postgresql/src/backend/utils/adt/int8.c

1511 lines
32 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* int8.c
* Internal 64-bit integer operations
*
2017-01-03 19:48:53 +01:00
* Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
2010-09-20 22:08:53 +02:00
* src/backend/utils/adt/int8.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <ctype.h>
#include <limits.h>
#include <math.h>
#include "funcapi.h"
#include "libpq/pqformat.h"
#include "utils/int8.h"
#include "utils/builtins.h"
#define MAXINT8LEN 25
#define SAMESIGN(a,b) (((a) < 0) == ((b) < 0))
typedef struct
{
int64 current;
int64 finish;
int64 step;
2004-08-29 07:07:03 +02:00
} generate_series_fctx;
/***********************************************************************
**
** Routines for 64-bit integers.
**
***********************************************************************/
/*----------------------------------------------------------
* Formatting and conversion routines.
*---------------------------------------------------------*/
/*
* scanint8 --- try to parse a string into an int8.
*
* If errorOK is false, ereport a useful error message if the string is bad.
* If errorOK is true, just return "false" for bad input.
*/
bool
scanint8(const char *str, bool errorOK, int64 *result)
{
const char *ptr = str;
int64 tmp = 0;
int sign = 1;
1999-05-25 18:15:34 +02:00
/*
2005-10-15 04:49:52 +02:00
* Do our own scan, rather than relying on sscanf which might be broken
* for long long.
*/
/* skip leading spaces */
while (*ptr && isspace((unsigned char) *ptr))
ptr++;
/* handle sign */
if (*ptr == '-')
{
ptr++;
2002-09-04 22:31:48 +02:00
/*
* Do an explicit check for INT64_MIN. Ugly though this is, it's
2005-10-15 04:49:52 +02:00
* cleaner than trying to get the loop below to handle it portably.
*/
if (strncmp(ptr, "9223372036854775808", 19) == 0)
{
tmp = PG_INT64_MIN;
ptr += 19;
goto gotdigits;
}
sign = -1;
}
else if (*ptr == '+')
ptr++;
/* require at least one digit */
if (!isdigit((unsigned char) *ptr))
{
if (errorOK)
return false;
else
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
2017-09-11 17:20:47 +02:00
errmsg("invalid input syntax for integer: \"%s\"",
str)));
}
/* process digits */
while (*ptr && isdigit((unsigned char) *ptr))
{
int64 newtmp = tmp * 10 + (*ptr++ - '0');
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
if ((newtmp / 10) != tmp) /* overflow? */
{
if (errorOK)
return false;
else
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("value \"%s\" is out of range for type %s",
str, "bigint")));
}
tmp = newtmp;
}
gotdigits:
/* allow trailing whitespace, but not other trailing chars */
while (*ptr != '\0' && isspace((unsigned char) *ptr))
ptr++;
if (*ptr != '\0')
{
if (errorOK)
return false;
else
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
2017-09-11 17:20:47 +02:00
errmsg("invalid input syntax for integer: \"%s\"",
str)));
}
*result = (sign < 0) ? -tmp : tmp;
return true;
}
/* int8in()
*/
Datum
int8in(PG_FUNCTION_ARGS)
{
char *str = PG_GETARG_CSTRING(0);
int64 result;
(void) scanint8(str, false, &result);
PG_RETURN_INT64(result);
}
/* int8out()
*/
Datum
int8out(PG_FUNCTION_ARGS)
{
int64 val = PG_GETARG_INT64(0);
char buf[MAXINT8LEN + 1];
char *result;
pg_lltoa(val, buf);
result = pstrdup(buf);
PG_RETURN_CSTRING(result);
}
/*
* int8recv - converts external binary format to int8
*/
Datum
int8recv(PG_FUNCTION_ARGS)
{
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
PG_RETURN_INT64(pq_getmsgint64(buf));
}
/*
* int8send - converts int8 to binary format
*/
Datum
int8send(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
StringInfoData buf;
pq_begintypsend(&buf);
pq_sendint64(&buf, arg1);
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
/*----------------------------------------------------------
* Relational operators for int8s, including cross-data-type comparisons.
*---------------------------------------------------------*/
/* int8relop()
* Is val1 relop val2?
*/
Datum
int8eq(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int8ne(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int8lt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int8gt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int8le(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int8ge(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 >= val2);
}
/* int84relop()
* Is 64-bit val1 relop 32-bit val2?
*/
Datum
int84eq(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int84ne(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int84lt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int84gt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int84le(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int84ge(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 >= val2);
}
/* int48relop()
* Is 32-bit val1 relop 64-bit val2?
*/
Datum
int48eq(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int48ne(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int48lt(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int48gt(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int48le(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int48ge(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 >= val2);
}
/* int82relop()
* Is 64-bit val1 relop 16-bit val2?
*/
Datum
int82eq(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int82ne(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int82lt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int82gt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int82le(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int82ge(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 >= val2);
}
/* int28relop()
* Is 16-bit val1 relop 64-bit val2?
*/
Datum
int28eq(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int28ne(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int28lt(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int28gt(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int28le(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int28ge(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 >= val2);
}
/*----------------------------------------------------------
* Arithmetic operators on 64-bit integers.
*---------------------------------------------------------*/
Datum
int8um(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
int64 result;
result = -arg;
/* overflow check (needed for INT64_MIN) */
if (arg != 0 && SAMESIGN(result, arg))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int8up(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
PG_RETURN_INT64(arg);
}
Datum
int8pl(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 + arg2;
2005-10-15 04:49:52 +02:00
/*
* Overflow check. If the inputs are of different signs then their sum
2005-10-15 04:49:52 +02:00
* cannot overflow. If the inputs are of the same sign, their sum had
* better be that sign too.
*/
if (SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int8mi(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 - arg2;
2005-10-15 04:49:52 +02:00
/*
* Overflow check. If the inputs are of the same sign then their
* difference cannot overflow. If they are of different signs then the
2005-10-15 04:49:52 +02:00
* result should be of the same sign as the first input.
*/
if (!SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int8mul(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 * arg2;
2005-10-15 04:49:52 +02:00
/*
* Overflow check. We basically check to see if result / arg2 gives arg1
2005-10-15 04:49:52 +02:00
* again. There are two cases where this fails: arg2 = 0 (which cannot
* overflow) and arg1 = INT64_MIN, arg2 = -1 (where the division itself
* will overflow and thus incorrectly match).
*
* Since the division is likely much more expensive than the actual
2005-10-15 04:49:52 +02:00
* multiplication, we'd like to skip it where possible. The best bang for
* the buck seems to be to check whether both inputs are in the int32
* range; if so, no overflow is possible.
*/
if (arg1 != (int64) ((int32) arg1) || arg2 != (int64) ((int32) arg2))
{
if (arg2 != 0 &&
((arg2 == -1 && arg1 < 0 && result < 0) ||
result / arg2 != arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
}
PG_RETURN_INT64(result);
}
Datum
int8div(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
if (arg2 == 0)
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/*
* INT64_MIN / -1 is problematic, since the result can't be represented on
* a two's-complement machine. Some machines produce INT64_MIN, some
* produce zero, some throw an exception. We can dodge the problem by
* recognizing that division by -1 is the same as negation.
*/
if (arg2 == -1)
{
result = -arg1;
/* overflow check (needed for INT64_MIN) */
if (arg1 != 0 && SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
/* No overflow is possible */
result = arg1 / arg2;
PG_RETURN_INT64(result);
}
/* int8abs()
* Absolute value
*/
Datum
int8abs(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 result;
result = (arg1 < 0) ? -arg1 : arg1;
/* overflow check (needed for INT64_MIN) */
if (result < 0)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
/* int8mod()
* Modulo operation.
*/
Datum
int8mod(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
if (arg2 == 0)
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/*
* Some machines throw a floating-point exception for INT64_MIN % -1,
* which is a bit silly since the correct answer is perfectly
* well-defined, namely zero.
*/
if (arg2 == -1)
PG_RETURN_INT64(0);
/* No overflow is possible */
PG_RETURN_INT64(arg1 % arg2);
}
Datum
int8inc(PG_FUNCTION_ARGS)
{
/*
* When int8 is pass-by-reference, we provide this special case to avoid
* palloc overhead for COUNT(): when called as an aggregate, we know that
2010-02-26 03:01:40 +01:00
* the argument is modifiable local storage, so just update it in-place.
* (If int8 is pass-by-value, then of course this is useless as well as
* incorrect, so just ifdef it out.)
*/
#ifndef USE_FLOAT8_BYVAL /* controls int8 too */
if (AggCheckCallContext(fcinfo, NULL))
{
int64 *arg = (int64 *) PG_GETARG_POINTER(0);
int64 result;
result = *arg + 1;
/* Overflow check */
if (result < 0 && *arg > 0)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
*arg = result;
PG_RETURN_POINTER(arg);
}
else
#endif
{
/* Not called as an aggregate, so just do it the dumb way */
int64 arg = PG_GETARG_INT64(0);
int64 result;
result = arg + 1;
/* Overflow check */
if (result < 0 && arg > 0)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
}
Datum
int8dec(PG_FUNCTION_ARGS)
{
/*
* When int8 is pass-by-reference, we provide this special case to avoid
* palloc overhead for COUNT(): when called as an aggregate, we know that
* the argument is modifiable local storage, so just update it in-place.
* (If int8 is pass-by-value, then of course this is useless as well as
* incorrect, so just ifdef it out.)
*/
#ifndef USE_FLOAT8_BYVAL /* controls int8 too */
if (AggCheckCallContext(fcinfo, NULL))
{
int64 *arg = (int64 *) PG_GETARG_POINTER(0);
int64 result;
result = *arg - 1;
/* Overflow check */
if (result > 0 && *arg < 0)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
*arg = result;
PG_RETURN_POINTER(arg);
}
else
#endif
{
/* Not called as an aggregate, so just do it the dumb way */
int64 arg = PG_GETARG_INT64(0);
int64 result;
result = arg - 1;
/* Overflow check */
if (result > 0 && arg < 0)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
}
/*
* These functions are exactly like int8inc/int8dec but are used for
* aggregates that count only non-null values. Since the functions are
* declared strict, the null checks happen before we ever get here, and all we
* need do is increment the state value. We could actually make these pg_proc
* entries point right at int8inc/int8dec, but then the opr_sanity regression
* test would complain about mismatched entries for a built-in function.
*/
Datum
int8inc_any(PG_FUNCTION_ARGS)
{
return int8inc(fcinfo);
}
Datum
int8inc_float8_float8(PG_FUNCTION_ARGS)
{
return int8inc(fcinfo);
}
Datum
int8dec_any(PG_FUNCTION_ARGS)
{
return int8dec(fcinfo);
}
Datum
int8larger(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = ((arg1 > arg2) ? arg1 : arg2);
PG_RETURN_INT64(result);
}
Datum
int8smaller(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = ((arg1 < arg2) ? arg1 : arg2);
PG_RETURN_INT64(result);
}
Datum
int84pl(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
int64 result;
result = arg1 + arg2;
2005-10-15 04:49:52 +02:00
/*
* Overflow check. If the inputs are of different signs then their sum
2005-10-15 04:49:52 +02:00
* cannot overflow. If the inputs are of the same sign, their sum had
* better be that sign too.
*/
if (SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int84mi(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
int64 result;
result = arg1 - arg2;
2005-10-15 04:49:52 +02:00
/*
* Overflow check. If the inputs are of the same sign then their
* difference cannot overflow. If they are of different signs then the
2005-10-15 04:49:52 +02:00
* result should be of the same sign as the first input.
*/
if (!SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int84mul(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
int64 result;
result = arg1 * arg2;
2005-10-15 04:49:52 +02:00
/*
* Overflow check. We basically check to see if result / arg1 gives arg2
2005-10-15 04:49:52 +02:00
* again. There is one case where this fails: arg1 = 0 (which cannot
* overflow).
*
* Since the division is likely much more expensive than the actual
2005-10-15 04:49:52 +02:00
* multiplication, we'd like to skip it where possible. The best bang for
* the buck seems to be to check whether both inputs are in the int32
* range; if so, no overflow is possible.
*/
if (arg1 != (int64) ((int32) arg1) &&
2005-10-15 04:49:52 +02:00
result / arg1 != arg2)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int84div(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
int64 result;
if (arg2 == 0)
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/*
* INT64_MIN / -1 is problematic, since the result can't be represented on
* a two's-complement machine. Some machines produce INT64_MIN, some
* produce zero, some throw an exception. We can dodge the problem by
* recognizing that division by -1 is the same as negation.
*/
if (arg2 == -1)
{
result = -arg1;
/* overflow check (needed for INT64_MIN) */
if (arg1 != 0 && SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
/* No overflow is possible */
result = arg1 / arg2;
PG_RETURN_INT64(result);
}
Datum
int48pl(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 + arg2;
2005-10-15 04:49:52 +02:00
/*
* Overflow check. If the inputs are of different signs then their sum
2005-10-15 04:49:52 +02:00
* cannot overflow. If the inputs are of the same sign, their sum had
* better be that sign too.
*/
if (SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int48mi(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 - arg2;
2005-10-15 04:49:52 +02:00
/*
* Overflow check. If the inputs are of the same sign then their
* difference cannot overflow. If they are of different signs then the
2005-10-15 04:49:52 +02:00
* result should be of the same sign as the first input.
*/
if (!SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int48mul(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 * arg2;
2005-10-15 04:49:52 +02:00
/*
* Overflow check. We basically check to see if result / arg2 gives arg1
2005-10-15 04:49:52 +02:00
* again. There is one case where this fails: arg2 = 0 (which cannot
* overflow).
*
* Since the division is likely much more expensive than the actual
2005-10-15 04:49:52 +02:00
* multiplication, we'd like to skip it where possible. The best bang for
* the buck seems to be to check whether both inputs are in the int32
* range; if so, no overflow is possible.
*/
if (arg2 != (int64) ((int32) arg2) &&
2005-10-15 04:49:52 +02:00
result / arg2 != arg1)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int48div(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int64 arg2 = PG_GETARG_INT64(1);
if (arg2 == 0)
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/* No overflow is possible */
PG_RETURN_INT64((int64) arg1 / arg2);
}
Datum
int82pl(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int16 arg2 = PG_GETARG_INT16(1);
int64 result;
result = arg1 + arg2;
/*
* Overflow check. If the inputs are of different signs then their sum
* cannot overflow. If the inputs are of the same sign, their sum had
* better be that sign too.
*/
if (SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int82mi(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int16 arg2 = PG_GETARG_INT16(1);
int64 result;
result = arg1 - arg2;
/*
* Overflow check. If the inputs are of the same sign then their
* difference cannot overflow. If they are of different signs then the
* result should be of the same sign as the first input.
*/
if (!SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int82mul(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int16 arg2 = PG_GETARG_INT16(1);
int64 result;
result = arg1 * arg2;
/*
* Overflow check. We basically check to see if result / arg1 gives arg2
* again. There is one case where this fails: arg1 = 0 (which cannot
* overflow).
*
* Since the division is likely much more expensive than the actual
* multiplication, we'd like to skip it where possible. The best bang for
* the buck seems to be to check whether both inputs are in the int32
* range; if so, no overflow is possible.
*/
if (arg1 != (int64) ((int32) arg1) &&
result / arg1 != arg2)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int82div(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int16 arg2 = PG_GETARG_INT16(1);
int64 result;
if (arg2 == 0)
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/*
* INT64_MIN / -1 is problematic, since the result can't be represented on
* a two's-complement machine. Some machines produce INT64_MIN, some
* produce zero, some throw an exception. We can dodge the problem by
* recognizing that division by -1 is the same as negation.
*/
if (arg2 == -1)
{
result = -arg1;
/* overflow check (needed for INT64_MIN) */
if (arg1 != 0 && SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
/* No overflow is possible */
result = arg1 / arg2;
PG_RETURN_INT64(result);
}
Datum
int28pl(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 + arg2;
/*
* Overflow check. If the inputs are of different signs then their sum
* cannot overflow. If the inputs are of the same sign, their sum had
* better be that sign too.
*/
if (SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int28mi(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 - arg2;
/*
* Overflow check. If the inputs are of the same sign then their
* difference cannot overflow. If they are of different signs then the
* result should be of the same sign as the first input.
*/
if (!SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int28mul(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 * arg2;
/*
* Overflow check. We basically check to see if result / arg2 gives arg1
* again. There is one case where this fails: arg2 = 0 (which cannot
* overflow).
*
* Since the division is likely much more expensive than the actual
* multiplication, we'd like to skip it where possible. The best bang for
* the buck seems to be to check whether both inputs are in the int32
* range; if so, no overflow is possible.
*/
if (arg2 != (int64) ((int32) arg2) &&
result / arg2 != arg1)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int28div(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int64 arg2 = PG_GETARG_INT64(1);
if (arg2 == 0)
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/* No overflow is possible */
PG_RETURN_INT64((int64) arg1 / arg2);
}
/* Binary arithmetics
*
* int8and - returns arg1 & arg2
* int8or - returns arg1 | arg2
* int8xor - returns arg1 # arg2
* int8not - returns ~arg1
* int8shl - returns arg1 << arg2
* int8shr - returns arg1 >> arg2
*/
Datum
int8and(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
PG_RETURN_INT64(arg1 & arg2);
}
Datum
int8or(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
PG_RETURN_INT64(arg1 | arg2);
}
Datum
int8xor(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
PG_RETURN_INT64(arg1 ^ arg2);
}
Datum
int8not(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
PG_RETURN_INT64(~arg1);
}
Datum
int8shl(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_INT64(arg1 << arg2);
}
Datum
int8shr(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_INT64(arg1 >> arg2);
}
/*----------------------------------------------------------
* Conversion operators.
*---------------------------------------------------------*/
Datum
int48(PG_FUNCTION_ARGS)
{
int32 arg = PG_GETARG_INT32(0);
PG_RETURN_INT64((int64) arg);
}
Datum
int84(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
int32 result;
result = (int32) arg;
/* Test for overflow by reverse-conversion. */
if ((int64) result != arg)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
}
Datum
int28(PG_FUNCTION_ARGS)
{
int16 arg = PG_GETARG_INT16(0);
PG_RETURN_INT64((int64) arg);
}
Datum
int82(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
int16 result;
result = (int16) arg;
/* Test for overflow by reverse-conversion. */
if ((int64) result != arg)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("smallint out of range")));
PG_RETURN_INT16(result);
}
Datum
i8tod(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
float8 result;
result = arg;
PG_RETURN_FLOAT8(result);
}
/* dtoi8()
* Convert float8 to 8-byte integer.
*/
Datum
dtoi8(PG_FUNCTION_ARGS)
{
float8 arg = PG_GETARG_FLOAT8(0);
int64 result;
/* Round arg to nearest integer (but it's still in float form) */
arg = rint(arg);
2001-03-22 05:01:46 +01:00
/*
2005-10-15 04:49:52 +02:00
* Does it fit in an int64? Avoid assuming that we have handy constants
* defined for the range boundaries, instead test for overflow by
* reverse-conversion.
*/
result = (int64) arg;
if ((float8) result != arg)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
i8tof(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
float4 result;
result = arg;
PG_RETURN_FLOAT4(result);
}
/* ftoi8()
* Convert float4 to 8-byte integer.
*/
Datum
ftoi8(PG_FUNCTION_ARGS)
{
float4 arg = PG_GETARG_FLOAT4(0);
int64 result;
float8 darg;
/* Round arg to nearest integer (but it's still in float form) */
darg = rint(arg);
/*
2005-10-15 04:49:52 +02:00
* Does it fit in an int64? Avoid assuming that we have handy constants
* defined for the range boundaries, instead test for overflow by
* reverse-conversion.
*/
result = (int64) darg;
if ((float8) result != darg)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
i8tooid(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
Oid result;
result = (Oid) arg;
/* Test for overflow by reverse-conversion. */
if ((int64) result != arg)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("OID out of range")));
PG_RETURN_OID(result);
}
Datum
oidtoi8(PG_FUNCTION_ARGS)
{
Oid arg = PG_GETARG_OID(0);
PG_RETURN_INT64((int64) arg);
}
/*
* non-persistent numeric series generator
*/
Datum
generate_series_int8(PG_FUNCTION_ARGS)
{
return generate_series_step_int8(fcinfo);
}
Datum
generate_series_step_int8(PG_FUNCTION_ARGS)
{
2004-08-29 07:07:03 +02:00
FuncCallContext *funcctx;
generate_series_fctx *fctx;
int64 result;
MemoryContext oldcontext;
/* stuff done only on the first call of the function */
if (SRF_IS_FIRSTCALL())
{
2004-08-29 07:07:03 +02:00
int64 start = PG_GETARG_INT64(0);
int64 finish = PG_GETARG_INT64(1);
int64 step = 1;
/* see if we were given an explicit step size */
if (PG_NARGS() == 3)
step = PG_GETARG_INT64(2);
if (step == 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("step size cannot equal zero")));
/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();
/*
2005-10-15 04:49:52 +02:00
* switch to memory context appropriate for multiple function calls
*/
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* allocate memory for user context */
fctx = (generate_series_fctx *) palloc(sizeof(generate_series_fctx));
/*
2004-08-29 07:07:03 +02:00
* Use fctx to keep state from call to call. Seed current with the
* original start value
*/
fctx->current = start;
fctx->finish = finish;
fctx->step = step;
funcctx->user_fctx = fctx;
MemoryContextSwitchTo(oldcontext);
}
/* stuff done on every call of the function */
funcctx = SRF_PERCALL_SETUP();
/*
2005-10-15 04:49:52 +02:00
* get the saved state and use current as the result for this iteration
*/
fctx = funcctx->user_fctx;
result = fctx->current;
if ((fctx->step > 0 && fctx->current <= fctx->finish) ||
(fctx->step < 0 && fctx->current >= fctx->finish))
{
/* increment current in preparation for next iteration */
fctx->current += fctx->step;
/* if next-value computation overflows, this is the final result */
if (SAMESIGN(result, fctx->step) && !SAMESIGN(result, fctx->current))
fctx->step = 0;
/* do when there is more left to send */
SRF_RETURN_NEXT(funcctx, Int64GetDatum(result));
}
else
/* do when there is no more left */
SRF_RETURN_DONE(funcctx);
}