postgresql/src/backend/libpq/pqcomm.c

1043 lines
26 KiB
C
Raw Normal View History

1998-09-10 06:07:59 +02:00
/*-------------------------------------------------------------------------
*
* pqcomm.c
* Communication functions between the Frontend and the Backend
*
* These routines handle the low-level details of communication between
* frontend and backend. They just shove data across the communication
* channel, and are ignorant of the semantics of the data --- or would be,
* except for major brain damage in the design of the old COPY OUT protocol.
* Unfortunately, COPY OUT was designed to commandeer the communication
* channel (it just transfers data without wrapping it into messages).
* No other messages can be sent while COPY OUT is in progress; and if the
* copy is aborted by an ereport(ERROR), we need to close out the copy so that
* the frontend gets back into sync. Therefore, these routines have to be
* aware of COPY OUT state. (New COPY-OUT is message-based and does *not*
* set the DoingCopyOut flag.)
*
* NOTE: generally, it's a bad idea to emit outgoing messages directly with
* pq_putbytes(), especially if the message would require multiple calls
* to send. Instead, use the routines in pqformat.c to construct the message
* in a buffer and then emit it in one call to pq_putmessage. This ensures
* that the channel will not be clogged by an incomplete message if execution
* is aborted by ereport(ERROR) partway through the message. The only
* non-libpq code that should call pq_putbytes directly is old-style COPY OUT.
*
* At one time, libpq was shared between frontend and backend, but now
* the backend's "backend/libpq" is quite separate from "interfaces/libpq".
* All that remains is similarities of names to trap the unwary...
*
2003-08-04 04:40:20 +02:00
* Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $PostgreSQL: pgsql/src/backend/libpq/pqcomm.c,v 1.168 2003/12/12 18:45:08 petere Exp $
*
*-------------------------------------------------------------------------
*/
/*------------------------
* INTERFACE ROUTINES
*
* setup/teardown:
* StreamServerPort - Open postmaster's server port
* StreamConnection - Create new connection with client
* StreamClose - Close a client/backend connection
* TouchSocketFile - Protect socket file against /tmp cleaners
* pq_init - initialize libpq at backend startup
* pq_close - shutdown libpq at backend exit
*
* low-level I/O:
* pq_getbytes - get a known number of bytes from connection
* pq_getstring - get a null terminated string from connection
* pq_getmessage - get a message with length word from connection
* pq_getbyte - get next byte from connection
* pq_peekbyte - peek at next byte from connection
* pq_putbytes - send bytes to connection (not flushed until pq_flush)
* pq_flush - flush pending output
*
* message-level I/O (and old-style-COPY-OUT cruft):
* pq_putmessage - send a normal message (suppressed in COPY OUT mode)
1999-05-25 18:15:34 +02:00
* pq_startcopyout - inform libpq that a COPY OUT transfer is beginning
* pq_endcopyout - end a COPY OUT transfer
*
*------------------------
*/
#include "postgres.h"
#include <signal.h>
1996-11-06 09:48:33 +01:00
#include <errno.h>
#include <fcntl.h>
#include <grp.h>
1999-07-16 05:14:30 +02:00
#include <unistd.h>
#include <sys/file.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <netdb.h>
#include <netinet/in.h>
#ifdef HAVE_NETINET_TCP_H
2001-03-22 05:01:46 +01:00
#include <netinet/tcp.h>
#endif
1996-11-06 09:48:33 +01:00
#include <arpa/inet.h>
#ifdef HAVE_UTIME_H
#include <utime.h>
#endif
1999-07-16 05:14:30 +02:00
#include "libpq/libpq.h"
#include "miscadmin.h"
#include "storage/ipc.h"
static void pq_close(int code, Datum arg);
#ifdef HAVE_UNIX_SOCKETS
static int Lock_AF_UNIX(unsigned short portNumber, char *unixSocketName);
static int Setup_AF_UNIX(void);
#endif /* HAVE_UNIX_SOCKETS */
/*
* Configuration options
*/
2001-03-22 05:01:46 +01:00
int Unix_socket_permissions;
char *Unix_socket_group;
/*
* Buffers for low-level I/O
*/
#define PQ_BUFFER_SIZE 8192
static unsigned char PqSendBuffer[PQ_BUFFER_SIZE];
1999-05-25 18:15:34 +02:00
static int PqSendPointer; /* Next index to store a byte in
* PqSendBuffer */
static unsigned char PqRecvBuffer[PQ_BUFFER_SIZE];
1999-05-25 18:15:34 +02:00
static int PqRecvPointer; /* Next index to read a byte from
* PqRecvBuffer */
static int PqRecvLength; /* End of data available in PqRecvBuffer */
/*
* Message status
*/
static bool DoingCopyOut;
/* --------------------------------
* pq_init - initialize libpq at backend startup
* --------------------------------
*/
void
pq_init(void)
{
PqSendPointer = PqRecvPointer = PqRecvLength = 0;
DoingCopyOut = false;
on_proc_exit(pq_close, 0);
}
/* --------------------------------
* pq_close - shutdown libpq at backend exit
*
* Note: in a standalone backend MyProcPort will be null,
* don't crash during exit...
* --------------------------------
*/
static void
pq_close(int code, Datum arg)
{
if (MyProcPort != NULL)
{
/* Cleanly shut down SSL layer */
UPDATED PATCH: Attached are a revised set of SSL patches. Many of these patches are motivated by security concerns, it's not just bug fixes. The key differences (from stock 7.2.1) are: *) almost all code that directly uses the OpenSSL library is in two new files, src/interfaces/libpq/fe-ssl.c src/backend/postmaster/be-ssl.c in the long run, it would be nice to merge these two files. *) the legacy code to read and write network data have been encapsulated into read_SSL() and write_SSL(). These functions should probably be renamed - they handle both SSL and non-SSL cases. the remaining code should eliminate the problems identified earlier, albeit not very cleanly. *) both front- and back-ends will send a SSL shutdown via the new close_SSL() function. This is necessary for sessions to work properly. (Sessions are not yet fully supported, but by cleanly closing the SSL connection instead of just sending a TCP FIN packet other SSL tools will be much happier.) *) The client certificate and key are now expected in a subdirectory of the user's home directory. Specifically, - the directory .postgresql must be owned by the user, and allow no access by 'group' or 'other.' - the file .postgresql/postgresql.crt must be a regular file owned by the user. - the file .postgresql/postgresql.key must be a regular file owned by the user, and allow no access by 'group' or 'other'. At the current time encrypted private keys are not supported. There should also be a way to support multiple client certs/keys. *) the front-end performs minimal validation of the back-end cert. Self-signed certs are permitted, but the common name *must* match the hostname used by the front-end. (The cert itself should always use a fully qualified domain name (FDQN) in its common name field.) This means that psql -h eris db will fail, but psql -h eris.example.com db will succeed. At the current time this must be an exact match; future patches may support any FQDN that resolves to the address returned by getpeername(2). Another common "problem" is expiring certs. For now, it may be a good idea to use a very-long-lived self-signed cert. As a compile-time option, the front-end can specify a file containing valid root certificates, but it is not yet required. *) the back-end performs minimal validation of the client cert. It allows self-signed certs. It checks for expiration. It supports a compile-time option specifying a file containing valid root certificates. *) both front- and back-ends default to TLSv1, not SSLv3/SSLv2. *) both front- and back-ends support DSA keys. DSA keys are moderately more expensive on startup, but many people consider them preferable than RSA keys. (E.g., SSH2 prefers DSA keys.) *) if /dev/urandom exists, both client and server will read 16k of randomization data from it. *) the server can read empheral DH parameters from the files $DataDir/dh512.pem $DataDir/dh1024.pem $DataDir/dh2048.pem $DataDir/dh4096.pem if none are provided, the server will default to hardcoded parameter files provided by the OpenSSL project. Remaining tasks: *) the select() clauses need to be revisited - the SSL abstraction layer may need to absorb more of the current code to avoid rare deadlock conditions. This also touches on a true solution to the pg_eof() problem. *) the SIGPIPE signal handler may need to be revisited. *) support encrypted private keys. *) sessions are not yet fully supported. (SSL sessions can span multiple "connections," and allow the client and server to avoid costly renegotiations.) *) makecert - a script that creates back-end certs. *) pgkeygen - a tool that creates front-end certs. *) the whole protocol issue, SASL, etc. *) certs are fully validated - valid root certs must be available. This is a hassle, but it means that you *can* trust the identity of the server. *) the client library can handle hardcoded root certificates, to avoid the need to copy these files. *) host name of server cert must resolve to IP address, or be a recognized alias. This is more liberal than the previous iteration. *) the number of bytes transferred is tracked, and the session key is periodically renegotiated. *) basic cert generation scripts (mkcert.sh, pgkeygen.sh). The configuration files have reasonable defaults for each type of use. Bear Giles
2002-06-14 06:23:17 +02:00
secure_close(MyProcPort);
2003-08-04 02:43:34 +02:00
/*
* Formerly we did an explicit close() here, but it seems better
* to leave the socket open until the process dies. This allows
* clients to perform a "synchronous close" if they care --- wait
* till the transport layer reports connection closure, and you
* can be sure the backend has exited.
*
* We do set sock to -1 to prevent any further I/O, though.
*/
MyProcPort->sock = -1;
}
}
/*
* Streams -- wrapper around Unix socket system calls
*
*
* Stream functions are used for vanilla TCP connection protocol.
*/
static char sock_path[MAXPGPATH];
/* StreamDoUnlink()
* Shutdown routine for backend connection
* If a Unix socket is used for communication, explicitly close it.
*/
#ifdef HAVE_UNIX_SOCKETS
static void
StreamDoUnlink(int code, Datum arg)
{
Assert(sock_path[0]);
unlink(sock_path);
}
#endif /* HAVE_UNIX_SOCKETS */
/*
* StreamServerPort -- open a "listening" port to accept connections.
*
* Successfully opened sockets are added to the ListenSocket[] array,
* at the first position that isn't -1.
*
* RETURNS: STATUS_OK or STATUS_ERROR
*/
int
2000-11-14 02:15:06 +01:00
StreamServerPort(int family, char *hostName, unsigned short portNumber,
char *unixSocketName,
int ListenSocket[], int MaxListen)
{
int fd,
err;
int maxconn;
int one = 1;
int ret;
char portNumberStr[32];
const char *familyDesc;
char familyDescBuf[64];
2003-08-04 02:43:34 +02:00
char *service;
struct addrinfo *addrs = NULL,
*addr;
struct addrinfo hint;
int listen_index = 0;
int added = 0;
/* Initialize hint structure */
MemSet(&hint, 0, sizeof(hint));
hint.ai_family = family;
hint.ai_flags = AI_PASSIVE;
hint.ai_socktype = SOCK_STREAM;
#ifdef HAVE_UNIX_SOCKETS
if (family == AF_UNIX)
{
/* Lock_AF_UNIX will also fill in sock_path. */
if (Lock_AF_UNIX(portNumber, unixSocketName) != STATUS_OK)
return STATUS_ERROR;
service = sock_path;
}
else
#endif /* HAVE_UNIX_SOCKETS */
{
snprintf(portNumberStr, sizeof(portNumberStr), "%d", portNumber);
service = portNumberStr;
}
ret = getaddrinfo_all(hostName, service, &hint, &addrs);
if (ret || !addrs)
{
if (hostName)
ereport(LOG,
(errmsg("could not translate host name \"%s\", service \"%s\" to address: %s",
hostName, service, gai_strerror(ret))));
else
ereport(LOG,
2003-08-04 02:43:34 +02:00
(errmsg("could not translate service \"%s\" to address: %s",
service, gai_strerror(ret))));
freeaddrinfo_all(hint.ai_family, addrs);
return STATUS_ERROR;
}
for (addr = addrs; addr; addr = addr->ai_next)
{
if (!IS_AF_UNIX(family) && IS_AF_UNIX(addr->ai_family))
{
2003-08-04 02:43:34 +02:00
/*
* Only set up a unix domain socket when they really asked for
* it. The service/port is different in that case.
*/
continue;
}
/* See if there is still room to add 1 more socket. */
for (; listen_index < MaxListen; listen_index++)
{
if (ListenSocket[listen_index] == -1)
break;
}
if (listen_index >= MaxListen)
{
/* Nothing found. */
break;
}
/* set up family name for possible error messages */
switch (addr->ai_family)
{
case AF_INET:
familyDesc = gettext("IPv4");
break;
#ifdef HAVE_IPV6
case AF_INET6:
familyDesc = gettext("IPv6");
break;
#endif
#ifdef HAVE_UNIX_SOCKETS
case AF_UNIX:
familyDesc = gettext("Unix");
break;
#endif
default:
snprintf(familyDescBuf, sizeof(familyDescBuf),
gettext("unrecognized address family %d"),
addr->ai_family);
familyDesc = familyDescBuf;
break;
}
if ((fd = socket(addr->ai_family, SOCK_STREAM, 0)) < 0)
{
ereport(LOG,
(errcode_for_socket_access(),
/* translator: %s is IPv4, IPv6, or Unix */
errmsg("could not create %s socket: %m",
familyDesc)));
continue;
}
if (!IS_AF_UNIX(addr->ai_family))
{
if ((setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
2003-08-04 02:43:34 +02:00
(char *) &one, sizeof(one))) == -1)
{
ereport(LOG,
(errcode_for_socket_access(),
errmsg("setsockopt(SO_REUSEADDR) failed: %m")));
closesocket(fd);
continue;
}
}
#ifdef IPV6_V6ONLY
if (addr->ai_family == AF_INET6)
{
if (setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY,
2003-08-04 02:43:34 +02:00
(char *) &one, sizeof(one)) == -1)
{
ereport(LOG,
(errcode_for_socket_access(),
errmsg("setsockopt(IPV6_V6ONLY) failed: %m")));
closesocket(fd);
continue;
}
}
#endif
/*
2003-08-04 02:43:34 +02:00
* Note: This might fail on some OS's, like Linux older than
* 2.4.21-pre3, that don't have the IPV6_V6ONLY socket option, and
* map ipv4 addresses to ipv6. It will show ::ffff:ipv4 for all
* ipv4 connections.
*/
err = bind(fd, addr->ai_addr, addr->ai_addrlen);
if (err < 0)
{
ereport(LOG,
(errcode_for_socket_access(),
/* translator: %s is IPv4, IPv6, or Unix */
errmsg("could not bind %s socket: %m",
familyDesc),
(IS_AF_UNIX(addr->ai_family)) ?
2003-08-04 02:43:34 +02:00
errhint("Is another postmaster already running on port %d?"
" If not, remove socket file \"%s\" and retry.",
2003-08-04 02:43:34 +02:00
(int) portNumber, sock_path) :
errhint("Is another postmaster already running on port %d?"
" If not, wait a few seconds and retry.",
(int) portNumber)));
closesocket(fd);
continue;
}
#ifdef HAVE_UNIX_SOCKETS
if (addr->ai_family == AF_UNIX)
{
if (Setup_AF_UNIX() != STATUS_OK)
{
closesocket(fd);
break;
}
}
#endif
/*
2003-08-04 02:43:34 +02:00
* Select appropriate accept-queue length limit. PG_SOMAXCONN is
* only intended to provide a clamp on the request on platforms
* where an overly large request provokes a kernel error (are
* there any?).
*/
maxconn = MaxBackends * 2;
if (maxconn > PG_SOMAXCONN)
maxconn = PG_SOMAXCONN;
err = listen(fd, maxconn);
if (err < 0)
{
ereport(LOG,
(errcode_for_socket_access(),
/* translator: %s is IPv4, IPv6, or Unix */
errmsg("could not listen on %s socket: %m",
familyDesc)));
closesocket(fd);
continue;
}
ListenSocket[listen_index] = fd;
added++;
}
freeaddrinfo_all(hint.ai_family, addrs);
if (!added)
return STATUS_ERROR;
return STATUS_OK;
}
#ifdef HAVE_UNIX_SOCKETS
/*
* Lock_AF_UNIX -- configure unix socket file path
*/
static int
Lock_AF_UNIX(unsigned short portNumber, char *unixSocketName)
{
UNIXSOCK_PATH(sock_path, portNumber, unixSocketName);
/*
* Grab an interlock file associated with the socket file.
*/
CreateSocketLockFile(sock_path, true);
/*
* Once we have the interlock, we can safely delete any pre-existing
* socket file to avoid failure at bind() time.
*/
unlink(sock_path);
return STATUS_OK;
}
/*
* Setup_AF_UNIX -- configure unix socket permissions
*/
static int
Setup_AF_UNIX(void)
{
/* Arrange to unlink the socket file at exit */
on_proc_exit(StreamDoUnlink, 0);
/*
* Fix socket ownership/permission if requested. Note we must do this
* before we listen() to avoid a window where unwanted connections
* could get accepted.
*/
Assert(Unix_socket_group);
if (Unix_socket_group[0] != '\0')
{
#ifdef WIN32
elog(WARNING, "configuration item unix_socket_group is not supported on this platform");
#else
char *endptr;
unsigned long int val;
gid_t gid;
val = strtoul(Unix_socket_group, &endptr, 10);
if (*endptr == '\0')
{ /* numeric group id */
gid = val;
}
else
{ /* convert group name to id */
struct group *gr;
gr = getgrnam(Unix_socket_group);
if (!gr)
{
ereport(LOG,
(errmsg("group \"%s\" does not exist",
Unix_socket_group)));
return STATUS_ERROR;
}
gid = gr->gr_gid;
}
if (chown(sock_path, -1, gid) == -1)
{
ereport(LOG,
(errcode_for_file_access(),
errmsg("could not set group of file \"%s\": %m",
sock_path)));
return STATUS_ERROR;
}
#endif
}
if (chmod(sock_path, Unix_socket_permissions) == -1)
{
ereport(LOG,
(errcode_for_file_access(),
errmsg("could not set permissions of file \"%s\": %m",
sock_path)));
return STATUS_ERROR;
}
return STATUS_OK;
}
#endif /* HAVE_UNIX_SOCKETS */
/*
* StreamConnection -- create a new connection with client using
* server port.
*
* ASSUME: that this doesn't need to be non-blocking because
* the Postmaster uses select() to tell when the server master
* socket is ready for accept().
*
* RETURNS: STATUS_OK or STATUS_ERROR
*/
int
StreamConnection(int server_fd, Port *port)
{
/* accept connection and fill in the client (remote) address */
port->raddr.salen = sizeof(port->raddr.addr);
if ((port->sock = accept(server_fd,
2003-08-04 02:43:34 +02:00
(struct sockaddr *) & port->raddr.addr,
&port->raddr.salen)) < 0)
{
ereport(LOG,
(errcode_for_socket_access(),
errmsg("could not accept new connection: %m")));
1998-09-01 05:29:17 +02:00
return STATUS_ERROR;
}
1997-11-10 06:16:00 +01:00
#ifdef SCO_ACCEPT_BUG
2003-08-04 02:43:34 +02:00
/*
2001-03-22 05:01:46 +01:00
* UnixWare 7+ and OpenServer 5.0.4 are known to have this bug, but it
* shouldn't hurt to catch it for all versions of those platforms.
*/
if (port->raddr.addr.ss_family == 0)
port->raddr.addr.ss_family = AF_UNIX;
#endif
/* fill in the server (local) address */
port->laddr.salen = sizeof(port->laddr.addr);
if (getsockname(port->sock,
(struct sockaddr *) & port->laddr.addr,
&port->laddr.salen) < 0)
{
elog(LOG, "getsockname() failed: %m");
1998-09-01 05:29:17 +02:00
return STATUS_ERROR;
}
/* select NODELAY and KEEPALIVE options if it's a TCP connection */
if (!IS_AF_UNIX(port->laddr.addr.ss_family))
{
int on;
#ifdef TCP_NODELAY
on = 1;
if (setsockopt(port->sock, IPPROTO_TCP, TCP_NODELAY,
(char *) &on, sizeof(on)) < 0)
{
elog(LOG, "setsockopt(TCP_NODELAY) failed: %m");
return STATUS_ERROR;
}
#endif
on = 1;
if (setsockopt(port->sock, SOL_SOCKET, SO_KEEPALIVE,
(char *) &on, sizeof(on)) < 0)
{
elog(LOG, "setsockopt(SO_KEEPALIVE) failed: %m");
1998-09-01 05:29:17 +02:00
return STATUS_ERROR;
}
}
1998-09-01 05:29:17 +02:00
return STATUS_OK;
}
/*
* StreamClose -- close a client/backend connection
*
* NOTE: this is NOT used to terminate a session; it is just used to release
* the file descriptor in a process that should no longer have the socket
* open. (For example, the postmaster calls this after passing ownership
* of the connection to a child process.) It is expected that someone else
* still has the socket open. So, we only want to close the descriptor,
* we do NOT want to send anything to the far end.
*/
void
StreamClose(int sock)
{
closesocket(sock);
}
/*
* TouchSocketFile -- mark socket file as recently accessed
*
* This routine should be called every so often to ensure that the socket
* file has a recent mod date (ordinary operations on sockets usually won't
* change the mod date). That saves it from being removed by
* overenthusiastic /tmp-directory-cleaner daemons. (Another reason we should
* never have put the socket file in /tmp...)
*/
void
TouchSocketFile(void)
{
/* Do nothing if we did not create a socket... */
if (sock_path[0] != '\0')
{
/*
2003-08-04 02:43:34 +02:00
* utime() is POSIX standard, utimes() is a common alternative. If
* we have neither, there's no way to affect the mod or access
* time of the socket :-(
*
* In either path, we ignore errors; there's no point in complaining.
*/
#ifdef HAVE_UTIME
utime(sock_path, NULL);
2003-08-04 02:43:34 +02:00
#else /* !HAVE_UTIME */
#ifdef HAVE_UTIMES
utimes(sock_path, NULL);
2003-08-04 02:43:34 +02:00
#endif /* HAVE_UTIMES */
#endif /* HAVE_UTIME */
}
}
/* --------------------------------
* Low-level I/O routines begin here.
*
* These routines communicate with a frontend client across a connection
* already established by the preceding routines.
* --------------------------------
*/
/* --------------------------------
* pq_recvbuf - load some bytes into the input buffer
*
* returns 0 if OK, EOF if trouble
* --------------------------------
*/
static int
pq_recvbuf(void)
{
if (PqRecvPointer > 0)
{
if (PqRecvLength > PqRecvPointer)
{
/* still some unread data, left-justify it in the buffer */
1999-05-25 18:15:34 +02:00
memmove(PqRecvBuffer, PqRecvBuffer + PqRecvPointer,
PqRecvLength - PqRecvPointer);
PqRecvLength -= PqRecvPointer;
PqRecvPointer = 0;
}
else
PqRecvLength = PqRecvPointer = 0;
}
/* Can fill buffer from PqRecvLength and upwards */
for (;;)
{
int r;
UPDATED PATCH: Attached are a revised set of SSL patches. Many of these patches are motivated by security concerns, it's not just bug fixes. The key differences (from stock 7.2.1) are: *) almost all code that directly uses the OpenSSL library is in two new files, src/interfaces/libpq/fe-ssl.c src/backend/postmaster/be-ssl.c in the long run, it would be nice to merge these two files. *) the legacy code to read and write network data have been encapsulated into read_SSL() and write_SSL(). These functions should probably be renamed - they handle both SSL and non-SSL cases. the remaining code should eliminate the problems identified earlier, albeit not very cleanly. *) both front- and back-ends will send a SSL shutdown via the new close_SSL() function. This is necessary for sessions to work properly. (Sessions are not yet fully supported, but by cleanly closing the SSL connection instead of just sending a TCP FIN packet other SSL tools will be much happier.) *) The client certificate and key are now expected in a subdirectory of the user's home directory. Specifically, - the directory .postgresql must be owned by the user, and allow no access by 'group' or 'other.' - the file .postgresql/postgresql.crt must be a regular file owned by the user. - the file .postgresql/postgresql.key must be a regular file owned by the user, and allow no access by 'group' or 'other'. At the current time encrypted private keys are not supported. There should also be a way to support multiple client certs/keys. *) the front-end performs minimal validation of the back-end cert. Self-signed certs are permitted, but the common name *must* match the hostname used by the front-end. (The cert itself should always use a fully qualified domain name (FDQN) in its common name field.) This means that psql -h eris db will fail, but psql -h eris.example.com db will succeed. At the current time this must be an exact match; future patches may support any FQDN that resolves to the address returned by getpeername(2). Another common "problem" is expiring certs. For now, it may be a good idea to use a very-long-lived self-signed cert. As a compile-time option, the front-end can specify a file containing valid root certificates, but it is not yet required. *) the back-end performs minimal validation of the client cert. It allows self-signed certs. It checks for expiration. It supports a compile-time option specifying a file containing valid root certificates. *) both front- and back-ends default to TLSv1, not SSLv3/SSLv2. *) both front- and back-ends support DSA keys. DSA keys are moderately more expensive on startup, but many people consider them preferable than RSA keys. (E.g., SSH2 prefers DSA keys.) *) if /dev/urandom exists, both client and server will read 16k of randomization data from it. *) the server can read empheral DH parameters from the files $DataDir/dh512.pem $DataDir/dh1024.pem $DataDir/dh2048.pem $DataDir/dh4096.pem if none are provided, the server will default to hardcoded parameter files provided by the OpenSSL project. Remaining tasks: *) the select() clauses need to be revisited - the SSL abstraction layer may need to absorb more of the current code to avoid rare deadlock conditions. This also touches on a true solution to the pg_eof() problem. *) the SIGPIPE signal handler may need to be revisited. *) support encrypted private keys. *) sessions are not yet fully supported. (SSL sessions can span multiple "connections," and allow the client and server to avoid costly renegotiations.) *) makecert - a script that creates back-end certs. *) pgkeygen - a tool that creates front-end certs. *) the whole protocol issue, SASL, etc. *) certs are fully validated - valid root certs must be available. This is a hassle, but it means that you *can* trust the identity of the server. *) the client library can handle hardcoded root certificates, to avoid the need to copy these files. *) host name of server cert must resolve to IP address, or be a recognized alias. This is more liberal than the previous iteration. *) the number of bytes transferred is tracked, and the session key is periodically renegotiated. *) basic cert generation scripts (mkcert.sh, pgkeygen.sh). The configuration files have reasonable defaults for each type of use. Bear Giles
2002-06-14 06:23:17 +02:00
r = secure_read(MyProcPort, PqRecvBuffer + PqRecvLength,
PQ_BUFFER_SIZE - PqRecvLength);
1999-05-25 18:15:34 +02:00
if (r < 0)
{
if (errno == EINTR)
continue; /* Ok if interrupted */
1999-05-25 18:15:34 +02:00
/*
2003-08-04 02:43:34 +02:00
* Careful: an ereport() that tries to write to the client
* would cause recursion to here, leading to stack overflow
* and core dump! This message must go *only* to the
* postmaster log.
*/
ereport(COMMERROR,
(errcode_for_socket_access(),
errmsg("could not receive data from client: %m")));
return EOF;
}
if (r == 0)
{
/*
2003-08-04 02:43:34 +02:00
* EOF detected. We used to write a log message here, but
* it's better to expect the ultimate caller to do that.
*/
return EOF;
}
/* r contains number of bytes read, so just incr length */
PqRecvLength += r;
return 0;
}
}
/* --------------------------------
* pq_getbyte - get a single byte from connection, or return EOF
* --------------------------------
*/
int
pq_getbyte(void)
{
while (PqRecvPointer >= PqRecvLength)
{
if (pq_recvbuf()) /* If nothing in buffer, then recv some */
return EOF; /* Failed to recv data */
}
return PqRecvBuffer[PqRecvPointer++];
}
1998-09-10 06:07:59 +02:00
/* --------------------------------
* pq_peekbyte - peek at next byte from connection
*
* Same as pq_getbyte() except we don't advance the pointer.
* --------------------------------
*/
int
pq_peekbyte(void)
{
while (PqRecvPointer >= PqRecvLength)
{
if (pq_recvbuf()) /* If nothing in buffer, then recv some */
return EOF; /* Failed to recv data */
}
return PqRecvBuffer[PqRecvPointer];
}
1998-09-10 06:07:59 +02:00
/* --------------------------------
* pq_getbytes - get a known number of bytes from connection
*
* returns 0 if OK, EOF if trouble
* --------------------------------
*/
int
pq_getbytes(char *s, size_t len)
{
1999-05-25 18:15:34 +02:00
size_t amount;
while (len > 0)
{
while (PqRecvPointer >= PqRecvLength)
{
if (pq_recvbuf()) /* If nothing in buffer, then recv some */
return EOF; /* Failed to recv data */
}
amount = PqRecvLength - PqRecvPointer;
if (amount > len)
amount = len;
memcpy(s, PqRecvBuffer + PqRecvPointer, amount);
PqRecvPointer += amount;
s += amount;
len -= amount;
}
return 0;
}
/* --------------------------------
* pq_getstring - get a null terminated string from connection
*
* The return value is placed in an expansible StringInfo, which has
* already been initialized by the caller.
*
* This is used only for dealing with old-protocol clients. The idea
* is to produce a StringInfo that looks the same as we would get from
* pq_getmessage() with a newer client; we will then process it with
* pq_getmsgstring. Therefore, no character set conversion is done here,
* even though this is presumably useful only for text.
*
* returns 0 if OK, EOF if trouble
* --------------------------------
*/
int
pq_getstring(StringInfo s)
{
int i;
/* Reset string to empty */
s->len = 0;
s->data[0] = '\0';
s->cursor = 0;
/* Read until we get the terminating '\0' */
2002-09-04 22:31:48 +02:00
for (;;)
{
while (PqRecvPointer >= PqRecvLength)
{
2002-09-04 22:31:48 +02:00
if (pq_recvbuf()) /* If nothing in buffer, then recv some */
return EOF; /* Failed to recv data */
}
for (i = PqRecvPointer; i < PqRecvLength; i++)
2002-04-21 03:03:33 +02:00
{
if (PqRecvBuffer[i] == '\0')
{
/* include the '\0' in the copy */
appendBinaryStringInfo(s, PqRecvBuffer + PqRecvPointer,
i - PqRecvPointer + 1);
2002-09-04 22:31:48 +02:00
PqRecvPointer = i + 1; /* advance past \0 */
return 0;
}
2002-04-21 03:03:33 +02:00
}
/* If we're here we haven't got the \0 in the buffer yet. */
appendBinaryStringInfo(s, PqRecvBuffer + PqRecvPointer,
PqRecvLength - PqRecvPointer);
PqRecvPointer = PqRecvLength;
}
}
/* --------------------------------
* pq_getmessage - get a message with length word from connection
*
* The return value is placed in an expansible StringInfo, which has
* already been initialized by the caller.
* Only the message body is placed in the StringInfo; the length word
* is removed. Also, s->cursor is initialized to zero for convenience
* in scanning the message contents.
*
* If maxlen is not zero, it is an upper limit on the length of the
* message we are willing to accept. We abort the connection (by
* returning EOF) if client tries to send more than that.
*
* returns 0 if OK, EOF if trouble
* --------------------------------
*/
int
pq_getmessage(StringInfo s, int maxlen)
{
int32 len;
/* Reset message buffer to empty */
s->len = 0;
s->data[0] = '\0';
s->cursor = 0;
/* Read message length word */
if (pq_getbytes((char *) &len, 4) == EOF)
{
ereport(COMMERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("unexpected EOF within message length word")));
return EOF;
}
len = ntohl(len);
len -= 4; /* discount length itself */
if (len < 0 ||
(maxlen > 0 && len > maxlen))
{
ereport(COMMERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("invalid message length")));
return EOF;
}
if (len > 0)
{
/* Allocate space for message */
enlargeStringInfo(s, len);
/* And grab the message */
if (pq_getbytes(s->data, len) == EOF)
{
ereport(COMMERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("incomplete message from client")));
return EOF;
}
s->len = len;
/* Place a trailing null per StringInfo convention */
s->data[len] = '\0';
}
return 0;
}
/* --------------------------------
* pq_putbytes - send bytes to connection (not flushed until pq_flush)
*
* returns 0 if OK, EOF if trouble
* --------------------------------
*/
int
pq_putbytes(const char *s, size_t len)
{
1999-05-25 18:15:34 +02:00
size_t amount;
while (len > 0)
{
if (PqSendPointer >= PQ_BUFFER_SIZE)
if (pq_flush()) /* If buffer is full, then flush it out */
return EOF;
amount = PQ_BUFFER_SIZE - PqSendPointer;
if (amount > len)
amount = len;
memcpy(PqSendBuffer + PqSendPointer, s, amount);
PqSendPointer += amount;
s += amount;
len -= amount;
}
return 0;
}
/* --------------------------------
* pq_flush - flush pending output
*
* returns 0 if OK, EOF if trouble
* --------------------------------
*/
int
pq_flush(void)
{
2002-09-04 22:31:48 +02:00
static int last_reported_send_errno = 0;
unsigned char *bufptr = PqSendBuffer;
unsigned char *bufend = PqSendBuffer + PqSendPointer;
while (bufptr < bufend)
{
int r;
UPDATED PATCH: Attached are a revised set of SSL patches. Many of these patches are motivated by security concerns, it's not just bug fixes. The key differences (from stock 7.2.1) are: *) almost all code that directly uses the OpenSSL library is in two new files, src/interfaces/libpq/fe-ssl.c src/backend/postmaster/be-ssl.c in the long run, it would be nice to merge these two files. *) the legacy code to read and write network data have been encapsulated into read_SSL() and write_SSL(). These functions should probably be renamed - they handle both SSL and non-SSL cases. the remaining code should eliminate the problems identified earlier, albeit not very cleanly. *) both front- and back-ends will send a SSL shutdown via the new close_SSL() function. This is necessary for sessions to work properly. (Sessions are not yet fully supported, but by cleanly closing the SSL connection instead of just sending a TCP FIN packet other SSL tools will be much happier.) *) The client certificate and key are now expected in a subdirectory of the user's home directory. Specifically, - the directory .postgresql must be owned by the user, and allow no access by 'group' or 'other.' - the file .postgresql/postgresql.crt must be a regular file owned by the user. - the file .postgresql/postgresql.key must be a regular file owned by the user, and allow no access by 'group' or 'other'. At the current time encrypted private keys are not supported. There should also be a way to support multiple client certs/keys. *) the front-end performs minimal validation of the back-end cert. Self-signed certs are permitted, but the common name *must* match the hostname used by the front-end. (The cert itself should always use a fully qualified domain name (FDQN) in its common name field.) This means that psql -h eris db will fail, but psql -h eris.example.com db will succeed. At the current time this must be an exact match; future patches may support any FQDN that resolves to the address returned by getpeername(2). Another common "problem" is expiring certs. For now, it may be a good idea to use a very-long-lived self-signed cert. As a compile-time option, the front-end can specify a file containing valid root certificates, but it is not yet required. *) the back-end performs minimal validation of the client cert. It allows self-signed certs. It checks for expiration. It supports a compile-time option specifying a file containing valid root certificates. *) both front- and back-ends default to TLSv1, not SSLv3/SSLv2. *) both front- and back-ends support DSA keys. DSA keys are moderately more expensive on startup, but many people consider them preferable than RSA keys. (E.g., SSH2 prefers DSA keys.) *) if /dev/urandom exists, both client and server will read 16k of randomization data from it. *) the server can read empheral DH parameters from the files $DataDir/dh512.pem $DataDir/dh1024.pem $DataDir/dh2048.pem $DataDir/dh4096.pem if none are provided, the server will default to hardcoded parameter files provided by the OpenSSL project. Remaining tasks: *) the select() clauses need to be revisited - the SSL abstraction layer may need to absorb more of the current code to avoid rare deadlock conditions. This also touches on a true solution to the pg_eof() problem. *) the SIGPIPE signal handler may need to be revisited. *) support encrypted private keys. *) sessions are not yet fully supported. (SSL sessions can span multiple "connections," and allow the client and server to avoid costly renegotiations.) *) makecert - a script that creates back-end certs. *) pgkeygen - a tool that creates front-end certs. *) the whole protocol issue, SASL, etc. *) certs are fully validated - valid root certs must be available. This is a hassle, but it means that you *can* trust the identity of the server. *) the client library can handle hardcoded root certificates, to avoid the need to copy these files. *) host name of server cert must resolve to IP address, or be a recognized alias. This is more liberal than the previous iteration. *) the number of bytes transferred is tracked, and the session key is periodically renegotiated. *) basic cert generation scripts (mkcert.sh, pgkeygen.sh). The configuration files have reasonable defaults for each type of use. Bear Giles
2002-06-14 06:23:17 +02:00
r = secure_write(MyProcPort, bufptr, bufend - bufptr);
if (r <= 0)
{
if (errno == EINTR)
continue; /* Ok if we were interrupted */
1999-05-25 18:15:34 +02:00
/*
2003-08-04 02:43:34 +02:00
* Careful: an ereport() that tries to write to the client
* would cause recursion to here, leading to stack overflow
* and core dump! This message must go *only* to the
* postmaster log.
*
2002-09-04 22:31:48 +02:00
* If a client disconnects while we're in the midst of output, we
* might write quite a bit of data before we get to a safe
* query abort point. So, suppress duplicate log messages.
*/
if (errno != last_reported_send_errno)
{
last_reported_send_errno = errno;
ereport(COMMERROR,
(errcode_for_socket_access(),
errmsg("could not send data to client: %m")));
}
1999-05-25 18:15:34 +02:00
/*
* We drop the buffered data anyway so that processing can
* continue, even though we'll probably quit soon.
*/
PqSendPointer = 0;
return EOF;
}
2002-09-04 22:31:48 +02:00
last_reported_send_errno = 0; /* reset after any successful send */
bufptr += r;
}
PqSendPointer = 0;
return 0;
}
/* --------------------------------
* Message-level I/O routines begin here.
*
* These routines understand about the old-style COPY OUT protocol.
* --------------------------------
*/
/* --------------------------------
* pq_putmessage - send a normal message (suppressed in COPY OUT mode)
*
* If msgtype is not '\0', it is a message type code to place before
* the message body. If msgtype is '\0', then the message has no type
* code (this is only valid in pre-3.0 protocols).
*
* len is the length of the message body data at *s. In protocol 3.0
* and later, a message length word (equal to len+4 because it counts
* itself too) is inserted by this routine.
*
* All normal messages are suppressed while old-style COPY OUT is in
* progress. (In practice only a few notice messages might get emitted
* then; dropping them is annoying, but at least they will still appear
* in the postmaster log.)
*
* returns 0 if OK, EOF if trouble
* --------------------------------
*/
int
pq_putmessage(char msgtype, const char *s, size_t len)
{
if (DoingCopyOut)
return 0;
if (msgtype)
if (pq_putbytes(&msgtype, 1))
return EOF;
if (PG_PROTOCOL_MAJOR(FrontendProtocol) >= 3)
{
uint32 n32;
n32 = htonl((uint32) (len + 4));
if (pq_putbytes((char *) &n32, 4))
return EOF;
}
return pq_putbytes(s, len);
}
/* --------------------------------
* pq_startcopyout - inform libpq that an old-style COPY OUT transfer
* is beginning
* --------------------------------
*/
void
pq_startcopyout(void)
{
DoingCopyOut = true;
}
/* --------------------------------
* pq_endcopyout - end an old-style COPY OUT transfer
*
* If errorAbort is indicated, we are aborting a COPY OUT due to an error,
* and must send a terminator line. Since a partial data line might have
* been emitted, send a couple of newlines first (the first one could
* get absorbed by a backslash...) Note that old-style COPY OUT does
* not allow binary transfers, so a textual terminator is always correct.
* --------------------------------
*/
void
pq_endcopyout(bool errorAbort)
{
1999-05-25 18:15:34 +02:00
if (!DoingCopyOut)
return;
DoingCopyOut = false;
if (errorAbort)
pq_putbytes("\n\n\\.\n", 5);
/* in non-error case, copy.c will have emitted the terminator line */
}