postgresql/src/backend/utils/sort/logtape.c

863 lines
25 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* logtape.c
* Management of "logical tapes" within temporary files.
*
* This module exists to support sorting via multiple merge passes (see
* tuplesort.c). Merging is an ideal algorithm for tape devices, but if
* we implement it on disk by creating a separate file for each "tape",
* there is an annoying problem: the peak space usage is at least twice
* the volume of actual data to be sorted. (This must be so because each
* datum will appear in both the input and output tapes of the final
* merge pass. For seven-tape polyphase merge, which is otherwise a
* pretty good algorithm, peak usage is more like 4x actual data volume.)
*
* We can work around this problem by recognizing that any one tape
* dataset (with the possible exception of the final output) is written
* and read exactly once in a perfectly sequential manner. Therefore,
* a datum once read will not be required again, and we can recycle its
* space for use by the new tape dataset(s) being generated. In this way,
* the total space usage is essentially just the actual data volume, plus
* insignificant bookkeeping and start/stop overhead.
*
* Few OSes allow arbitrary parts of a file to be released back to the OS,
* so we have to implement this space-recycling ourselves within a single
* logical file. logtape.c exists to perform this bookkeeping and provide
* the illusion of N independent tape devices to tuplesort.c. Note that
* logtape.c itself depends on buffile.c to provide a "logical file" of
* larger size than the underlying OS may support.
*
* For simplicity, we allocate and release space in the underlying file
* in BLCKSZ-size blocks. Space allocation boils down to keeping track
* of which blocks in the underlying file belong to which logical tape,
* plus any blocks that are free (recycled and not yet reused).
* The blocks in each logical tape form a chain, with a prev- and next-
* pointer in each block.
*
* The initial write pass is guaranteed to fill the underlying file
* perfectly sequentially, no matter how data is divided into logical tapes.
* Once we begin merge passes, the access pattern becomes considerably
* less predictable --- but the seeking involved should be comparable to
* what would happen if we kept each logical tape in a separate file,
* so there's no serious performance penalty paid to obtain the space
* savings of recycling. We try to localize the write accesses by always
* writing to the lowest-numbered free block when we have a choice; it's
* not clear this helps much, but it can't hurt. (XXX perhaps a LIFO
* policy for free blocks would be better?)
*
* To further make the I/Os more sequential, we can use a larger buffer
* when reading, and read multiple blocks from the same tape in one go,
* whenever the buffer becomes empty. LogicalTapeAssignReadBufferSize()
* can be used to set the size of the read buffer.
*
* To support the above policy of writing to the lowest free block,
* ltsGetFreeBlock sorts the list of free block numbers into decreasing
* order each time it is asked for a block and the list isn't currently
* sorted. This is an efficient way to handle it because we expect cycles
* of releasing many blocks followed by re-using many blocks, due to
* the larger read buffer.
*
* Since all the bookkeeping and buffer memory is allocated with palloc(),
* and the underlying file(s) are made with OpenTemporaryFile, all resources
* for a logical tape set are certain to be cleaned up even if processing
* is aborted by ereport(ERROR). To avoid confusion, the caller should take
* care that all calls for a single LogicalTapeSet are made in the same
* palloc context.
*
* Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
2010-09-20 22:08:53 +02:00
* src/backend/utils/sort/logtape.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "storage/buffile.h"
#include "utils/logtape.h"
#include "utils/memutils.h"
/*
* A TapeBlockTrailer is stored at the end of each BLCKSZ block.
*
* The first block of a tape has prev == -1. The last block of a tape
* stores the number of valid bytes on the block, inverted, in 'next'
* Therefore next < 0 indicates the last block.
*/
typedef struct TapeBlockTrailer
{
long prev; /* previous block on this tape, or -1 on first
* block */
long next; /* next block on this tape, or # of valid
* bytes on last block (if < 0) */
} TapeBlockTrailer;
#define TapeBlockPayloadSize (BLCKSZ - sizeof(TapeBlockTrailer))
#define TapeBlockGetTrailer(buf) \
((TapeBlockTrailer *) ((char *) buf + TapeBlockPayloadSize))
#define TapeBlockIsLast(buf) (TapeBlockGetTrailer(buf)->next < 0)
#define TapeBlockGetNBytes(buf) \
(TapeBlockIsLast(buf) ? \
(- TapeBlockGetTrailer(buf)->next) : TapeBlockPayloadSize)
#define TapeBlockSetNBytes(buf, nbytes) \
(TapeBlockGetTrailer(buf)->next = -(nbytes))
/*
* This data structure represents a single "logical tape" within the set
* of logical tapes stored in the same file.
*
* While writing, we hold the current partially-written data block in the
* buffer. While reading, we can hold multiple blocks in the buffer. Note
* that we don't retain the trailers of a block when it's read into the
* buffer. The buffer therefore contains one large contiguous chunk of data
* from the tape.
*/
typedef struct LogicalTape
{
bool writing; /* T while in write phase */
2005-10-15 04:49:52 +02:00
bool frozen; /* T if blocks should not be freed when read */
bool dirty; /* does buffer need to be written? */
/*
* Block numbers of the first, current, and next block of the tape.
*
* The "current" block number is only valid when writing, or reading from
* a frozen tape. (When reading from an unfrozen tape, we use a larger
* read buffer that holds multiple blocks, so the "current" block is
* ambiguous.)
*/
long firstBlockNumber;
long curBlockNumber;
long nextBlockNumber;
/*
* Buffer for current data block(s).
*/
char *buffer; /* physical buffer (separately palloc'd) */
int buffer_size; /* allocated size of the buffer */
int pos; /* next read/write position in buffer */
int nbytes; /* total # of valid bytes in buffer */
} LogicalTape;
/*
* This data structure represents a set of related "logical tapes" sharing
* space in a single underlying file. (But that "file" may be multiple files
* if needed to escape OS limits on file size; buffile.c handles that for us.)
* The number of tapes is fixed at creation.
*/
struct LogicalTapeSet
{
BufFile *pfile; /* underlying file for whole tape set */
long nFileBlocks; /* # of blocks used in underlying file */
/*
2005-10-15 04:49:52 +02:00
* We store the numbers of recycled-and-available blocks in freeBlocks[].
* When there are no such blocks, we extend the underlying file.
*
* If forgetFreeSpace is true then any freed blocks are simply forgotten
* rather than being remembered in freeBlocks[]. See notes for
* LogicalTapeSetForgetFreeSpace().
*
* If blocksSorted is true then the block numbers in freeBlocks are in
* *decreasing* order, so that removing the last entry gives us the lowest
* free block. We re-sort the blocks whenever a block is demanded; this
* should be reasonably efficient given the expected usage pattern.
*/
bool forgetFreeSpace; /* are we remembering free blocks? */
bool blocksSorted; /* is freeBlocks[] currently in order? */
long *freeBlocks; /* resizable array */
int nFreeBlocks; /* # of currently free blocks */
2005-10-15 04:49:52 +02:00
int freeBlocksLen; /* current allocated length of freeBlocks[] */
/* The array of logical tapes. */
int nTapes; /* # of logical tapes in set */
LogicalTape tapes[FLEXIBLE_ARRAY_MEMBER]; /* has nTapes nentries */
};
static void ltsWriteBlock(LogicalTapeSet *lts, long blocknum, void *buffer);
static void ltsReadBlock(LogicalTapeSet *lts, long blocknum, void *buffer);
static long ltsGetFreeBlock(LogicalTapeSet *lts);
static void ltsReleaseBlock(LogicalTapeSet *lts, long blocknum);
/*
* Write a block-sized buffer to the specified block of the underlying file.
*
* NB: should not attempt to write beyond current end of file (ie, create
* "holes" in file), since BufFile doesn't allow that. The first write pass
* must write blocks sequentially.
*
* No need for an error return convention; we ereport() on any error.
*/
static void
ltsWriteBlock(LogicalTapeSet *lts, long blocknum, void *buffer)
{
if (BufFileSeekBlock(lts->pfile, blocknum) != 0 ||
BufFileWrite(lts->pfile, buffer, BLCKSZ) != BLCKSZ)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not write block %ld of temporary file: %m",
blocknum)));
}
/*
* Read a block-sized buffer from the specified block of the underlying file.
*
* No need for an error return convention; we ereport() on any error. This
* module should never attempt to read a block it doesn't know is there.
*/
static void
ltsReadBlock(LogicalTapeSet *lts, long blocknum, void *buffer)
{
if (BufFileSeekBlock(lts->pfile, blocknum) != 0 ||
BufFileRead(lts->pfile, buffer, BLCKSZ) != BLCKSZ)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not read block %ld of temporary file: %m",
blocknum)));
}
/*
* Read as many blocks as we can into the per-tape buffer.
*
* Returns true if anything was read, 'false' on EOF.
*/
static bool
ltsReadFillBuffer(LogicalTapeSet *lts, LogicalTape *lt)
{
lt->pos = 0;
lt->nbytes = 0;
do
{
char *thisbuf = lt->buffer + lt->nbytes;
/* Fetch next block number */
if (lt->nextBlockNumber == -1L)
break; /* EOF */
/* Read the block */
ltsReadBlock(lts, lt->nextBlockNumber, (void *) thisbuf);
if (!lt->frozen)
ltsReleaseBlock(lts, lt->nextBlockNumber);
lt->curBlockNumber = lt->nextBlockNumber;
lt->nbytes += TapeBlockGetNBytes(thisbuf);
if (TapeBlockIsLast(thisbuf))
{
lt->nextBlockNumber = -1L;
/* EOF */
break;
}
else
lt->nextBlockNumber = TapeBlockGetTrailer(thisbuf)->next;
/* Advance to next block, if we have buffer space left */
} while (lt->buffer_size - lt->nbytes > BLCKSZ);
return (lt->nbytes > 0);
}
/*
* qsort comparator for sorting freeBlocks[] into decreasing order.
*/
static int
freeBlocks_cmp(const void *a, const void *b)
{
long ablk = *((const long *) a);
long bblk = *((const long *) b);
/* can't just subtract because long might be wider than int */
if (ablk < bblk)
return 1;
if (ablk > bblk)
return -1;
return 0;
}
/*
* Select a currently unused block for writing to.
*
* NB: should only be called when writer is ready to write immediately,
* to ensure that first write pass is sequential.
*/
static long
ltsGetFreeBlock(LogicalTapeSet *lts)
{
/*
2005-10-15 04:49:52 +02:00
* If there are multiple free blocks, we select the one appearing last in
* freeBlocks[] (after sorting the array if needed). If there are none,
* assign the next block at the end of the file.
*/
if (lts->nFreeBlocks > 0)
{
if (!lts->blocksSorted)
{
qsort((void *) lts->freeBlocks, lts->nFreeBlocks,
sizeof(long), freeBlocks_cmp);
lts->blocksSorted = true;
}
return lts->freeBlocks[--lts->nFreeBlocks];
}
else
return lts->nFileBlocks++;
}
/*
* Return a block# to the freelist.
*/
static void
ltsReleaseBlock(LogicalTapeSet *lts, long blocknum)
{
int ndx;
/*
* Do nothing if we're no longer interested in remembering free space.
*/
if (lts->forgetFreeSpace)
return;
/*
* Enlarge freeBlocks array if full.
*/
if (lts->nFreeBlocks >= lts->freeBlocksLen)
{
lts->freeBlocksLen *= 2;
lts->freeBlocks = (long *) repalloc(lts->freeBlocks,
2005-10-15 04:49:52 +02:00
lts->freeBlocksLen * sizeof(long));
}
/*
2006-10-04 02:30:14 +02:00
* Add blocknum to array, and mark the array unsorted if it's no longer in
* decreasing order.
*/
ndx = lts->nFreeBlocks++;
lts->freeBlocks[ndx] = blocknum;
2006-10-04 02:30:14 +02:00
if (ndx > 0 && lts->freeBlocks[ndx - 1] < blocknum)
lts->blocksSorted = false;
}
/*
* Create a set of logical tapes in a temporary underlying file.
*
* Each tape is initialized in write state.
*/
LogicalTapeSet *
LogicalTapeSetCreate(int ntapes)
{
LogicalTapeSet *lts;
LogicalTape *lt;
int i;
/*
* Create top-level struct including per-tape LogicalTape structs.
*/
Assert(ntapes > 0);
lts = (LogicalTapeSet *) palloc(offsetof(LogicalTapeSet, tapes) +
ntapes * sizeof(LogicalTape));
lts->pfile = BufFileCreateTemp(false);
lts->nFileBlocks = 0L;
lts->forgetFreeSpace = false;
lts->blocksSorted = true; /* a zero-length array is sorted ... */
lts->freeBlocksLen = 32; /* reasonable initial guess */
lts->freeBlocks = (long *) palloc(lts->freeBlocksLen * sizeof(long));
lts->nFreeBlocks = 0;
lts->nTapes = ntapes;
/*
* Initialize per-tape structs. Note we allocate the I/O buffer and the
* first block for a tape only when it is first actually written to. This
* avoids wasting memory space when tuplesort.c overestimates the number
* of tapes needed.
*/
for (i = 0; i < ntapes; i++)
{
lt = &lts->tapes[i];
lt->writing = true;
lt->frozen = false;
lt->dirty = false;
lt->firstBlockNumber = -1L;
lt->curBlockNumber = -1L;
lt->buffer = NULL;
lt->buffer_size = 0;
lt->pos = 0;
lt->nbytes = 0;
}
return lts;
}
/*
* Close a logical tape set and release all resources.
*/
void
LogicalTapeSetClose(LogicalTapeSet *lts)
{
LogicalTape *lt;
int i;
BufFileClose(lts->pfile);
for (i = 0; i < lts->nTapes; i++)
{
lt = &lts->tapes[i];
if (lt->buffer)
pfree(lt->buffer);
}
pfree(lts->freeBlocks);
pfree(lts);
}
/*
* Mark a logical tape set as not needing management of free space anymore.
*
* This should be called if the caller does not intend to write any more data
* into the tape set, but is reading from un-frozen tapes. Since no more
* writes are planned, remembering free blocks is no longer useful. Setting
* this flag lets us avoid wasting time and space in ltsReleaseBlock(), which
* is not designed to handle large numbers of free blocks.
*/
void
LogicalTapeSetForgetFreeSpace(LogicalTapeSet *lts)
{
lts->forgetFreeSpace = true;
}
/*
* Write to a logical tape.
*
* There are no error returns; we ereport() on failure.
*/
void
LogicalTapeWrite(LogicalTapeSet *lts, int tapenum,
void *ptr, size_t size)
{
LogicalTape *lt;
size_t nthistime;
Assert(tapenum >= 0 && tapenum < lts->nTapes);
lt = &lts->tapes[tapenum];
Assert(lt->writing);
/* Allocate data buffer and first block on first write */
if (lt->buffer == NULL)
{
lt->buffer = (char *) palloc(BLCKSZ);
lt->buffer_size = BLCKSZ;
}
if (lt->curBlockNumber == -1)
{
Assert(lt->firstBlockNumber == -1);
Assert(lt->pos == 0);
lt->curBlockNumber = ltsGetFreeBlock(lts);
lt->firstBlockNumber = lt->curBlockNumber;
TapeBlockGetTrailer(lt->buffer)->prev = -1L;
}
Assert(lt->buffer_size == BLCKSZ);
while (size > 0)
{
if (lt->pos >= TapeBlockPayloadSize)
{
/* Buffer full, dump it out */
long nextBlockNumber;
if (!lt->dirty)
{
/* Hmm, went directly from reading to writing? */
elog(ERROR, "invalid logtape state: should be dirty");
}
/*
* First allocate the next block, so that we can store it in the
* 'next' pointer of this block.
*/
nextBlockNumber = ltsGetFreeBlock(lts);
/* set the next-pointer and dump the current block. */
TapeBlockGetTrailer(lt->buffer)->next = nextBlockNumber;
ltsWriteBlock(lts, lt->curBlockNumber, (void *) lt->buffer);
/* initialize the prev-pointer of the next block */
TapeBlockGetTrailer(lt->buffer)->prev = lt->curBlockNumber;
lt->curBlockNumber = nextBlockNumber;
lt->pos = 0;
lt->nbytes = 0;
}
nthistime = TapeBlockPayloadSize - lt->pos;
if (nthistime > size)
nthistime = size;
Assert(nthistime > 0);
memcpy(lt->buffer + lt->pos, ptr, nthistime);
lt->dirty = true;
lt->pos += nthistime;
if (lt->nbytes < lt->pos)
lt->nbytes = lt->pos;
ptr = (void *) ((char *) ptr + nthistime);
size -= nthistime;
}
}
/*
* Rewind logical tape and switch from writing to reading.
*
* The tape must currently be in writing state, or "frozen" in read state.
*
* 'buffer_size' specifies how much memory to use for the read buffer.
* Regardless of the argument, the actual amount of memory used is between
* BLCKSZ and MaxAllocSize, and is a multiple of BLCKSZ. The given value is
* rounded down and truncated to fit those constraints, if necessary. If the
* tape is frozen, the 'buffer_size' argument is ignored, and a small BLCKSZ
* byte buffer is used.
*/
void
LogicalTapeRewindForRead(LogicalTapeSet *lts, int tapenum, size_t buffer_size)
{
LogicalTape *lt;
Assert(tapenum >= 0 && tapenum < lts->nTapes);
lt = &lts->tapes[tapenum];
/*
* Round and cap buffer_size if needed.
*/
if (lt->frozen)
buffer_size = BLCKSZ;
else
{
/* need at least one block */
if (buffer_size < BLCKSZ)
buffer_size = BLCKSZ;
/*
* palloc() larger than MaxAllocSize would fail (a multi-gigabyte
* buffer is unlikely to be helpful, anyway)
*/
if (buffer_size > MaxAllocSize)
buffer_size = MaxAllocSize;
/* round down to BLCKSZ boundary */
buffer_size -= buffer_size % BLCKSZ;
}
if (lt->writing)
{
/*
* Completion of a write phase. Flush last partial data block, and
* rewind for normal (destructive) read.
*/
if (lt->dirty)
{
TapeBlockSetNBytes(lt->buffer, lt->nbytes);
ltsWriteBlock(lts, lt->curBlockNumber, (void *) lt->buffer);
}
lt->writing = false;
}
else
{
/*
* This is only OK if tape is frozen; we rewind for (another) read
* pass.
*/
Assert(lt->frozen);
}
/* Allocate a read buffer (unless the tape is empty) */
if (lt->buffer)
pfree(lt->buffer);
lt->buffer = NULL;
lt->buffer_size = 0;
if (lt->firstBlockNumber != -1L)
{
lt->buffer = palloc(buffer_size);
lt->buffer_size = buffer_size;
}
/* Read the first block, or reset if tape is empty */
lt->nextBlockNumber = lt->firstBlockNumber;
lt->pos = 0;
lt->nbytes = 0;
ltsReadFillBuffer(lts, lt);
}
/*
* Rewind logical tape and switch from reading to writing.
*
* NOTE: we assume the caller has read the tape to the end; otherwise
* untouched data and indirect blocks will not have been freed. We
* could add more code to free any unread blocks, but in current usage
* of this module it'd be useless code.
*/
void
LogicalTapeRewindForWrite(LogicalTapeSet *lts, int tapenum)
{
LogicalTape *lt;
Assert(tapenum >= 0 && tapenum < lts->nTapes);
lt = &lts->tapes[tapenum];
Assert(!lt->writing && !lt->frozen);
lt->writing = true;
lt->dirty = false;
lt->firstBlockNumber = -1L;
lt->curBlockNumber = -1L;
lt->pos = 0;
lt->nbytes = 0;
if (lt->buffer)
pfree(lt->buffer);
lt->buffer = NULL;
lt->buffer_size = 0;
}
/*
* Read from a logical tape.
*
* Early EOF is indicated by return value less than #bytes requested.
*/
size_t
LogicalTapeRead(LogicalTapeSet *lts, int tapenum,
void *ptr, size_t size)
{
LogicalTape *lt;
size_t nread = 0;
size_t nthistime;
Assert(tapenum >= 0 && tapenum < lts->nTapes);
lt = &lts->tapes[tapenum];
Assert(!lt->writing);
while (size > 0)
{
if (lt->pos >= lt->nbytes)
{
/* Try to load more data into buffer. */
if (!ltsReadFillBuffer(lts, lt))
break; /* EOF */
}
nthistime = lt->nbytes - lt->pos;
if (nthistime > size)
nthistime = size;
Assert(nthistime > 0);
memcpy(ptr, lt->buffer + lt->pos, nthistime);
lt->pos += nthistime;
ptr = (void *) ((char *) ptr + nthistime);
size -= nthistime;
nread += nthistime;
}
return nread;
}
/*
* "Freeze" the contents of a tape so that it can be read multiple times
* and/or read backwards. Once a tape is frozen, its contents will not
* be released until the LogicalTapeSet is destroyed. This is expected
* to be used only for the final output pass of a merge.
*
* This *must* be called just at the end of a write pass, before the
* tape is rewound (after rewind is too late!). It performs a rewind
* and switch to read mode "for free". An immediately following rewind-
* for-read call is OK but not necessary.
*/
void
LogicalTapeFreeze(LogicalTapeSet *lts, int tapenum)
{
LogicalTape *lt;
Assert(tapenum >= 0 && tapenum < lts->nTapes);
lt = &lts->tapes[tapenum];
Assert(lt->writing);
/*
* Completion of a write phase. Flush last partial data block, and rewind
* for nondestructive read.
*/
if (lt->dirty)
{
TapeBlockSetNBytes(lt->buffer, lt->nbytes);
ltsWriteBlock(lts, lt->curBlockNumber, (void *) lt->buffer);
lt->writing = false;
}
lt->writing = false;
lt->frozen = true;
/*
* The seek and backspace functions assume a single block read buffer.
* That's OK with current usage. A larger buffer is helpful to make the
* read pattern of the backing file look more sequential to the OS, when
* we're reading from multiple tapes. But at the end of a sort, when a
* tape is frozen, we only read from a single tape anyway.
*/
if (!lt->buffer || lt->buffer_size != BLCKSZ)
{
if (lt->buffer)
pfree(lt->buffer);
lt->buffer = palloc(BLCKSZ);
lt->buffer_size = BLCKSZ;
}
/* Read the first block, or reset if tape is empty */
lt->curBlockNumber = lt->firstBlockNumber;
lt->pos = 0;
lt->nbytes = 0;
if (lt->firstBlockNumber == -1L)
lt->nextBlockNumber = -1L;
ltsReadBlock(lts, lt->curBlockNumber, (void *) lt->buffer);
if (TapeBlockIsLast(lt->buffer))
lt->nextBlockNumber = -1L;
else
lt->nextBlockNumber = TapeBlockGetTrailer(lt->buffer)->next;
lt->nbytes = TapeBlockGetNBytes(lt->buffer);
}
/*
* Backspace the tape a given number of bytes. (We also support a more
* general seek interface, see below.)
*
* *Only* a frozen-for-read tape can be backed up; we don't support
* random access during write, and an unfrozen read tape may have
* already discarded the desired data!
*
* Returns the number of bytes backed up. It can be less than the
* requested amount, if there isn't that much data before the current
* position. The tape is positioned to the beginning of the tape in
* that case.
*/
size_t
LogicalTapeBackspace(LogicalTapeSet *lts, int tapenum, size_t size)
{
LogicalTape *lt;
size_t seekpos = 0;
Assert(tapenum >= 0 && tapenum < lts->nTapes);
lt = &lts->tapes[tapenum];
Assert(lt->frozen);
Assert(lt->buffer_size == BLCKSZ);
/*
* Easy case for seek within current block.
*/
if (size <= (size_t) lt->pos)
{
lt->pos -= (int) size;
return size;
}
/*
* Not-so-easy case, have to walk back the chain of blocks. This
* implementation would be pretty inefficient for long seeks, but we
* really aren't doing that (a seek over one tuple is typical).
*/
seekpos = (size_t) lt->pos; /* part within this block */
while (size > seekpos)
{
long prev = TapeBlockGetTrailer(lt->buffer)->prev;
if (prev == -1L)
{
/* Tried to back up beyond the beginning of tape. */
if (lt->curBlockNumber != lt->firstBlockNumber)
elog(ERROR, "unexpected end of tape");
lt->pos = 0;
return seekpos;
}
ltsReadBlock(lts, prev, (void *) lt->buffer);
if (TapeBlockGetTrailer(lt->buffer)->next != lt->curBlockNumber)
elog(ERROR, "broken tape, next of block %ld is %ld, expected %ld",
prev,
TapeBlockGetTrailer(lt->buffer)->next,
lt->curBlockNumber);
lt->nbytes = TapeBlockPayloadSize;
lt->curBlockNumber = prev;
lt->nextBlockNumber = TapeBlockGetTrailer(lt->buffer)->next;
seekpos += TapeBlockPayloadSize;
}
/*
* 'seekpos' can now be greater than 'size', because it points to the
* beginning the target block. The difference is the position within the
* page.
*/
lt->pos = seekpos - size;
return size;
}
/*
* Seek to an arbitrary position in a logical tape.
*
* *Only* a frozen-for-read tape can be seeked.
*
* Must be called with a block/offset previously returned by
* LogicalTapeTell().
*/
void
LogicalTapeSeek(LogicalTapeSet *lts, int tapenum,
long blocknum, int offset)
{
LogicalTape *lt;
Assert(tapenum >= 0 && tapenum < lts->nTapes);
lt = &lts->tapes[tapenum];
Assert(lt->frozen);
Assert(offset >= 0 && offset <= TapeBlockPayloadSize);
Assert(lt->buffer_size == BLCKSZ);
if (blocknum != lt->curBlockNumber)
{
ltsReadBlock(lts, blocknum, (void *) lt->buffer);
lt->curBlockNumber = blocknum;
lt->nbytes = TapeBlockPayloadSize;
lt->nextBlockNumber = TapeBlockGetTrailer(lt->buffer)->next;
}
if (offset > lt->nbytes)
elog(ERROR, "invalid tape seek position");
lt->pos = offset;
}
/*
* Obtain current position in a form suitable for a later LogicalTapeSeek.
*
* NOTE: it'd be OK to do this during write phase with intention of using
* the position for a seek after freezing. Not clear if anyone needs that.
*/
void
LogicalTapeTell(LogicalTapeSet *lts, int tapenum,
long *blocknum, int *offset)
{
LogicalTape *lt;
Assert(tapenum >= 0 && tapenum < lts->nTapes);
lt = &lts->tapes[tapenum];
/* With a larger buffer, 'pos' wouldn't be the same as offset within page */
Assert(lt->buffer_size == BLCKSZ);
*blocknum = lt->curBlockNumber;
*offset = lt->pos;
}
/*
* Obtain total disk space currently used by a LogicalTapeSet, in blocks.
*/
long
LogicalTapeSetBlocks(LogicalTapeSet *lts)
{
return lts->nFileBlocks;
}