postgresql/src/include/access/nbtree.h

296 lines
9.7 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* nbtree.h
* header file for postgres btree access method implementation.
*
*
* Copyright (c) 1994, Regents of the University of California
*
* $Id: nbtree.h,v 1.29 1999/07/15 23:03:35 momjian Exp $
*
*-------------------------------------------------------------------------
*/
#ifndef NBTREE_H
#define NBTREE_H
#include "access/sdir.h"
#include "access/relscan.h"
#include "access/funcindex.h"
#include "access/itup.h"
/*
* BTPageOpaqueData -- At the end of every page, we store a pointer
* to both siblings in the tree. See Lehman and Yao's paper for more
* info. In addition, we need to know what sort of page this is
* (leaf or internal), and whether the page is available for reuse.
*
* Lehman and Yao's algorithm requires a ``high key'' on every page.
* The high key on a page is guaranteed to be greater than or equal
* to any key that appears on this page. Our insertion algorithm
* guarantees that we can use the initial least key on our right
* sibling as the high key. We allocate space for the line pointer
* to the high key in the opaque data at the end of the page.
*
* Rightmost pages in the tree have no high key.
*/
typedef struct BTPageOpaqueData
{
BlockNumber btpo_prev;
BlockNumber btpo_next;
1999-05-25 18:15:34 +02:00
BlockNumber btpo_parent;
uint16 btpo_flags;
#define BTP_LEAF (1 << 0)
#define BTP_ROOT (1 << 1)
#define BTP_FREE (1 << 2)
#define BTP_META (1 << 3)
#define BTP_CHAIN (1 << 4)
1997-09-08 22:59:27 +02:00
} BTPageOpaqueData;
typedef BTPageOpaqueData *BTPageOpaque;
/*
* ScanOpaqueData is used to remember which buffers we're currently
* examining in the scan. We keep these buffers locked and pinned
* and recorded in the opaque entry of the scan in order to avoid
* doing a ReadBuffer() for every tuple in the index. This avoids
* semop() calls, which are expensive.
*
* And it's used to remember actual scankey info (we need in it
1998-07-30 07:05:05 +02:00
* if some scankeys evaled at runtime).
*
* curHeapIptr & mrkHeapIptr are heap iptr-s from current/marked
* index tuples: we don't adjust scans on insertions (and, if LLL
* is ON, don't hold locks on index pages between passes) - we
* use these pointers to restore index scan positions...
* - vadim 07/29/98
*/
typedef struct BTScanOpaqueData
{
Buffer btso_curbuf;
Buffer btso_mrkbuf;
ItemPointerData curHeapIptr;
ItemPointerData mrkHeapIptr;
uint16 qual_ok; /* 0 for quals like key == 1 && key > 2 */
uint16 numberOfKeys; /* number of keys */
uint16 numberOfFirstKeys; /* number of keys for 1st
* attribute */
ScanKey keyData; /* key descriptor */
1997-09-08 22:59:27 +02:00
} BTScanOpaqueData;
typedef BTScanOpaqueData *BTScanOpaque;
/*
* BTItems are what we store in the btree. Each item has an index
* tuple, including key and pointer values. In addition, we must
* guarantee that all tuples in the index are unique, in order to
* satisfy some assumptions in Lehman and Yao. The way that we do
* this is by generating a new OID for every insertion that we do in
* the tree. This adds eight bytes to the size of btree index
* tuples. Note that we do not use the OID as part of a composite
* key; the OID only serves as a unique identifier for a given index
* tuple (logical position within a page).
*
* New comments:
* actually, we must guarantee that all tuples in A LEVEL
* are unique, not in ALL INDEX. So, we can use bti_itup->t_tid
* as unique identifier for a given index tuple (logical position
* within a level). - vadim 04/09/97
*/
typedef struct BTItemData
{
IndexTupleData bti_itup;
1997-09-08 22:59:27 +02:00
} BTItemData;
typedef BTItemData *BTItem;
#define BTItemSame(i1, i2) ( i1->bti_itup.t_tid.ip_blkid.bi_hi == \
i2->bti_itup.t_tid.ip_blkid.bi_hi && \
i1->bti_itup.t_tid.ip_blkid.bi_lo == \
i2->bti_itup.t_tid.ip_blkid.bi_lo && \
i1->bti_itup.t_tid.ip_posid == \
i2->bti_itup.t_tid.ip_posid )
/*
* BTStackData -- As we descend a tree, we push the (key, pointer)
* pairs from internal nodes onto a private stack. If we split a
* leaf, we use this stack to walk back up the tree and insert data
* into parent nodes (and possibly to split them, too). Lehman and
* Yao's update algorithm guarantees that under no circumstances can
* our private stack give us an irredeemably bad picture up the tree.
* Again, see the paper for details.
*/
typedef struct BTStackData
{
BlockNumber bts_blkno;
OffsetNumber bts_offset;
BTItem bts_btitem;
struct BTStackData *bts_parent;
1997-09-08 22:59:27 +02:00
} BTStackData;
typedef BTStackData *BTStack;
typedef struct BTPageState
{
Buffer btps_buf;
Page btps_page;
BTItem btps_lastbti;
OffsetNumber btps_lastoff;
OffsetNumber btps_firstoff;
int btps_level;
bool btps_doupper;
struct BTPageState *btps_next;
1997-09-08 22:59:27 +02:00
} BTPageState;
/*
* We need to be able to tell the difference between read and write
* requests for pages, in order to do locking correctly.
*/
#define BT_READ BUFFER_LOCK_SHARE
#define BT_WRITE BUFFER_LOCK_EXCLUSIVE
/*
* Similarly, the difference between insertion and non-insertion binary
* searches on a given page makes a difference when we're descending the
* tree.
*/
#define BT_INSERTION 0
#define BT_DESCENT 1
/*
* In general, the btree code tries to localize its knowledge about
* page layout to a couple of routines. However, we need a special
* value to indicate "no page number" in those places where we expect
* page numbers.
*/
#define P_NONE 0
#define P_LEFTMOST(opaque) ((opaque)->btpo_prev == P_NONE)
#define P_RIGHTMOST(opaque) ((opaque)->btpo_next == P_NONE)
#define P_HIKEY ((OffsetNumber) 1)
#define P_FIRSTKEY ((OffsetNumber) 2)
/*
* Strategy numbers -- ordering of these is <, <=, =, >=, >
*/
#define BTLessStrategyNumber 1
#define BTLessEqualStrategyNumber 2
#define BTEqualStrategyNumber 3
#define BTGreaterEqualStrategyNumber 4
#define BTGreaterStrategyNumber 5
#define BTMaxStrategyNumber 5
/*
* When a new operator class is declared, we require that the user
* supply us with an amproc procedure for determining whether, for
* two keys a and b, a < b, a = b, or a > b. This routine must
* return < 0, 0, > 0, respectively, in these three cases. Since we
* only have one such proc in amproc, it's number 1.
*/
#define BTORDER_PROC 1
/*
* prototypes for functions in nbtinsert.c
*/
extern InsertIndexResult _bt_doinsert(Relation rel, BTItem btitem,
bool index_is_unique, Relation heapRel);
/* default is to allow duplicates */
extern bool _bt_itemcmp(Relation rel, Size keysz, BTItem item1, BTItem item2,
StrategyNumber strat);
/*
* prototypes for functions in nbtpage.c
*/
extern void _bt_metapinit(Relation rel);
extern Buffer _bt_getroot(Relation rel, int access);
extern Buffer _bt_getbuf(Relation rel, BlockNumber blkno, int access);
extern void _bt_relbuf(Relation rel, Buffer buf, int access);
extern void _bt_wrtbuf(Relation rel, Buffer buf);
extern void _bt_wrtnorelbuf(Relation rel, Buffer buf);
extern void _bt_pageinit(Page page, Size size);
extern void _bt_metaproot(Relation rel, BlockNumber rootbknum, int level);
extern Buffer _bt_getstackbuf(Relation rel, BTStack stack, int access);
extern void _bt_pagedel(Relation rel, ItemPointer tid);
/*
* prototypes for functions in nbtree.c
*/
extern bool BuildingBtree; /* in nbtree.c */
extern void btbuild(Relation heap, Relation index, int natts,
1997-09-08 22:59:27 +02:00
AttrNumber *attnum, IndexStrategy istrat, uint16 pcount,
Datum *params, FuncIndexInfo *finfo, PredInfo *predInfo);
extern InsertIndexResult btinsert(Relation rel, Datum *datum, char *nulls,
ItemPointer ht_ctid, Relation heapRel);
extern char *btgettuple(IndexScanDesc scan, ScanDirection dir);
extern char *btbeginscan(Relation rel, bool fromEnd, uint16 keysz,
ScanKey scankey);
extern void btrescan(IndexScanDesc scan, bool fromEnd, ScanKey scankey);
extern void btmovescan(IndexScanDesc scan, Datum v);
extern void btendscan(IndexScanDesc scan);
extern void btmarkpos(IndexScanDesc scan);
extern void btrestrpos(IndexScanDesc scan);
extern void btdelete(Relation rel, ItemPointer tid);
/*
* prototypes for functions in nbtscan.c
*/
extern void _bt_regscan(IndexScanDesc scan);
extern void _bt_dropscan(IndexScanDesc scan);
extern void _bt_adjscans(Relation rel, ItemPointer tid);
/*
* prototypes for functions in nbtsearch.c
*/
extern BTStack _bt_search(Relation rel, int keysz, ScanKey scankey,
1997-09-08 22:59:27 +02:00
Buffer *bufP);
extern Buffer _bt_moveright(Relation rel, Buffer buf, int keysz,
ScanKey scankey, int access);
extern bool _bt_skeycmp(Relation rel, Size keysz, ScanKey scankey,
Page page, ItemId itemid, StrategyNumber strat);
extern OffsetNumber _bt_binsrch(Relation rel, Buffer buf, int keysz,
ScanKey scankey, int srchtype);
extern RetrieveIndexResult _bt_next(IndexScanDesc scan, ScanDirection dir);
extern RetrieveIndexResult _bt_first(IndexScanDesc scan, ScanDirection dir);
1997-09-08 22:59:27 +02:00
extern bool _bt_step(IndexScanDesc scan, Buffer *bufP, ScanDirection dir);
/*
* prototypes for functions in nbtstrat.c
*/
extern StrategyNumber _bt_getstrat(Relation rel, AttrNumber attno,
RegProcedure proc);
extern bool _bt_invokestrat(Relation rel, AttrNumber attno,
StrategyNumber strat, Datum left, Datum right);
/*
* prototypes for functions in nbtutils.c
*/
extern ScanKey _bt_mkscankey(Relation rel, IndexTuple itup);
extern void _bt_freeskey(ScanKey skey);
extern void _bt_freestack(BTStack stack);
extern void _bt_orderkeys(Relation relation, BTScanOpaque so);
extern bool _bt_checkkeys(IndexScanDesc scan, IndexTuple tuple, Size *keysok);
extern BTItem _bt_formitem(IndexTuple itup);
/*
* prototypes for functions in nbtsort.c
*/
extern void *_bt_spoolinit(Relation index, int ntapes, bool isunique);
extern void _bt_spooldestroy(void *spool);
extern void _bt_spool(Relation index, BTItem btitem, void *spool);
extern void _bt_leafbuild(Relation index, void *spool);
#endif /* NBTREE_H */