postgresql/src/backend/utils/cache/plancache.c

874 lines
24 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* plancache.c
* Plan cache management.
*
* We can store a cached plan in either fully-planned format, or just
* parsed-and-rewritten if the caller wishes to postpone planning until
* actual parameter values are available. CachedPlanSource has the same
* contents either way, but CachedPlan contains a list of PlannedStmts
* and bare utility statements in the first case, or a list of Query nodes
* in the second case.
*
* The plan cache manager itself is principally responsible for tracking
* whether cached plans should be invalidated because of schema changes in
* the tables they depend on. When (and if) the next demand for a cached
* plan occurs, the query will be replanned. Note that this could result
* in an error, for example if a column referenced by the query is no
* longer present. The creator of a cached plan can specify whether it
* is allowable for the query to change output tupdesc on replan (this
* could happen with "SELECT *" for example) --- if so, it's up to the
* caller to notice changes and cope with them.
*
* Currently, we use only relcache invalidation events to invalidate plans.
* This means that changes such as modification of a function definition do
* not invalidate plans using the function. This is not 100% OK --- for
* example, changing a SQL function that's been inlined really ought to
* cause invalidation of the plan that it's been inlined into --- but the
* cost of tracking additional types of object seems much higher than the
* gain, so we're just ignoring them for now.
*
*
* Portions Copyright (c) 1996-2007, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
Changes pg_trigger and extend pg_rewrite in order to allow triggers and rules to be defined with different, per session controllable, behaviors for replication purposes. This will allow replication systems like Slony-I and, as has been stated on pgsql-hackers, other products to control the firing mechanism of triggers and rewrite rules without modifying the system catalog directly. The firing mechanisms are controlled by a new superuser-only GUC variable, session_replication_role, together with a change to pg_trigger.tgenabled and a new column pg_rewrite.ev_enabled. Both columns are a single char data type now (tgenabled was a bool before). The possible values in these attributes are: 'O' - Trigger/Rule fires when session_replication_role is "origin" (default) or "local". This is the default behavior. 'D' - Trigger/Rule is disabled and fires never 'A' - Trigger/Rule fires always regardless of the setting of session_replication_role 'R' - Trigger/Rule fires when session_replication_role is "replica" The GUC variable can only be changed as long as the system does not have any cached query plans. This will prevent changing the session role and accidentally executing stored procedures or functions that have plans cached that expand to the wrong query set due to differences in the rule firing semantics. The SQL syntax for changing a triggers/rules firing semantics is ALTER TABLE <tabname> <when> TRIGGER|RULE <name>; <when> ::= ENABLE | ENABLE ALWAYS | ENABLE REPLICA | DISABLE psql's \d command as well as pg_dump are extended in a backward compatible fashion. Jan
2007-03-20 00:38:32 +01:00
* $PostgreSQL: pgsql/src/backend/utils/cache/plancache.c,v 1.3 2007/03/19 23:38:29 wieck Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "utils/plancache.h"
#include "executor/executor.h"
#include "optimizer/clauses.h"
#include "storage/lmgr.h"
#include "tcop/pquery.h"
#include "tcop/tcopprot.h"
#include "tcop/utility.h"
#include "utils/inval.h"
#include "utils/memutils.h"
#include "utils/resowner.h"
typedef struct
{
void (*callback) ();
void *arg;
} ScanQueryWalkerContext;
typedef struct
{
Oid inval_relid;
CachedPlan *plan;
} InvalRelidContext;
static List *cached_plans_list = NIL;
static void StoreCachedPlan(CachedPlanSource *plansource, List *stmt_list,
MemoryContext plan_context);
static void AcquireExecutorLocks(List *stmt_list, bool acquire);
static void AcquirePlannerLocks(List *stmt_list, bool acquire);
static void LockRelid(Oid relid, LOCKMODE lockmode, void *arg);
static void UnlockRelid(Oid relid, LOCKMODE lockmode, void *arg);
static void ScanQueryForRelids(Query *parsetree,
void (*callback) (),
void *arg);
static bool ScanQueryWalker(Node *node, ScanQueryWalkerContext *context);
static bool rowmark_member(List *rowMarks, int rt_index);
static void PlanCacheCallback(Datum arg, Oid relid);
static void InvalRelid(Oid relid, LOCKMODE lockmode,
InvalRelidContext *context);
/*
* InitPlanCache: initialize module during InitPostgres.
*
* All we need to do is hook into inval.c's callback list.
*/
void
InitPlanCache(void)
{
CacheRegisterRelcacheCallback(PlanCacheCallback, (Datum) 0);
}
/*
* CreateCachedPlan: initially create a plan cache entry.
*
* The caller must already have successfully parsed/planned the query;
* about all that we do here is copy it into permanent storage.
*
* raw_parse_tree: output of raw_parser()
* query_string: original query text (can be NULL if not available, but
* that is discouraged because it degrades error message quality)
* commandTag: compile-time-constant tag for query, or NULL if empty query
* param_types: array of parameter type OIDs, or NULL if none
* num_params: number of parameters
* stmt_list: list of PlannedStmts/utility stmts, or list of Query trees
* fully_planned: are we caching planner or rewriter output?
* fixed_result: TRUE to disallow changes in result tupdesc
*/
CachedPlanSource *
CreateCachedPlan(Node *raw_parse_tree,
const char *query_string,
const char *commandTag,
Oid *param_types,
int num_params,
List *stmt_list,
bool fully_planned,
bool fixed_result)
{
CachedPlanSource *plansource;
MemoryContext source_context;
MemoryContext oldcxt;
/*
* Make a dedicated memory context for the CachedPlanSource and its
* subsidiary data. We expect it can be pretty small.
*/
source_context = AllocSetContextCreate(CacheMemoryContext,
"CachedPlanSource",
ALLOCSET_SMALL_MINSIZE,
ALLOCSET_SMALL_INITSIZE,
ALLOCSET_SMALL_MAXSIZE);
/*
* Create and fill the CachedPlanSource struct within the new context.
*/
oldcxt = MemoryContextSwitchTo(source_context);
plansource = (CachedPlanSource *) palloc(sizeof(CachedPlanSource));
plansource->raw_parse_tree = copyObject(raw_parse_tree);
plansource->query_string = query_string ? pstrdup(query_string) : NULL;
plansource->commandTag = commandTag; /* no copying needed */
if (num_params > 0)
{
plansource->param_types = (Oid *) palloc(num_params * sizeof(Oid));
memcpy(plansource->param_types, param_types, num_params * sizeof(Oid));
}
else
plansource->param_types = NULL;
plansource->num_params = num_params;
plansource->fully_planned = fully_planned;
plansource->fixed_result = fixed_result;
plansource->generation = 0; /* StoreCachedPlan will increment */
plansource->resultDesc = PlanCacheComputeResultDesc(stmt_list);
plansource->plan = NULL;
plansource->context = source_context;
plansource->orig_plan = NULL;
/*
* Copy the current output plans into the plancache entry.
*/
StoreCachedPlan(plansource, stmt_list, NULL);
/*
* Now we can add the entry to the list of cached plans. The List nodes
* live in CacheMemoryContext.
*/
MemoryContextSwitchTo(CacheMemoryContext);
cached_plans_list = lappend(cached_plans_list, plansource);
MemoryContextSwitchTo(oldcxt);
return plansource;
}
/*
* FastCreateCachedPlan: create a plan cache entry with minimal data copying.
*
* For plans that aren't expected to live very long, the copying overhead of
* CreateCachedPlan is annoying. We provide this variant entry point in which
* the caller has already placed all the data in a suitable memory context.
* The source data and completed plan are in the same context, since this
* avoids extra copy steps during plan construction. If the query ever does
* need replanning, we'll generate a separate new CachedPlan at that time, but
* the CachedPlanSource and the initial CachedPlan share the caller-provided
* context and go away together when neither is needed any longer. (Because
* the parser and planner generate extra cruft in addition to their real
* output, this approach means that the context probably contains a bunch of
* useless junk as well as the useful trees. Hence, this method is a
* space-for-time tradeoff, which is worth making for plans expected to be
* short-lived.)
*
* raw_parse_tree, query_string, param_types, and stmt_list must reside in the
* given context, which must have adequate lifespan (recommendation: make it a
* child of CacheMemoryContext). Otherwise the API is the same as
* CreateCachedPlan.
*/
CachedPlanSource *
FastCreateCachedPlan(Node *raw_parse_tree,
char *query_string,
const char *commandTag,
Oid *param_types,
int num_params,
List *stmt_list,
bool fully_planned,
bool fixed_result,
MemoryContext context)
{
CachedPlanSource *plansource;
MemoryContext oldcxt;
/*
* Create and fill the CachedPlanSource struct within the given context.
*/
oldcxt = MemoryContextSwitchTo(context);
plansource = (CachedPlanSource *) palloc(sizeof(CachedPlanSource));
plansource->raw_parse_tree = raw_parse_tree;
plansource->query_string = query_string;
plansource->commandTag = commandTag; /* no copying needed */
plansource->param_types = param_types;
plansource->num_params = num_params;
plansource->fully_planned = fully_planned;
plansource->fixed_result = fixed_result;
plansource->generation = 0; /* StoreCachedPlan will increment */
plansource->resultDesc = PlanCacheComputeResultDesc(stmt_list);
plansource->plan = NULL;
plansource->context = context;
plansource->orig_plan = NULL;
/*
* Store the current output plans into the plancache entry.
*/
StoreCachedPlan(plansource, stmt_list, context);
/*
* Since the context is owned by the CachedPlan, advance its refcount.
*/
plansource->orig_plan = plansource->plan;
plansource->orig_plan->refcount++;
/*
* Now we can add the entry to the list of cached plans. The List nodes
* live in CacheMemoryContext.
*/
MemoryContextSwitchTo(CacheMemoryContext);
cached_plans_list = lappend(cached_plans_list, plansource);
MemoryContextSwitchTo(oldcxt);
return plansource;
}
/*
* StoreCachedPlan: store a built or rebuilt plan into a plancache entry.
*
* Common subroutine for CreateCachedPlan and RevalidateCachedPlan.
*/
static void
StoreCachedPlan(CachedPlanSource *plansource,
List *stmt_list,
MemoryContext plan_context)
{
CachedPlan *plan;
MemoryContext oldcxt;
if (plan_context == NULL)
{
/*
* Make a dedicated memory context for the CachedPlan and its
* subsidiary data. It's probably not going to be large, but
* just in case, use the default maxsize parameter.
*/
plan_context = AllocSetContextCreate(CacheMemoryContext,
"CachedPlan",
ALLOCSET_SMALL_MINSIZE,
ALLOCSET_SMALL_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
/*
* Copy supplied data into the new context.
*/
oldcxt = MemoryContextSwitchTo(plan_context);
stmt_list = (List *) copyObject(stmt_list);
}
else
{
/* Assume subsidiary data is in the given context */
oldcxt = MemoryContextSwitchTo(plan_context);
}
/*
* Create and fill the CachedPlan struct within the new context.
*/
plan = (CachedPlan *) palloc(sizeof(CachedPlan));
plan->stmt_list = stmt_list;
plan->fully_planned = plansource->fully_planned;
plan->dead = false;
plan->refcount = 1; /* for the parent's link */
plan->generation = ++(plansource->generation);
plan->context = plan_context;
Assert(plansource->plan == NULL);
plansource->plan = plan;
MemoryContextSwitchTo(oldcxt);
}
/*
* DropCachedPlan: destroy a cached plan.
*
* Actually this only destroys the CachedPlanSource: the referenced CachedPlan
* is released, but not destroyed until its refcount goes to zero. That
* handles the situation where DropCachedPlan is called while the plan is
* still in use.
*/
void
DropCachedPlan(CachedPlanSource *plansource)
{
/* Validity check that we were given a CachedPlanSource */
Assert(list_member_ptr(cached_plans_list, plansource));
/* Remove it from the list */
cached_plans_list = list_delete_ptr(cached_plans_list, plansource);
/* Decrement child CachePlan's refcount and drop if no longer needed */
if (plansource->plan)
ReleaseCachedPlan(plansource->plan, false);
/*
* If CachedPlanSource has independent storage, just drop it. Otherwise
* decrement the refcount on the CachePlan that owns the storage.
*/
if (plansource->orig_plan == NULL)
{
/* Remove the CachedPlanSource and all subsidiary data */
MemoryContextDelete(plansource->context);
}
else
{
Assert(plansource->context == plansource->orig_plan->context);
ReleaseCachedPlan(plansource->orig_plan, false);
}
}
/*
* RevalidateCachedPlan: prepare for re-use of a previously cached plan.
*
* What we do here is re-acquire locks and rebuild the plan if necessary.
* On return, the plan is valid and we have sufficient locks to begin
* execution (or planning, if not fully_planned).
*
* On return, the refcount of the plan has been incremented; a later
* ReleaseCachedPlan() call is expected. The refcount has been reported
* to the CurrentResourceOwner if useResOwner is true.
*
* Note: if any replanning activity is required, the caller's memory context
* is used for that work.
*/
CachedPlan *
RevalidateCachedPlan(CachedPlanSource *plansource, bool useResOwner)
{
CachedPlan *plan;
/* Validity check that we were given a CachedPlanSource */
Assert(list_member_ptr(cached_plans_list, plansource));
/*
* If the plan currently appears valid, acquire locks on the referenced
* objects; then check again. We need to do it this way to cover the
* race condition that an invalidation message arrives before we get
* the lock.
*/
plan = plansource->plan;
if (plan && !plan->dead)
{
/*
* Plan must have positive refcount because it is referenced by
* plansource; so no need to fear it disappears under us here.
*/
Assert(plan->refcount > 0);
if (plan->fully_planned)
AcquireExecutorLocks(plan->stmt_list, true);
else
AcquirePlannerLocks(plan->stmt_list, true);
/*
* By now, if any invalidation has happened, PlanCacheCallback
* will have marked the plan dead.
*/
if (plan->dead)
{
/* Ooops, the race case happened. Release useless locks. */
if (plan->fully_planned)
AcquireExecutorLocks(plan->stmt_list, false);
else
AcquirePlannerLocks(plan->stmt_list, false);
}
}
/*
* If plan has been invalidated, unlink it from the parent and release it.
*/
if (plan && plan->dead)
{
plansource->plan = NULL;
ReleaseCachedPlan(plan, false);
plan = NULL;
}
/*
* Build a new plan if needed.
*/
if (!plan)
{
List *slist;
TupleDesc resultDesc;
/*
* Run parse analysis and rule rewriting. The parser tends to
* scribble on its input, so we must copy the raw parse tree to
* prevent corruption of the cache. Note that we do not use
* parse_analyze_varparams(), assuming that the caller never wants the
* parameter types to change from the original values.
*/
slist = pg_analyze_and_rewrite(copyObject(plansource->raw_parse_tree),
plansource->query_string,
plansource->param_types,
plansource->num_params);
if (plansource->fully_planned)
{
/*
* Generate plans for queries. Assume snapshot is not set yet
* (XXX this may be wasteful, won't all callers have done that?)
*/
slist = pg_plan_queries(slist, NULL, true);
}
/*
* Check or update the result tupdesc. XXX should we use a weaker
* condition than equalTupleDescs() here?
*/
resultDesc = PlanCacheComputeResultDesc(slist);
if (resultDesc == NULL && plansource->resultDesc == NULL)
{
/* OK, doesn't return tuples */
}
else if (resultDesc == NULL || plansource->resultDesc == NULL ||
!equalTupleDescs(resultDesc, plansource->resultDesc))
{
MemoryContext oldcxt;
/* can we give a better error message? */
if (plansource->fixed_result)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cached plan must not change result type")));
oldcxt = MemoryContextSwitchTo(plansource->context);
if (resultDesc)
resultDesc = CreateTupleDescCopy(resultDesc);
if (plansource->resultDesc)
FreeTupleDesc(plansource->resultDesc);
plansource->resultDesc = resultDesc;
MemoryContextSwitchTo(oldcxt);
}
/*
* Store the plans into the plancache entry, advancing the generation
* count.
*/
StoreCachedPlan(plansource, slist, NULL);
plan = plansource->plan;
}
/*
* Last step: flag the plan as in use by caller.
*/
if (useResOwner)
ResourceOwnerEnlargePlanCacheRefs(CurrentResourceOwner);
plan->refcount++;
if (useResOwner)
ResourceOwnerRememberPlanCacheRef(CurrentResourceOwner, plan);
return plan;
}
/*
* ReleaseCachedPlan: release active use of a cached plan.
*
* This decrements the reference count, and frees the plan if the count
* has thereby gone to zero. If useResOwner is true, it is assumed that
* the reference count is managed by the CurrentResourceOwner.
*
* Note: useResOwner = false is used for releasing references that are in
* persistent data structures, such as the parent CachedPlanSource or a
* Portal. Transient references should be protected by a resource owner.
*/
void
ReleaseCachedPlan(CachedPlan *plan, bool useResOwner)
{
if (useResOwner)
ResourceOwnerForgetPlanCacheRef(CurrentResourceOwner, plan);
Assert(plan->refcount > 0);
plan->refcount--;
if (plan->refcount == 0)
MemoryContextDelete(plan->context);
}
/*
* AcquireExecutorLocks: acquire locks needed for execution of a fully-planned
* cached plan; or release them if acquire is false.
*/
static void
AcquireExecutorLocks(List *stmt_list, bool acquire)
{
ListCell *lc1;
foreach(lc1, stmt_list)
{
PlannedStmt *plannedstmt = (PlannedStmt *) lfirst(lc1);
int rt_index;
ListCell *lc2;
Assert(!IsA(plannedstmt, Query));
if (!IsA(plannedstmt, PlannedStmt))
continue; /* Ignore utility statements */
rt_index = 0;
foreach(lc2, plannedstmt->rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2);
LOCKMODE lockmode;
rt_index++;
if (rte->rtekind != RTE_RELATION)
continue;
/*
* Acquire the appropriate type of lock on each relation OID.
* Note that we don't actually try to open the rel, and hence
* will not fail if it's been dropped entirely --- we'll just
* transiently acquire a non-conflicting lock.
*/
if (list_member_int(plannedstmt->resultRelations, rt_index))
lockmode = RowExclusiveLock;
else if (rowmark_member(plannedstmt->rowMarks, rt_index))
lockmode = RowShareLock;
else
lockmode = AccessShareLock;
if (acquire)
LockRelationOid(rte->relid, lockmode);
else
UnlockRelationOid(rte->relid, lockmode);
}
}
}
/*
* AcquirePlannerLocks: acquire locks needed for planning and execution of a
* not-fully-planned cached plan; or release them if acquire is false.
*
* Note that we don't actually try to open the relations, and hence will not
* fail if one has been dropped entirely --- we'll just transiently acquire
* a non-conflicting lock.
*/
static void
AcquirePlannerLocks(List *stmt_list, bool acquire)
{
ListCell *lc;
foreach(lc, stmt_list)
{
Query *query = (Query *) lfirst(lc);
Assert(IsA(query, Query));
if (acquire)
ScanQueryForRelids(query, LockRelid, NULL);
else
ScanQueryForRelids(query, UnlockRelid, NULL);
}
}
/*
* ScanQueryForRelids callback functions for AcquirePlannerLocks
*/
static void
LockRelid(Oid relid, LOCKMODE lockmode, void *arg)
{
LockRelationOid(relid, lockmode);
}
static void
UnlockRelid(Oid relid, LOCKMODE lockmode, void *arg)
{
UnlockRelationOid(relid, lockmode);
}
/*
* ScanQueryForRelids: recursively scan one Query and apply the callback
* function to each relation OID found therein. The callback function
* takes the arguments relation OID, lockmode, pointer arg.
*/
static void
ScanQueryForRelids(Query *parsetree,
void (*callback) (),
void *arg)
{
ListCell *lc;
int rt_index;
/*
* First, process RTEs of the current query level.
*/
rt_index = 0;
foreach(lc, parsetree->rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
LOCKMODE lockmode;
rt_index++;
switch (rte->rtekind)
{
case RTE_RELATION:
/*
* Determine the lock type required for this RTE.
*/
if (rt_index == parsetree->resultRelation)
lockmode = RowExclusiveLock;
else if (rowmark_member(parsetree->rowMarks, rt_index))
lockmode = RowShareLock;
else
lockmode = AccessShareLock;
(*callback) (rte->relid, lockmode, arg);
break;
case RTE_SUBQUERY:
/*
* The subquery RTE itself is all right, but we have to
* recurse to process the represented subquery.
*/
ScanQueryForRelids(rte->subquery, callback, arg);
break;
default:
/* ignore other types of RTEs */
break;
}
}
/*
* Recurse into sublink subqueries, too. But we already did the ones in
* the rtable.
*/
if (parsetree->hasSubLinks)
{
ScanQueryWalkerContext context;
context.callback = callback;
context.arg = arg;
query_tree_walker(parsetree, ScanQueryWalker,
(void *) &context,
QTW_IGNORE_RT_SUBQUERIES);
}
}
/*
* Walker to find sublink subqueries for ScanQueryForRelids
*/
static bool
ScanQueryWalker(Node *node, ScanQueryWalkerContext *context)
{
if (node == NULL)
return false;
if (IsA(node, SubLink))
{
SubLink *sub = (SubLink *) node;
/* Do what we came for */
ScanQueryForRelids((Query *) sub->subselect,
context->callback, context->arg);
/* Fall through to process lefthand args of SubLink */
}
/*
* Do NOT recurse into Query nodes, because ScanQueryForRelids
* already processed subselects of subselects for us.
*/
return expression_tree_walker(node, ScanQueryWalker,
(void *) context);
}
/*
* rowmark_member: check whether an RT index appears in a RowMarkClause list.
*/
static bool
rowmark_member(List *rowMarks, int rt_index)
{
ListCell *l;
foreach(l, rowMarks)
{
RowMarkClause *rc = (RowMarkClause *) lfirst(l);
if (rc->rti == rt_index)
return true;
}
return false;
}
/*
* PlanCacheComputeResultDesc: given a list of either fully-planned statements
* or Queries, determine the result tupledesc it will produce. Returns NULL
* if the execution will not return tuples.
*
* Note: the result is created or copied into current memory context.
*/
TupleDesc
PlanCacheComputeResultDesc(List *stmt_list)
{
Node *node;
Query *query;
PlannedStmt *pstmt;
switch (ChoosePortalStrategy(stmt_list))
{
case PORTAL_ONE_SELECT:
node = (Node *) linitial(stmt_list);
if (IsA(node, Query))
{
query = (Query *) node;
return ExecCleanTypeFromTL(query->targetList, false);
}
if (IsA(node, PlannedStmt))
{
pstmt = (PlannedStmt *) node;
return ExecCleanTypeFromTL(pstmt->planTree->targetlist, false);
}
/* other cases shouldn't happen, but return NULL */
break;
case PORTAL_ONE_RETURNING:
node = PortalListGetPrimaryStmt(stmt_list);
if (IsA(node, Query))
{
query = (Query *) node;
Assert(query->returningList);
return ExecCleanTypeFromTL(query->returningList, false);
}
if (IsA(node, PlannedStmt))
{
pstmt = (PlannedStmt *) node;
Assert(pstmt->returningLists);
return ExecCleanTypeFromTL((List *) linitial(pstmt->returningLists), false);
}
/* other cases shouldn't happen, but return NULL */
break;
case PORTAL_UTIL_SELECT:
node = (Node *) linitial(stmt_list);
if (IsA(node, Query))
{
query = (Query *) node;
Assert(query->utilityStmt);
return UtilityTupleDescriptor(query->utilityStmt);
}
/* else it's a bare utility statement */
return UtilityTupleDescriptor(node);
case PORTAL_MULTI_QUERY:
/* will not return tuples */
break;
}
return NULL;
}
/*
* PlanCacheCallback
* Relcache inval callback function
*/
static void
PlanCacheCallback(Datum arg, Oid relid)
{
ListCell *lc1;
ListCell *lc2;
foreach(lc1, cached_plans_list)
{
CachedPlanSource *plansource = (CachedPlanSource *) lfirst(lc1);
CachedPlan *plan = plansource->plan;
/* No work if it's already invalidated */
if (!plan || plan->dead)
continue;
if (plan->fully_planned)
{
foreach(lc2, plan->stmt_list)
{
PlannedStmt *plannedstmt = (PlannedStmt *) lfirst(lc2);
ListCell *lc3;
Assert(!IsA(plannedstmt, Query));
if (!IsA(plannedstmt, PlannedStmt))
continue; /* Ignore utility statements */
foreach(lc3, plannedstmt->rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc3);
if (rte->rtekind != RTE_RELATION)
continue;
if (relid == rte->relid)
{
/* Invalidate the plan! */
plan->dead = true;
break; /* out of rangetable scan */
}
}
if (plan->dead)
break; /* out of stmt_list scan */
}
}
else
{
/*
* For not-fully-planned entries we use ScanQueryForRelids,
* since a recursive traversal is needed. The callback API
* is a bit tedious but avoids duplication of coding.
*/
InvalRelidContext context;
context.inval_relid = relid;
context.plan = plan;
foreach(lc2, plan->stmt_list)
{
Query *query = (Query *) lfirst(lc2);
Assert(IsA(query, Query));
ScanQueryForRelids(query, InvalRelid, (void *) &context);
}
}
}
}
/*
* ScanQueryForRelids callback function for PlanCacheCallback
*/
static void
InvalRelid(Oid relid, LOCKMODE lockmode, InvalRelidContext *context)
{
if (relid == context->inval_relid)
context->plan->dead = true;
}
Changes pg_trigger and extend pg_rewrite in order to allow triggers and rules to be defined with different, per session controllable, behaviors for replication purposes. This will allow replication systems like Slony-I and, as has been stated on pgsql-hackers, other products to control the firing mechanism of triggers and rewrite rules without modifying the system catalog directly. The firing mechanisms are controlled by a new superuser-only GUC variable, session_replication_role, together with a change to pg_trigger.tgenabled and a new column pg_rewrite.ev_enabled. Both columns are a single char data type now (tgenabled was a bool before). The possible values in these attributes are: 'O' - Trigger/Rule fires when session_replication_role is "origin" (default) or "local". This is the default behavior. 'D' - Trigger/Rule is disabled and fires never 'A' - Trigger/Rule fires always regardless of the setting of session_replication_role 'R' - Trigger/Rule fires when session_replication_role is "replica" The GUC variable can only be changed as long as the system does not have any cached query plans. This will prevent changing the session role and accidentally executing stored procedures or functions that have plans cached that expand to the wrong query set due to differences in the rule firing semantics. The SQL syntax for changing a triggers/rules firing semantics is ALTER TABLE <tabname> <when> TRIGGER|RULE <name>; <when> ::= ENABLE | ENABLE ALWAYS | ENABLE REPLICA | DISABLE psql's \d command as well as pg_dump are extended in a backward compatible fashion. Jan
2007-03-20 00:38:32 +01:00
/*
* HaveCachedPlans
* Check if the plancache has stored any plans at all.
*/
bool
HaveCachedPlans(void)
{
return (cached_plans_list != NIL);
}