_pid == 0);
slot->active_pid = MyProcPid;
SpinLockRelease(&slot->mutex);
MyReplicationSlot = slot;
LWLockRelease(ReplicationSlotControlLock);
/*
* Create statistics entry for the new logical slot. We don't collect any
* stats for physical slots, so no need to create an entry for the same.
* See ReplicationSlotDropPtr for why we need to do this before releasing
* ReplicationSlotAllocationLock.
*/
if (SlotIsLogical(slot))
pgstat_report_replslot_create(NameStr(slot->data.name));
/*
* Now that the slot has been marked as in_use and active, it's safe to
* let somebody else try to allocate a slot.
*/
LWLockRelease(ReplicationSlotAllocationLock);
/* Let everybody know we've modified this slot */
ConditionVariableBroadcast(&slot->active_cv);
}
/*
* Search for the named replication slot.
*
* Return the replication slot if found, otherwise NULL.
*/
ReplicationSlot *
SearchNamedReplicationSlot(const char *name, bool need_lock)
{
int i;
ReplicationSlot *slot = NULL;
if (need_lock)
LWLockAcquire(ReplicationSlotControlLock, LW_SHARED);
for (i = 0; i < max_replication_slots; i++)
{
ReplicationSlot *s = &ReplicationSlotCtl->replication_slots[i];
if (s->in_use && strcmp(name, NameStr(s->data.name)) == 0)
{
slot = s;
break;
}
}
if (need_lock)
LWLockRelease(ReplicationSlotControlLock);
return slot;
}
/*
* Find a previously created slot and mark it as used by this process.
*
* An error is raised if nowait is true and the slot is currently in use. If
* nowait is false, we sleep until the slot is released by the owning process.
*/
void
ReplicationSlotAcquire(const char *name, bool nowait)
{
ReplicationSlot *s;
int active_pid;
AssertArg(name != NULL);
retry:
Assert(MyReplicationSlot == NULL);
LWLockAcquire(ReplicationSlotControlLock, LW_SHARED);
/*
* Search for the slot with the specified name if the slot to acquire is
* not given. If the slot is not found, we either return -1 or error out.
*/
s = SearchNamedReplicationSlot(name, false);
if (s == NULL || !s->in_use)
{
LWLockRelease(ReplicationSlotControlLock);
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("replication slot \"%s\" does not exist",
name)));
}
/*
* This is the slot we want; check if it's active under some other
* process. In single user mode, we don't need this check.
*/
if (IsUnderPostmaster)
{
/*
* Get ready to sleep on the slot in case it is active. (We may end
* up not sleeping, but we don't want to do this while holding the
* spinlock.)
*/
if (!nowait)
ConditionVariablePrepareToSleep(&s->active_cv);
SpinLockAcquire(&s->mutex);
if (s->active_pid == 0)
s->active_pid = MyProcPid;
active_pid = s->active_pid;
SpinLockRelease(&s->mutex);
}
else
active_pid = MyProcPid;
LWLockRelease(ReplicationSlotControlLock);
/*
* If we found the slot but it's already active in another process, we
* wait until the owning process signals us that it's been released, or
* error out.
*/
if (active_pid != MyProcPid)
{
if (!nowait)
{
/* Wait here until we get signaled, and then restart */
ConditionVariableSleep(&s->active_cv,
WAIT_EVENT_REPLICATION_SLOT_DROP);
ConditionVariableCancelSleep();
goto retry;
}
ereport(ERROR,
(errcode(ERRCODE_OBJECT_IN_USE),
errmsg("replication slot \"%s\" is active for PID %d",
NameStr(s->data.name), active_pid)));
}
else if (!nowait)
ConditionVariableCancelSleep(); /* no sleep needed after all */
/* Let everybody know we've modified this slot */
ConditionVariableBroadcast(&s->active_cv);
/* We made this slot active, so it's ours now. */
MyReplicationSlot = s;
}
/*
* Release the replication slot that this backend considers to own.
*
* This or another backend can re-acquire the slot later.
* Resources this slot requires will be preserved.
*/
void
ReplicationSlotRelease(void)
{
ReplicationSlot *slot = MyReplicationSlot;
Assert(slot != NULL && slot->active_pid != 0);
if (slot->data.persistency == RS_EPHEMERAL)
{
/*
* Delete the slot. There is no !PANIC case where this is allowed to
* fail, all that may happen is an incomplete cleanup of the on-disk
* data.
*/
ReplicationSlotDropAcquired();
}
/*
* If slot needed to temporarily restrain both data and catalog xmin to
* create the catalog snapshot, remove that temporary constraint.
* Snapshots can only be exported while the initial snapshot is still
* acquired.
*/
if (!TransactionIdIsValid(slot->data.xmin) &&
TransactionIdIsValid(slot->effective_xmin))
{
SpinLockAcquire(&slot->mutex);
slot->effective_xmin = InvalidTransactionId;
SpinLockRelease(&slot->mutex);
ReplicationSlotsComputeRequiredXmin(false);
}
if (slot->data.persistency == RS_PERSISTENT)
{
/*
* Mark persistent slot inactive. We're not freeing it, just
* disconnecting, but wake up others that may be waiting for it.
*/
SpinLockAcquire(&slot->mutex);
slot->active_pid = 0;
SpinLockRelease(&slot->mutex);
ConditionVariableBroadcast(&slot->active_cv);
}
MyReplicationSlot = NULL;
/* might not have been set when we've been a plain slot */
LWLockAcquire(ProcArrayLock, LW_SHARED);
MyProc->statusFlags &= ~PROC_IN_LOGICAL_DECODING;
ProcGlobal->statusFlags[MyProc->pgxactoff] = MyProc->statusFlags;
LWLockRelease(ProcArrayLock);
}
/*
* Cleanup all temporary slots created in current session.
*/
void
2017-04-06 05:56:35 +02:00
ReplicationSlotCleanup(void)
{
int i;
Assert(MyReplicationSlot == NULL);
restart:
LWLockAcquire(ReplicationSlotControlLock, LW_SHARED);
for (i = 0; i < max_replication_slots; i++)
{
ReplicationSlot *s = &ReplicationSlotCtl->replication_slots[i];
if (!s->in_use)
continue;
SpinLockAcquire(&s->mutex);
if (s->active_pid == MyProcPid)
{
Assert(s->data.persistency == RS_TEMPORARY);
SpinLockRelease(&s->mutex);
LWLockRelease(ReplicationSlotControlLock); /* avoid deadlock */
ReplicationSlotDropPtr(s);
ConditionVariableBroadcast(&s->active_cv);
goto restart;
}
else
SpinLockRelease(&s->mutex);
}
LWLockRelease(ReplicationSlotControlLock);
}
/*
* Permanently drop replication slot identified by the passed in name.
*/
void
ReplicationSlotDrop(const char *name, bool nowait)
{
Assert(MyReplicationSlot == NULL);
ReplicationSlotAcquire(name, nowait);
ReplicationSlotDropAcquired();
}
/*
* Permanently drop the currently acquired replication slot.
*/
static void
ReplicationSlotDropAcquired(void)
{
ReplicationSlot *slot = MyReplicationSlot;
Assert(MyReplicationSlot != NULL);
/* slot isn't acquired anymore */
MyReplicationSlot = NULL;
ReplicationSlotDropPtr(slot);
}
/*
* Permanently drop the replication slot which will be released by the point
* this function returns.
*/
static void
ReplicationSlotDropPtr(ReplicationSlot *slot)
{
char path[MAXPGPATH];
char tmppath[MAXPGPATH];
/*
* If some other backend ran this code concurrently with us, we might try
* to delete a slot with a certain name while someone else was trying to
* create a slot with the same name.
*/
LWLockAcquire(ReplicationSlotAllocationLock, LW_EXCLUSIVE);
/* Generate pathnames. */
sprintf(path, "pg_replslot/%s", NameStr(slot->data.name));
sprintf(tmppath, "pg_replslot/%s.tmp", NameStr(slot->data.name));
/*
* Rename the slot directory on disk, so that we'll no longer recognize
* this as a valid slot. Note that if this fails, we've got to mark the
* slot inactive before bailing out. If we're dropping an ephemeral or a
* temporary slot, we better never fail hard as the caller won't expect
* the slot to survive and this might get called during error handling.
*/
if (rename(path, tmppath) == 0)
{
/*
* We need to fsync() the directory we just renamed and its parent to
* make sure that our changes are on disk in a crash-safe fashion. If
* fsync() fails, we can't be sure whether the changes are on disk or
* not. For now, we handle that by panicking;
* StartupReplicationSlots() will try to straighten it out after
* restart.
*/
START_CRIT_SECTION();
fsync_fname(tmppath, true);
fsync_fname("pg_replslot", true);
END_CRIT_SECTION();
}
else
{
bool fail_softly = slot->data.persistency != RS_PERSISTENT;
SpinLockAcquire(&slot->mutex);
slot->active_pid = 0;
SpinLockRelease(&slot->mutex);
/* wake up anyone waiting on this slot */
ConditionVariableBroadcast(&slot->active_cv);
ereport(fail_softly ? WARNING : ERROR,
(errcode_for_file_access(),
errmsg("could not rename file \"%s\" to \"%s\": %m",
path, tmppath)));
}
/*
* The slot is definitely gone. Lock out concurrent scans of the array
* long enough to kill it. It's OK to clear the active PID here without
* grabbing the mutex because nobody else can be scanning the array here,
* and nobody can be attached to this slot and thus access it without
* scanning the array.
*
* Also wake up processes waiting for it.
*/
LWLockAcquire(ReplicationSlotControlLock, LW_EXCLUSIVE);
slot->active_pid = 0;
slot->in_use = false;
LWLockRelease(ReplicationSlotControlLock);
ConditionVariableBroadcast(&slot->active_cv);
/*
* Slot is dead and doesn't prevent resource removal anymore, recompute
* limits.
*/
ReplicationSlotsComputeRequiredXmin(false);
ReplicationSlotsComputeRequiredLSN();
/*
* If removing the directory fails, the worst thing that will happen is
* that the user won't be able to create a new slot with the same name
* until the next server restart. We warn about it, but that's all.
*/
if (!rmtree(tmppath, true))
ereport(WARNING,
(errmsg("could not remove directory \"%s\"", tmppath)));
/*
* Send a message to drop the replication slot to the stats collector.
* Since there is no guarantee of the order of message transfer on a UDP
* connection, it's possible that a message for creating a new slot
* reaches before a message for removing the old slot. We send the drop
* and create messages while holding ReplicationSlotAllocationLock to
* reduce that possibility. If the messages reached in reverse, we would
* lose one statistics update message. But the next update message will
* create the statistics for the replication slot.
*
* XXX In case, the messages for creation and drop slot of the same name
* get lost and create happens before (auto)vacuum cleans up the dead
* slot, the stats will be accumulated into the old slot. One can imagine
* having OIDs for each slot to avoid the accumulation of stats but that
* doesn't seem worth doing as in practice this won't happen frequently.
*/
if (SlotIsLogical(slot))
pgstat_report_replslot_drop(NameStr(slot->data.name));
/*
* We release this at the very end, so that nobody starts trying to create
* a slot while we're still cleaning up the detritus of the old one.
*/
LWLockRelease(ReplicationSlotAllocationLock);
}
/*
* Serialize the currently acquired slot's state from memory to disk, thereby
* guaranteeing the current state will survive a crash.
*/
void
ReplicationSlotSave(void)
{
char path[MAXPGPATH];
Assert(MyReplicationSlot != NULL);
sprintf(path, "pg_replslot/%s", NameStr(MyReplicationSlot->data.name));
SaveSlotToPath(MyReplicationSlot, path, ERROR);
}
/*
* Signal that it would be useful if the currently acquired slot would be
* flushed out to disk.
*
* Note that the actual flush to disk can be delayed for a long time, if
* required for correctness explicitly do a ReplicationSlotSave().
*/
void
ReplicationSlotMarkDirty(void)
{
ReplicationSlot *slot = MyReplicationSlot;
2016-06-10 00:02:36 +02:00
Assert(MyReplicationSlot != NULL);
SpinLockAcquire(&slot->mutex);
MyReplicationSlot->just_dirtied = true;
MyReplicationSlot->dirty = true;
SpinLockRelease(&slot->mutex);
}
/*
2015-04-02 13:45:19 +02:00
* Convert a slot that's marked as RS_EPHEMERAL to a RS_PERSISTENT slot,
* guaranteeing it will be there after an eventual crash.
*/
void
ReplicationSlotPersist(void)
{
ReplicationSlot *slot = MyReplicationSlot;
Assert(slot != NULL);
Assert(slot->data.persistency != RS_PERSISTENT);
SpinLockAcquire(&slot->mutex);
slot->data.persistency = RS_PERSISTENT;
SpinLockRelease(&slot->mutex);
ReplicationSlotMarkDirty();
ReplicationSlotSave();
}
/*
* Compute the oldest xmin across all slots and store it in the ProcArray.
*
* If already_locked is true, ProcArrayLock has already been acquired
* exclusively.
*/
void
ReplicationSlotsComputeRequiredXmin(bool already_locked)
{
int i;
TransactionId agg_xmin = InvalidTransactionId;
TransactionId agg_catalog_xmin = InvalidTransactionId;
Assert(ReplicationSlotCtl != NULL);
LWLockAcquire(ReplicationSlotControlLock, LW_SHARED);
for (i = 0; i < max_replication_slots; i++)
{
ReplicationSlot *s = &ReplicationSlotCtl->replication_slots[i];
TransactionId effective_xmin;
TransactionId effective_catalog_xmin;
if (!s->in_use)
continue;
SpinLockAcquire(&s->mutex);
effective_xmin = s->effective_xmin;
effective_catalog_xmin = s->effective_catalog_xmin;
SpinLockRelease(&s->mutex);
/* check the data xmin */
if (TransactionIdIsValid(effective_xmin) &&
(!TransactionIdIsValid(agg_xmin) ||
TransactionIdPrecedes(effective_xmin, agg_xmin)))
agg_xmin = effective_xmin;
/* check the catalog xmin */
if (TransactionIdIsValid(effective_catalog_xmin) &&
(!TransactionIdIsValid(agg_catalog_xmin) ||
TransactionIdPrecedes(effective_catalog_xmin, agg_catalog_xmin)))
agg_catalog_xmin = effective_catalog_xmin;
}
LWLockRelease(ReplicationSlotControlLock);
ProcArraySetReplicationSlotXmin(agg_xmin, agg_catalog_xmin, already_locked);
}
/*
* Compute the oldest restart LSN across all slots and inform xlog module.
*
* Note: while max_slot_wal_keep_size is theoretically relevant for this
* purpose, we don't try to account for that, because this module doesn't
* know what to compare against.
*/
void
ReplicationSlotsComputeRequiredLSN(void)
{
int i;
XLogRecPtr min_required = InvalidXLogRecPtr;
Assert(ReplicationSlotCtl != NULL);
LWLockAcquire(ReplicationSlotControlLock, LW_SHARED);
for (i = 0; i < max_replication_slots; i++)
{
ReplicationSlot *s = &ReplicationSlotCtl->replication_slots[i];
XLogRecPtr restart_lsn;
if (!s->in_use)
continue;
SpinLockAcquire(&s->mutex);
restart_lsn = s->data.restart_lsn;
SpinLockRelease(&s->mutex);
if (restart_lsn != InvalidXLogRecPtr &&
(min_required == InvalidXLogRecPtr ||
restart_lsn < min_required))
min_required = restart_lsn;
}
LWLockRelease(ReplicationSlotControlLock);
XLogSetReplicationSlotMinimumLSN(min_required);
}
/*
* Compute the oldest WAL LSN required by *logical* decoding slots..
*
* Returns InvalidXLogRecPtr if logical decoding is disabled or no logical
* slots exist.
*
* NB: this returns a value >= ReplicationSlotsComputeRequiredLSN(), since it
* ignores physical replication slots.
*
* The results aren't required frequently, so we don't maintain a precomputed
* value like we do for ComputeRequiredLSN() and ComputeRequiredXmin().
*/
XLogRecPtr
ReplicationSlotsComputeLogicalRestartLSN(void)
{
XLogRecPtr result = InvalidXLogRecPtr;
int i;
if (max_replication_slots <= 0)
return InvalidXLogRecPtr;
LWLockAcquire(ReplicationSlotControlLock, LW_SHARED);
for (i = 0; i < max_replication_slots; i++)
{
ReplicationSlot *s;
XLogRecPtr restart_lsn;
s = &ReplicationSlotCtl->replication_slots[i];
/* cannot change while ReplicationSlotCtlLock is held */
if (!s->in_use)
continue;
/* we're only interested in logical slots */
if (!SlotIsLogical(s))
continue;
/* read once, it's ok if it increases while we're checking */
SpinLockAcquire(&s->mutex);
restart_lsn = s->data.restart_lsn;
SpinLockRelease(&s->mutex);
if (restart_lsn == InvalidXLogRecPtr)
continue;
if (result == InvalidXLogRecPtr ||
restart_lsn < result)
result = restart_lsn;
}
LWLockRelease(ReplicationSlotControlLock);
return result;
}
/*
* ReplicationSlotsCountDBSlots -- count the number of slots that refer to the
* passed database oid.
*
* Returns true if there are any slots referencing the database. *nslots will
* be set to the absolute number of slots in the database, *nactive to ones
* currently active.
*/
bool
ReplicationSlotsCountDBSlots(Oid dboid, int *nslots, int *nactive)
{
int i;
*nslots = *nactive = 0;
if (max_replication_slots <= 0)
return false;
LWLockAcquire(ReplicationSlotControlLock, LW_SHARED);
for (i = 0; i < max_replication_slots; i++)
{
ReplicationSlot *s;
s = &ReplicationSlotCtl->replication_slots[i];
/* cannot change while ReplicationSlotCtlLock is held */
if (!s->in_use)
continue;
/* only logical slots are database specific, skip */
if (!SlotIsLogical(s))
continue;
/* not our database, skip */
if (s->data.database != dboid)
continue;
/* count slots with spinlock held */
SpinLockAcquire(&s->mutex);
(*nslots)++;
if (s->active_pid != 0)
(*nactive)++;
SpinLockRelease(&s->mutex);
}
LWLockRelease(ReplicationSlotControlLock);
if (*nslots > 0)
return true;
return false;
}
/*
* ReplicationSlotsDropDBSlots -- Drop all db-specific slots relating to the
* passed database oid. The caller should hold an exclusive lock on the
* pg_database oid for the database to prevent creation of new slots on the db
* or replay from existing slots.
*
* Another session that concurrently acquires an existing slot on the target DB
* (most likely to drop it) may cause this function to ERROR. If that happens
* it may have dropped some but not all slots.
2017-04-06 05:56:35 +02:00
*
* This routine isn't as efficient as it could be - but we don't drop
* databases often, especially databases with lots of slots.
*/
void
ReplicationSlotsDropDBSlots(Oid dboid)
{
int i;
if (max_replication_slots <= 0)
return;
restart:
LWLockAcquire(ReplicationSlotControlLock, LW_SHARED);
for (i = 0; i < max_replication_slots; i++)
{
ReplicationSlot *s;
2017-04-06 05:56:35 +02:00
char *slotname;
int active_pid;
s = &ReplicationSlotCtl->replication_slots[i];
/* cannot change while ReplicationSlotCtlLock is held */
if (!s->in_use)
continue;
/* only logical slots are database specific, skip */
if (!SlotIsLogical(s))
continue;
/* not our database, skip */
if (s->data.database != dboid)
continue;
2017-04-06 05:56:35 +02:00
/* acquire slot, so ReplicationSlotDropAcquired can be reused */
SpinLockAcquire(&s->mutex);
2017-04-06 05:56:35 +02:00
/* can't change while ReplicationSlotControlLock is held */
slotname = NameStr(s->data.name);
active_pid = s->active_pid;
if (active_pid == 0)
{
MyReplicationSlot = s;
s->active_pid = MyProcPid;
}
SpinLockRelease(&s->mutex);
/*
2017-04-06 05:56:35 +02:00
* Even though we hold an exclusive lock on the database object a
* logical slot for that DB can still be active, e.g. if it's
* concurrently being dropped by a backend connected to another DB.
*
2017-04-06 05:56:35 +02:00
* That's fairly unlikely in practice, so we'll just bail out.
*/
if (active_pid)
2017-04-06 05:56:35 +02:00
ereport(ERROR,
(errcode(ERRCODE_OBJECT_IN_USE),
errmsg("replication slot \"%s\" is active for PID %d",
slotname, active_pid)));
/*
2017-04-06 05:56:35 +02:00
* To avoid duplicating ReplicationSlotDropAcquired() and to avoid
* holding ReplicationSlotControlLock over filesystem operations,
* release ReplicationSlotControlLock and use
* ReplicationSlotDropAcquired.
*
2017-04-06 05:56:35 +02:00
* As that means the set of slots could change, restart scan from the
* beginning each time we release the lock.
*/
LWLockRelease(ReplicationSlotControlLock);
ReplicationSlotDropAcquired();
goto restart;
}
LWLockRelease(ReplicationSlotControlLock);
}
/*
* Check whether the server's configuration supports using replication
* slots.
*/
void
CheckSlotRequirements(void)
{
/*
* NB: Adding a new requirement likely means that RestoreSlotFromDisk()
* needs the same check.
*/
if (max_replication_slots == 0)
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("replication slots can only be used if max_replication_slots > 0")));
if (wal_level < WAL_LEVEL_REPLICA)
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("replication slots can only be used if wal_level >= replica")));
}
/*
* Reserve WAL for the currently active slot.
*
* Compute and set restart_lsn in a manner that's appropriate for the type of
* the slot and concurrency safe.
*/
void
ReplicationSlotReserveWal(void)
{
ReplicationSlot *slot = MyReplicationSlot;
Assert(slot != NULL);
Assert(slot->data.restart_lsn == InvalidXLogRecPtr);
/*
* The replication slot mechanism is used to prevent removal of required
* WAL. As there is no interlock between this routine and checkpoints, WAL
* segments could concurrently be removed when a now stale return value of
* ReplicationSlotsComputeRequiredLSN() is used. In the unlikely case that
* this happens we'll just retry.
*/
while (true)
{
XLogSegNo segno;
XLogRecPtr restart_lsn;
/*
* For logical slots log a standby snapshot and start logical decoding
* at exactly that position. That allows the slot to start up more
* quickly.
*
* That's not needed (or indeed helpful) for physical slots as they'll
* start replay at the last logged checkpoint anyway. Instead return
* the location of the last redo LSN. While that slightly increases
* the chance that we have to retry, it's where a base backup has to
* start replay at.
*/
if (!RecoveryInProgress() && SlotIsLogical(slot))
{
XLogRecPtr flushptr;
/* start at current insert position */
restart_lsn = GetXLogInsertRecPtr();
SpinLockAcquire(&slot->mutex);
slot->data.restart_lsn = restart_lsn;
SpinLockRelease(&slot->mutex);
/* make sure we have enough information to start */
flushptr = LogStandbySnapshot();
/* and make sure it's fsynced to disk */
XLogFlush(flushptr);
}
else
{
restart_lsn = GetRedoRecPtr();
SpinLockAcquire(&slot->mutex);
slot->data.restart_lsn = restart_lsn;
SpinLockRelease(&slot->mutex);
}
/* prevent WAL removal as fast as possible */
ReplicationSlotsComputeRequiredLSN();
/*
* If all required WAL is still there, great, otherwise retry. The
* slot should prevent further removal of WAL, unless there's a
* concurrent ReplicationSlotsComputeRequiredLSN() after we've written
* the new restart_lsn above, so normally we should never need to loop
* more than twice.
*/
XLByteToSeg(slot->data.restart_lsn, segno, wal_segment_size);
if (XLogGetLastRemovedSegno() < segno)
break;
}
}
/*
* Helper for InvalidateObsoleteReplicationSlots -- acquires the given slot
* and mark it invalid, if necessary and possible.
*
* Returns whether ReplicationSlotControlLock was released in the interim (and
* in that case we're not holding the lock at return, otherwise we are).
*
* This is inherently racy, because we release the LWLock
* for syscalls, so caller must restart if we return true.
*/
static bool
InvalidatePossiblyObsoleteSlot(ReplicationSlot *s, XLogRecPtr oldestLSN)
{
int last_signaled_pid = 0;
bool released_lock = false;
for (;;)
{
XLogRecPtr restart_lsn;
Don't call palloc() while holding a spinlock, either. Fix some more violations of the "only straight-line code inside a spinlock" rule. These are hazardous not only because they risk holding the lock for an excessively long time, but because it's possible for palloc to throw elog(ERROR), leaving a stuck spinlock behind. copy_replication_slot() had two separate places that did pallocs while holding a spinlock. We can make the code simpler and safer by copying the whole ReplicationSlot struct into a local variable while holding the spinlock, and then referencing that copy. (While that's arguably more cycles than we really need to spend holding the lock, the struct isn't all that big, and this way seems far more maintainable than copying fields piecemeal. Anyway this is surely much cheaper than a palloc.) That bug goes back to v12. InvalidateObsoleteReplicationSlots() not only did a palloc while holding a spinlock, but for extra sloppiness then leaked the memory --- probably for the lifetime of the checkpointer process, though I didn't try to verify that. Fortunately that silliness is new in HEAD. pg_get_replication_slots() had a cosmetic violation of the rule, in that it only assumed it's safe to call namecpy() while holding a spinlock. Still, that's a hazard waiting to bite somebody, and there were some other cosmetic coding-rule violations in the same function, so clean it up. I back-patched this as far as v10; the code exists before that but it looks different, and this didn't seem important enough to adapt the patch further back. Discussion: https://postgr.es/m/20200602.161518.1399689010416646074.horikyota.ntt@gmail.com
2020-06-03 18:36:00 +02:00
NameData slotname;
int active_pid = 0;
Assert(LWLockHeldByMeInMode(ReplicationSlotControlLock, LW_SHARED));
if (!s->in_use)
{
if (released_lock)
LWLockRelease(ReplicationSlotControlLock);
break;
}
/*
* Check if the slot needs to be invalidated. If it needs to be
* invalidated, and is not currently acquired, acquire it and mark it
* as having been invalidated. We do this with the spinlock held to
* avoid race conditions -- for example the restart_lsn could move
* forward, or the slot could be dropped.
*/
SpinLockAcquire(&s->mutex);
restart_lsn = s->data.restart_lsn;
/*
* If the slot is already invalid or is fresh enough, we don't need to
* do anything.
*/
if (XLogRecPtrIsInvalid(restart_lsn) || restart_lsn >= oldestLSN)
{
SpinLockRelease(&s->mutex);
if (released_lock)
LWLockRelease(ReplicationSlotControlLock);
break;
}
slotname = s->data.name;
active_pid = s->active_pid;
/*
* If the slot can be acquired, do so and mark it invalidated
* immediately. Otherwise we'll signal the owning process, below, and
* retry.
*/
if (active_pid == 0)
{
MyReplicationSlot = s;
s->active_pid = MyProcPid;
s->data.invalidated_at = restart_lsn;
s->data.restart_lsn = InvalidXLogRecPtr;
}
SpinLockRelease(&s->mutex);
if (active_pid != 0)
{
/*
* Prepare the sleep on the slot's condition variable before
* releasing the lock, to close a possible race condition if the
* slot is released before the sleep below.
*/
ConditionVariablePrepareToSleep(&s->active_cv);
LWLockRelease(ReplicationSlotControlLock);
released_lock = true;
/*
* Signal to terminate the process that owns the slot, if we
* haven't already signalled it. (Avoidance of repeated
* signalling is the only reason for there to be a loop in this
* routine; otherwise we could rely on caller's restart loop.)
*
* There is the race condition that other process may own the slot
* after its current owner process is terminated and before this
* process owns it. To handle that, we signal only if the PID of
* the owning process has changed from the previous time. (This
* logic assumes that the same PID is not reused very quickly.)
*/
if (last_signaled_pid != active_pid)
{
ereport(LOG,
(errmsg("terminating process %d to release replication slot \"%s\"",
active_pid, NameStr(slotname))));
(void) kill(active_pid, SIGTERM);
last_signaled_pid = active_pid;
}
/* Wait until the slot is released. */
ConditionVariableSleep(&s->active_cv,
WAIT_EVENT_REPLICATION_SLOT_DROP);
/*
* Re-acquire lock and start over; we expect to invalidate the
* slot next time (unless another process acquires the slot in the
* meantime).
*/
LWLockAcquire(ReplicationSlotControlLock, LW_SHARED);
continue;
}
else
{
/*
* We hold the slot now and have already invalidated it; flush it
* to ensure that state persists.
*
* Don't want to hold ReplicationSlotControlLock across file
* system operations, so release it now but be sure to tell caller
* to restart from scratch.
*/
LWLockRelease(ReplicationSlotControlLock);
released_lock = true;
/* Make sure the invalidated state persists across server restart */
ReplicationSlotMarkDirty();
ReplicationSlotSave();
ReplicationSlotRelease();
ereport(LOG,
(errmsg("invalidating slot \"%s\" because its restart_lsn %X/%X exceeds max_slot_wal_keep_size",
NameStr(slotname),
LSN_FORMAT_ARGS(restart_lsn))));
/* done with this slot for now */
break;
}
}
Assert(released_lock == !LWLockHeldByMe(ReplicationSlotControlLock));
return released_lock;
}
/*
* Mark any slot that points to an LSN older than the given segment
* as invalid; it requires WAL that's about to be removed.
*
* NB - this runs as part of checkpoint, so avoid raising errors if possible.
*/
void
InvalidateObsoleteReplicationSlots(XLogSegNo oldestSegno)
{
XLogRecPtr oldestLSN;
XLogSegNoOffsetToRecPtr(oldestSegno, 0, wal_segment_size, oldestLSN);
restart:
LWLockAcquire(ReplicationSlotControlLock, LW_SHARED);
for (int i = 0; i < max_replication_slots; i++)
{
ReplicationSlot *s = &ReplicationSlotCtl->replication_slots[i];
if (!s->in_use)
continue;
if (InvalidatePossiblyObsoleteSlot(s, oldestLSN))
{
/* if the lock was released, start from scratch */
goto restart;
}
}
LWLockRelease(ReplicationSlotControlLock);
}
/*
* Flush all replication slots to disk.
*
* This needn't actually be part of a checkpoint, but it's a convenient
* location.
*/
void
CheckPointReplicationSlots(void)
{
int i;
2014-11-12 02:00:58 +01:00
elog(DEBUG1, "performing replication slot checkpoint");
/*
* Prevent any slot from being created/dropped while we're active. As we
* explicitly do *not* want to block iterating over replication_slots or
* acquiring a slot we cannot take the control lock - but that's OK,
* because holding ReplicationSlotAllocationLock is strictly stronger, and
* enough to guarantee that nobody can change the in_use bits on us.
*/
LWLockAcquire(ReplicationSlotAllocationLock, LW_SHARED);
for (i = 0; i < max_replication_slots; i++)
{
ReplicationSlot *s = &ReplicationSlotCtl->replication_slots[i];
char path[MAXPGPATH];
if (!s->in_use)
continue;
/* save the slot to disk, locking is handled in SaveSlotToPath() */
sprintf(path, "pg_replslot/%s", NameStr(s->data.name));
SaveSlotToPath(s, path, LOG);
}
LWLockRelease(ReplicationSlotAllocationLock);
}
/*
* Load all replication slots from disk into memory at server startup. This
* needs to be run before we start crash recovery.
*/
void
StartupReplicationSlots(void)
{
DIR *replication_dir;
struct dirent *replication_de;
2014-11-12 02:00:58 +01:00
elog(DEBUG1, "starting up replication slots");
/* restore all slots by iterating over all on-disk entries */
replication_dir = AllocateDir("pg_replslot");
while ((replication_de = ReadDir(replication_dir, "pg_replslot")) != NULL)
{
struct stat statbuf;
char path[MAXPGPATH + 12];
if (strcmp(replication_de->d_name, ".") == 0 ||
strcmp(replication_de->d_name, "..") == 0)
continue;
snprintf(path, sizeof(path), "pg_replslot/%s", replication_de->d_name);
/* we're only creating directories here, skip if it's not our's */
if (lstat(path, &statbuf) == 0 && !S_ISDIR(statbuf.st_mode))
continue;
/* we crashed while a slot was being setup or deleted, clean up */
if (pg_str_endswith(replication_de->d_name, ".tmp"))
{
if (!rmtree(path, true))
{
ereport(WARNING,
(errmsg("could not remove directory \"%s\"",
path)));
continue;
}
fsync_fname("pg_replslot", true);
continue;
}
/* looks like a slot in a normal state, restore */
RestoreSlotFromDisk(replication_de->d_name);
}
FreeDir(replication_dir);
/* currently no slots exist, we're done. */
if (max_replication_slots <= 0)
return;
/* Now that we have recovered all the data, compute replication xmin */
ReplicationSlotsComputeRequiredXmin(false);
ReplicationSlotsComputeRequiredLSN();
}
/* ----
* Manipulation of on-disk state of replication slots
*
* NB: none of the routines below should take any notice whether a slot is the
* current one or not, that's all handled a layer above.
* ----
*/
static void
CreateSlotOnDisk(ReplicationSlot *slot)
{
char tmppath[MAXPGPATH];
char path[MAXPGPATH];
struct stat st;
/*
* No need to take out the io_in_progress_lock, nobody else can see this
* slot yet, so nobody else will write. We're reusing SaveSlotToPath which
* takes out the lock, if we'd take the lock here, we'd deadlock.
*/
sprintf(path, "pg_replslot/%s", NameStr(slot->data.name));
sprintf(tmppath, "pg_replslot/%s.tmp", NameStr(slot->data.name));
/*
* It's just barely possible that some previous effort to create or drop a
* slot with this name left a temp directory lying around. If that seems
* to be the case, try to remove it. If the rmtree() fails, we'll error
* out at the MakePGDirectory() below, so we don't bother checking
* success.
*/
if (stat(tmppath, &st) == 0 && S_ISDIR(st.st_mode))
rmtree(tmppath, true);
/* Create and fsync the temporary slot directory. */
if (MakePGDirectory(tmppath) < 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not create directory \"%s\": %m",
tmppath)));
fsync_fname(tmppath, true);
/* Write the actual state file. */
slot->dirty = true; /* signal that we really need to write */
SaveSlotToPath(slot, tmppath, ERROR);
/* Rename the directory into place. */
if (rename(tmppath, path) != 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not rename file \"%s\" to \"%s\": %m",
tmppath, path)));
/*
* If we'd now fail - really unlikely - we wouldn't know whether this slot
* would persist after an OS crash or not - so, force a restart. The
2016-02-05 14:11:00 +01:00
* restart would try to fsync this again till it works.
*/
START_CRIT_SECTION();
fsync_fname(path, true);
fsync_fname("pg_replslot", true);
END_CRIT_SECTION();
}
/*
* Shared functionality between saving and creating a replication slot.
*/
static void
SaveSlotToPath(ReplicationSlot *slot, const char *dir, int elevel)
{
char tmppath[MAXPGPATH];
char path[MAXPGPATH];
int fd;
ReplicationSlotOnDisk cp;
bool was_dirty;
/* first check whether there's something to write out */
SpinLockAcquire(&slot->mutex);
was_dirty = slot->dirty;
slot->just_dirtied = false;
SpinLockRelease(&slot->mutex);
/* and don't do anything if there's nothing to write */
if (!was_dirty)
return;
LWLockAcquire(&slot->io_in_progress_lock, LW_EXCLUSIVE);
/* silence valgrind :( */
memset(&cp, 0, sizeof(ReplicationSlotOnDisk));
sprintf(tmppath, "%s/state.tmp", dir);
sprintf(path, "%s/state", dir);
fd = OpenTransientFile(tmppath, O_CREAT | O_EXCL | O_WRONLY | PG_BINARY);
if (fd < 0)
{
/*
* If not an ERROR, then release the lock before returning. In case
* of an ERROR, the error recovery path automatically releases the
* lock, but no harm in explicitly releasing even in that case. Note
* that LWLockRelease() could affect errno.
*/
int save_errno = errno;
LWLockRelease(&slot->io_in_progress_lock);
errno = save_errno;
ereport(elevel,
(errcode_for_file_access(),
errmsg("could not create file \"%s\": %m",
tmppath)));
return;
}
cp.magic = SLOT_MAGIC;
INIT_CRC32C(cp.checksum);
cp.version = SLOT_VERSION;
cp.length = ReplicationSlotOnDiskV2Size;
SpinLockAcquire(&slot->mutex);
memcpy(&cp.slotdata, &slot->data, sizeof(ReplicationSlotPersistentData));
SpinLockRelease(&slot->mutex);
COMP_CRC32C(cp.checksum,
(char *) (&cp) + SnapBuildOnDiskNotChecksummedSize,
SnapBuildOnDiskChecksummedSize);
FIN_CRC32C(cp.checksum);
errno = 0;
pgstat_report_wait_start(WAIT_EVENT_REPLICATION_SLOT_WRITE);
if ((write(fd, &cp, sizeof(cp))) != sizeof(cp))
{
int save_errno = errno;
pgstat_report_wait_end();
CloseTransientFile(fd);
LWLockRelease(&slot->io_in_progress_lock);
/* if write didn't set errno, assume problem is no disk space */
errno = save_errno ? save_errno : ENOSPC;
ereport(elevel,
(errcode_for_file_access(),
errmsg("could not write to file \"%s\": %m",
tmppath)));
return;
}
pgstat_report_wait_end();
/* fsync the temporary file */
pgstat_report_wait_start(WAIT_EVENT_REPLICATION_SLOT_SYNC);
if (pg_fsync(fd) != 0)
{
int save_errno = errno;
pgstat_report_wait_end();
CloseTransientFile(fd);
LWLockRelease(&slot->io_in_progress_lock);
errno = save_errno;
ereport(elevel,
(errcode_for_file_access(),
errmsg("could not fsync file \"%s\": %m",
tmppath)));
return;
}
pgstat_report_wait_end();
if (CloseTransientFile(fd) != 0)
{
int save_errno = errno;
LWLockRelease(&slot->io_in_progress_lock);
errno = save_errno;
ereport(elevel,
(errcode_for_file_access(),
errmsg("could not close file \"%s\": %m",
tmppath)));
return;
}
/* rename to permanent file, fsync file and directory */
if (rename(tmppath, path) != 0)
{
int save_errno = errno;
LWLockRelease(&slot->io_in_progress_lock);
errno = save_errno;
ereport(elevel,
(errcode_for_file_access(),
errmsg("could not rename file \"%s\" to \"%s\": %m",
tmppath, path)));
return;
}
/*
* Check CreateSlotOnDisk() for the reasoning of using a critical section.
*/
START_CRIT_SECTION();
fsync_fname(path, false);
fsync_fname(dir, true);
fsync_fname("pg_replslot", true);
END_CRIT_SECTION();
/*
* Successfully wrote, unset dirty bit, unless somebody dirtied again
* already.
*/
SpinLockAcquire(&slot->mutex);
if (!slot->just_dirtied)
slot->dirty = false;
SpinLockRelease(&slot->mutex);
LWLockRelease(&slot->io_in_progress_lock);
}
/*
* Load a single slot from disk into memory.
*/
static void
RestoreSlotFromDisk(const char *name)
{
ReplicationSlotOnDisk cp;
int i;
char slotdir[MAXPGPATH + 12];
char path[MAXPGPATH + 22];
int fd;
bool restored = false;
int readBytes;
pg_crc32c checksum;
/* no need to lock here, no concurrent access allowed yet */
/* delete temp file if it exists */
sprintf(slotdir, "pg_replslot/%s", name);
sprintf(path, "%s/state.tmp", slotdir);
if (unlink(path) < 0 && errno != ENOENT)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not remove file \"%s\": %m", path)));
sprintf(path, "%s/state", slotdir);
elog(DEBUG1, "restoring replication slot from \"%s\"", path);
/* on some operating systems fsyncing a file requires O_RDWR */
fd = OpenTransientFile(path, O_RDWR | PG_BINARY);
/*
* We do not need to handle this as we are rename()ing the directory into
* place only after we fsync()ed the state file.
*/
if (fd < 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not open file \"%s\": %m", path)));
/*
* Sync state file before we're reading from it. We might have crashed
* while it wasn't synced yet and we shouldn't continue on that basis.
*/
pgstat_report_wait_start(WAIT_EVENT_REPLICATION_SLOT_RESTORE_SYNC);
if (pg_fsync(fd) != 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not fsync file \"%s\": %m",
path)));
pgstat_report_wait_end();
/* Also sync the parent directory */
START_CRIT_SECTION();
fsync_fname(slotdir, true);
END_CRIT_SECTION();
/* read part of statefile that's guaranteed to be version independent */
pgstat_report_wait_start(WAIT_EVENT_REPLICATION_SLOT_READ);
readBytes = read(fd, &cp, ReplicationSlotOnDiskConstantSize);
pgstat_report_wait_end();
if (readBytes != ReplicationSlotOnDiskConstantSize)
{
if (readBytes < 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not read file \"%s\": %m", path)));
else
ereport(PANIC,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("could not read file \"%s\": read %d of %zu",
path, readBytes,
(Size) ReplicationSlotOnDiskConstantSize)));
}
/* verify magic */
if (cp.magic != SLOT_MAGIC)
ereport(PANIC,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("replication slot file \"%s\" has wrong magic number: %u instead of %u",
path, cp.magic, SLOT_MAGIC)));
/* verify version */
if (cp.version != SLOT_VERSION)
ereport(PANIC,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("replication slot file \"%s\" has unsupported version %u",
path, cp.version)));
/* boundary check on length */
if (cp.length != ReplicationSlotOnDiskV2Size)
ereport(PANIC,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("replication slot file \"%s\" has corrupted length %u",
path, cp.length)));
/* Now that we know the size, read the entire file */
pgstat_report_wait_start(WAIT_EVENT_REPLICATION_SLOT_READ);
readBytes = read(fd,
(char *) &cp + ReplicationSlotOnDiskConstantSize,
cp.length);
pgstat_report_wait_end();
if (readBytes != cp.length)
{
if (readBytes < 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not read file \"%s\": %m", path)));
else
ereport(PANIC,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("could not read file \"%s\": read %d of %zu",
path, readBytes, (Size) cp.length)));
}
if (CloseTransientFile(fd) != 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not close file \"%s\": %m", path)));
/* now verify the CRC */
INIT_CRC32C(checksum);
COMP_CRC32C(checksum,
(char *) &cp + SnapBuildOnDiskNotChecksummedSize,
SnapBuildOnDiskChecksummedSize);
FIN_CRC32C(checksum);
if (!EQ_CRC32C(checksum, cp.checksum))
ereport(PANIC,
(errmsg("checksum mismatch for replication slot file \"%s\": is %u, should be %u",
path, checksum, cp.checksum)));
/*
* If we crashed with an ephemeral slot active, don't restore but delete
* it.
*/
if (cp.slotdata.persistency != RS_PERSISTENT)
{
if (!rmtree(slotdir, true))
{
ereport(WARNING,
(errmsg("could not remove directory \"%s\"",
slotdir)));
}
fsync_fname("pg_replslot", true);
return;
}
/*
* Verify that requirements for the specific slot type are met. That's
* important because if these aren't met we're not guaranteed to retain
* all the necessary resources for the slot.
*
* NB: We have to do so *after* the above checks for ephemeral slots,
* because otherwise a slot that shouldn't exist anymore could prevent
* restarts.
*
* NB: Changing the requirements here also requires adapting
* CheckSlotRequirements() and CheckLogicalDecodingRequirements().
*/
if (cp.slotdata.database != InvalidOid && wal_level < WAL_LEVEL_LOGICAL)
ereport(FATAL,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("logical replication slot \"%s\" exists, but wal_level < logical",
NameStr(cp.slotdata.name)),
errhint("Change wal_level to be logical or higher.")));
else if (wal_level < WAL_LEVEL_REPLICA)
ereport(FATAL,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("physical replication slot \"%s\" exists, but wal_level < replica",
NameStr(cp.slotdata.name)),
errhint("Change wal_level to be replica or higher.")));
/* nothing can be active yet, don't lock anything */
for (i = 0; i < max_replication_slots; i++)
{
ReplicationSlot *slot;
slot = &ReplicationSlotCtl->replication_slots[i];
if (slot->in_use)
continue;
/* restore the entire set of persistent data */
memcpy(&slot->data, &cp.slotdata,
sizeof(ReplicationSlotPersistentData));
/* initialize in memory state */
slot->effective_xmin = cp.slotdata.xmin;
slot->effective_catalog_xmin = cp.slotdata.catalog_xmin;
slot->candidate_catalog_xmin = InvalidTransactionId;
slot->candidate_xmin_lsn = InvalidXLogRecPtr;
slot->candidate_restart_lsn = InvalidXLogRecPtr;
slot->candidate_restart_valid = InvalidXLogRecPtr;
slot->in_use = true;
slot->active_pid = 0;
restored = true;
break;
}
if (!restored)
ereport(FATAL,
(errmsg("too many replication slots active before shutdown"),
errhint("Increase max_replication_slots and try again.")));
}