postgresql/src/include/nodes/relation.h

596 lines
24 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* relation.h
* Definitions for internal planner nodes.
*
*
* Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $Id: relation.h,v 1.62 2002/03/01 06:01:20 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#ifndef RELATION_H
#define RELATION_H
#include "access/sdir.h"
#include "nodes/parsenodes.h"
/*
1999-02-18 01:49:48 +01:00
* Relids
* List of relation identifiers (indexes into the rangetable).
*
* Note: these are lists of integers, not Nodes.
*/
1999-02-18 01:49:48 +01:00
typedef List *Relids;
/*
* When looking for a "cheapest path", this enum specifies whether we want
* cheapest startup cost or cheapest total cost.
*/
typedef enum CostSelector
{
STARTUP_COST, TOTAL_COST
} CostSelector;
/*----------
1998-07-18 06:22:52 +02:00
* RelOptInfo
* Per-relation information for planning/optimization
*
* For planning purposes, a "base rel" is either a plain relation (a
* table) or the output of a sub-SELECT that appears in the range table.
* In either case it is uniquely identified by an RT index. A "joinrel"
* is the joining of two or more base rels. A joinrel is identified by
* the set of RT indexes for its component baserels.
*
* Note that there is only one joinrel for any given set of component
* baserels, no matter what order we assemble them in; so an unordered
* set is the right datatype to identify it with.
*
* Parts of this data structure are specific to various scan and join
* mechanisms. It didn't seem worth creating new node types for them.
*
* relids - List of base-relation identifiers; it is a base relation
* if there is just one, a join relation if more than one
* rows - estimated number of tuples in the relation after restriction
* clauses have been applied (ie, output rows of a plan for it)
* width - avg. number of bytes per tuple in the relation after the
* appropriate projections have been done (ie, output width)
* targetlist - List of TargetEntry nodes for the attributes we need
* to output from this relation
* pathlist - List of Path nodes, one for each potentially useful
* method of generating the relation
* cheapest_startup_path - the pathlist member with lowest startup cost
* (regardless of its ordering)
* cheapest_total_path - the pathlist member with lowest total cost
* (regardless of its ordering)
* pruneable - flag to let the planner know whether it can prune the
* pathlist of this RelOptInfo or not.
*
* * If the relation is a base relation it will have these fields set:
*
* issubquery - true if baserel is a subquery RTE rather than a table
* indexlist - list of IndexOptInfo nodes for relation's indexes
* (always NIL if it's a subquery)
* pages - number of disk pages in relation (zero if a subquery)
* tuples - number of tuples in relation (not considering restrictions)
* subplan - plan for subquery (NULL if it's a plain table)
*
* Note: for a subquery, tuples and subplan are not set immediately
* upon creation of the RelOptInfo object; they are filled in when
* set_base_rel_pathlist processes the object.
*
* Note: if a base relation is the root of an inheritance tree
* (SELECT FROM foo*) it is still considered a base rel. We will
* generate a list of candidate Paths for accessing that table itself,
* and also generate baserel RelOptInfo nodes for each child table,
* with their own candidate Path lists. Then, an AppendPath is built
* from the cheapest Path for each of these tables, and set to be the
* only available Path for the inheritance baserel.
*
* * The presence of the remaining fields depends on the restrictions
* and joins that the relation participates in:
*
* baserestrictinfo - List of RestrictInfo nodes, containing info about
* each qualification clause in which this relation
* participates (only used for base rels)
* baserestrictcost - Estimated cost of evaluating the baserestrictinfo
* clauses at a single tuple (only used for base rels)
* outerjoinset - If the rel appears within the nullable side of an outer
* join, the list of all relids participating in the highest
* such outer join; else NIL (only used for base rels)
* joininfo - List of JoinInfo nodes, containing info about each join
* clause in which this relation participates
* innerjoin - List of Path nodes that represent indices that may be used
* as inner paths of nestloop joins. This field is non-null
* only for base rels, since join rels have no indices.
*
* Note: Keeping a restrictinfo list in the RelOptInfo is useful only for
* base rels, because for a join rel the set of clauses that are treated as
* restrict clauses varies depending on which sub-relations we choose to join.
* (For example, in a 3-base-rel join, a clause relating rels 1 and 2 must be
* treated as a restrictclause if we join {1} and {2 3} to make {1 2 3}; but
* if we join {1 2} and {3} then that clause will be a restrictclause in {1 2}
* and should not be processed again at the level of {1 2 3}.) Therefore,
* the restrictinfo list in the join case appears in individual JoinPaths
* (field joinrestrictinfo), not in the parent relation. But it's OK for
* the RelOptInfo to store the joininfo lists, because those are the same
* for a given rel no matter how we form it.
*
* We store baserestrictcost in the RelOptInfo (for base relations) because
* we know we will need it at least once (to price the sequential scan)
* and may need it multiple times to price index scans.
*
* outerjoinset is used to ensure correct placement of WHERE clauses that
* apply to outer-joined relations; we must not apply such WHERE clauses
* until after the outer join is performed.
*----------
*/
1998-07-18 06:22:52 +02:00
typedef struct RelOptInfo
{
NodeTag type;
/* all relations included in this RelOptInfo */
Relids relids; /* integer list of base relids (RT
* indexes) */
/* size estimates generated by planner */
double rows; /* estimated number of result tuples */
int width; /* estimated avg width of result tuples */
/* materialization information */
List *targetlist;
List *pathlist; /* Path structures */
struct Path *cheapest_startup_path;
struct Path *cheapest_total_path;
bool pruneable;
/* information about a base rel (not set for join rels!) */
bool issubquery;
List *indexlist;
long pages;
double tuples;
struct Plan *subplan;
/* used by various scans and joins: */
List *baserestrictinfo; /* RestrictInfo structures (if
* base rel) */
Cost baserestrictcost; /* cost of evaluating the above */
2001-03-22 05:01:46 +01:00
Relids outerjoinset; /* integer list of base relids */
List *joininfo; /* JoinInfo structures */
List *innerjoin; /* potential indexscans for nestloop joins */
/*
* innerjoin indexscans are not in the main pathlist because they are
* not usable except in specific join contexts; we have to test before
* seeing whether they can be used.
*/
1999-05-26 00:43:53 +02:00
} RelOptInfo;
/*
* IndexOptInfo
* Per-index information for planning/optimization
*
* Prior to Postgres 7.0, RelOptInfo was used to describe both relations
* and indexes, but that created confusion without actually doing anything
* useful. So now we have a separate IndexOptInfo struct for indexes.
*
* indexoid - OID of the index relation itself
* pages - number of disk pages in index
* tuples - number of index tuples in index
* ncolumns - number of columns in index
* nkeys - number of keys used by index (input columns)
* classlist - List of PG_OPCLASS OIDs for the index
* indexkeys - List of base-relation attribute numbers that are index keys
* ordering - List of PG_OPERATOR OIDs which order the indexscan result
* relam - the OID of the pg_am of the index
* amcostestimate - OID of the relam's cost estimator
* indproc - OID of the function if a functional index, else 0
* indpred - index predicate if a partial index, else NULL
* unique - true if index is unique
*
* ncolumns and nkeys are the same except for a functional index,
* wherein ncolumns is 1 (the single function output) while nkeys
* is the number of table columns passed to the function. classlist[]
* and ordering[] have ncolumns entries, while indexkeys[] has nkeys
* entries.
*
* Note: for historical reasons, the arrays classlist, indexkeys and
* ordering have an extra entry that is always zero. Some code scans
* until it sees a zero rather than looking at ncolumns or nkeys.
*/
typedef struct IndexOptInfo
{
NodeTag type;
Oid indexoid; /* OID of the index relation */
/* statistics from pg_class */
long pages;
double tuples;
/* index descriptor information */
int ncolumns; /* number of columns in index */
int nkeys; /* number of keys used by index */
Oid *classlist; /* AM operator classes for columns */
int *indexkeys; /* column numbers of index's keys */
Oid *ordering; /* OIDs of sort operators for each column */
Oid relam; /* OID of the access method (in pg_am) */
RegProcedure amcostestimate; /* OID of the access method's cost fcn */
Oid indproc; /* if a functional index */
List *indpred; /* if a partial index */
bool unique; /* if a unique index */
} IndexOptInfo;
/*
* PathKeys
*
* The sort ordering of a path is represented by a list of sublists of
* PathKeyItem nodes. An empty list implies no known ordering. Otherwise
* the first sublist represents the primary sort key, the second the
* first secondary sort key, etc. Each sublist contains one or more
* PathKeyItem nodes, each of which can be taken as the attribute that
* appears at that sort position. (See the top of optimizer/path/pathkeys.c
* for more information.)
*/
typedef struct PathKeyItem
{
NodeTag type;
Node *key; /* the item that is ordered */
Oid sortop; /* the ordering operator ('<' op) */
/*
* key typically points to a Var node, ie a relation attribute, but it
* can also point to a Func clause representing the value indexed by a
* functional index. Someday we might allow arbitrary expressions as
* path keys, so don't assume more than you must.
*/
} PathKeyItem;
/*
* Type "Path" is used as-is for sequential-scan paths. For other
* path types it is the first component of a larger struct.
*/
typedef struct Path
{
NodeTag type;
RelOptInfo *parent; /* the relation this path can build */
/* estimated execution costs for path (see costsize.c for more info) */
Cost startup_cost; /* cost expended before fetching any
* tuples */
Cost total_cost; /* total cost (assuming all tuples
* fetched) */
NodeTag pathtype; /* tag identifying scan/join method */
/* XXX why is pathtype separate from the NodeTag? */
List *pathkeys; /* sort ordering of path's output */
/* pathkeys is a List of Lists of PathKeyItem nodes; see above */
} Path;
/*----------
* IndexPath represents an index scan. Although an indexscan can only read
* a single relation, it can scan it more than once, potentially using a
* different index during each scan. The result is the union (OR) of all the
* tuples matched during any scan. (The executor is smart enough not to return
* the same tuple more than once, even if it is matched in multiple scans.)
*
* 'indexinfo' is a list of IndexOptInfo nodes, one per scan to be performed.
*
* 'indexqual' is a list of index qualifications, also one per scan.
* Each entry in 'indexqual' is a sublist of qualification expressions with
* implicit AND semantics across the sublist items. Only expressions that
* are usable as indexquals (as determined by indxpath.c) may appear here.
* NOTE that the semantics of the top-level list in 'indexqual' is OR
* combination, while the sublists are implicitly AND combinations!
* Also note that indexquals lists do not contain RestrictInfo nodes,
* just bare clause expressions.
*
* 'indexscandir' is one of:
* ForwardScanDirection: forward scan of an ordered index
* BackwardScanDirection: backward scan of an ordered index
* NoMovementScanDirection: scan of an unordered index, or don't care
* (The executor doesn't care whether it gets ForwardScanDirection or
* NoMovementScanDirection for an indexscan, but the planner wants to
* distinguish ordered from unordered indexes for building pathkeys.)
*
* 'joinrelids' is only used in IndexPaths that are constructed for use
* as the inner path of a nestloop join. These paths have indexquals
* that refer to values of other rels, so those other rels must be
* included in the outer joinrel in order to make a usable join.
*
* 'alljoinquals' is also used only for inner paths of nestloop joins.
* This flag is TRUE iff all the indexquals came from non-pushed-down
* JOIN/ON conditions, which means the path is safe to use for an outer join.
*
* 'rows' is the estimated result tuple count for the indexscan. This
* is the same as path.parent->rows for a simple indexscan, but it is
* different for a nestloop inner path, because the additional indexquals
* coming from join clauses make the scan more selective than the parent
* rel's restrict clauses alone would do.
*----------
*/
typedef struct IndexPath
{
Path path;
List *indexinfo;
List *indexqual;
ScanDirection indexscandir;
Relids joinrelids; /* other rels mentioned in indexqual */
bool alljoinquals; /* all indexquals derived from JOIN conds? */
double rows; /* estimated number of result tuples */
} IndexPath;
/*
* TidPath represents a scan by TID
*/
typedef struct TidPath
{
Path path;
List *tideval;
Relids unjoined_relids; /* some rels not yet part of my Path */
} TidPath;
/*
* AppendPath represents an Append plan, ie, successive execution of
* several member plans. Currently it is only used to handle expansion
* of inheritance trees.
*/
typedef struct AppendPath
{
Path path;
List *subpaths; /* list of component Paths */
} AppendPath;
/*
* All join-type paths share these fields.
*/
typedef struct JoinPath
{
Path path;
JoinType jointype;
Path *outerjoinpath; /* path for the outer side of the join */
Path *innerjoinpath; /* path for the inner side of the join */
List *joinrestrictinfo; /* RestrictInfos to apply to join */
/*
* See the notes for RelOptInfo to understand why joinrestrictinfo is
* needed in JoinPath, and can't be merged into the parent RelOptInfo.
*/
} JoinPath;
/*
* A nested-loop path needs no special fields.
*/
typedef JoinPath NestPath;
/*
* A mergejoin path has these fields.
*
* path_mergeclauses lists the clauses (in the form of RestrictInfos)
* that will be used in the merge. (Before 7.0, this was a list of bare
* clause expressions, but we can save on list memory and cost_qual_eval
* work by leaving it in the form of a RestrictInfo list.)
*
* Note that the mergeclauses are a subset of the parent relation's
* restriction-clause list. Any join clauses that are not mergejoinable
* appear only in the parent's restrict list, and must be checked by a
* qpqual at execution time.
*
* outersortkeys (resp. innersortkeys) is NIL if the outer path
* (resp. inner path) is already ordered appropriately for the
* mergejoin. If it is not NIL then it is a PathKeys list describing
* the ordering that must be created by an explicit sort step.
*/
1999-02-12 18:25:05 +01:00
typedef struct MergePath
{
1999-02-12 18:25:05 +01:00
JoinPath jpath;
List *path_mergeclauses; /* join clauses to be used for
* merge */
List *outersortkeys; /* keys for explicit sort, if any */
List *innersortkeys; /* keys for explicit sort, if any */
} MergePath;
1999-02-22 20:55:44 +01:00
/*
* A hashjoin path has these fields.
*
* The remarks above for mergeclauses apply for hashclauses as well.
* (But note that path_hashclauses will always be a one-element list,
* since we only hash on one hashable clause.)
*
* Hashjoin does not care what order its inputs appear in, so we have
* no need for sortkeys.
1999-02-22 20:55:44 +01:00
*/
typedef struct HashPath
{
JoinPath jpath;
List *path_hashclauses; /* join clauses used for hashing */
} HashPath;
1999-02-22 20:55:44 +01:00
/*
* Restriction clause info.
*
* We create one of these for each AND sub-clause of a restriction condition
* (WHERE or JOIN/ON clause). Since the restriction clauses are logically
* ANDed, we can use any one of them or any subset of them to filter out
* tuples, without having to evaluate the rest. The RestrictInfo node itself
* stores data used by the optimizer while choosing the best query plan.
*
* If a restriction clause references a single base relation, it will appear
* in the baserestrictinfo list of the RelOptInfo for that base rel.
*
* If a restriction clause references more than one base rel, it will
* appear in the JoinInfo lists of every RelOptInfo that describes a strict
* subset of the base rels mentioned in the clause. The JoinInfo lists are
* used to drive join tree building by selecting plausible join candidates.
* The clause cannot actually be applied until we have built a join rel
* containing all the base rels it references, however.
*
* When we construct a join rel that includes all the base rels referenced
* in a multi-relation restriction clause, we place that clause into the
* joinrestrictinfo lists of paths for the join rel, if neither left nor
2001-03-22 05:01:46 +01:00
* right sub-path includes all base rels referenced in the clause. The clause
* will be applied at that join level, and will not propagate any further up
* the join tree. (Note: the "predicate migration" code was once intended to
* push restriction clauses up and down the plan tree based on evaluation
* costs, but it's dead code and is unlikely to be resurrected in the
* foreseeable future.)
*
* Note that in the presence of more than two rels, a multi-rel restriction
* might reach different heights in the join tree depending on the join
* sequence we use. So, these clauses cannot be associated directly with
* the join RelOptInfo, but must be kept track of on a per-join-path basis.
*
* When dealing with outer joins we have to be very careful about pushing qual
* clauses up and down the tree. An outer join's own JOIN/ON conditions must
* be evaluated exactly at that join node, and any quals appearing in WHERE or
* in a JOIN above the outer join cannot be pushed down below the outer join.
* Otherwise the outer join will produce wrong results because it will see the
* wrong sets of input rows. All quals are stored as RestrictInfo nodes
* during planning, but there's a flag to indicate whether a qual has been
* pushed down to a lower level than its original syntactic placement in the
* join tree would suggest. If an outer join prevents us from pushing a qual
* down to its "natural" semantic level (the level associated with just the
* base rels used in the qual) then the qual will appear in JoinInfo lists
* that reference more than just the base rels it actually uses. By
* pretending that the qual references all the rels appearing in the outer
* join, we prevent it from being evaluated below the outer join's joinrel.
* When we do form the outer join's joinrel, we still need to distinguish
* those quals that are actually in that join's JOIN/ON condition from those
* that appeared higher in the tree and were pushed down to the join rel
* because they used no other rels. That's what the ispusheddown flag is for;
* it tells us that a qual came from a point above the join of the specific
* set of base rels that it uses (or that the JoinInfo structures claim it
* uses). A clause that originally came from WHERE will *always* have its
* ispusheddown flag set; a clause that came from an INNER JOIN condition,
* but doesn't use all the rels being joined, will also have ispusheddown set
* because it will get attached to some lower joinrel.
*
* In general, the referenced clause might be arbitrarily complex. The
* kinds of clauses we can handle as indexscan quals, mergejoin clauses,
* or hashjoin clauses are fairly limited --- the code for each kind of
* path is responsible for identifying the restrict clauses it can use
* and ignoring the rest. Clauses not implemented by an indexscan,
* mergejoin, or hashjoin will be placed in the plan qual or joinqual field
* of the finished Plan node, where they will be enforced by general-purpose
* qual-expression-evaluation code. (But we are still entitled to count
* their selectivity when estimating the result tuple count, if we
* can guess what it is...)
1999-02-22 20:55:44 +01:00
*/
typedef struct RestrictInfo
{
NodeTag type;
Expr *clause; /* the represented clause of WHERE or JOIN */
bool ispusheddown; /* TRUE if clause was pushed down in level */
/* only used if clause is an OR clause: */
List *subclauseindices; /* indexes matching subclauses */
/* subclauseindices is a List of Lists of IndexOptInfos */
/* cache space for costs (currently only used for join clauses) */
Cost eval_cost; /* eval cost of clause; -1 if not yet set */
Selectivity this_selec; /* selectivity; -1 if not yet set */
/* valid if clause is mergejoinable, else InvalidOid: */
Oid mergejoinoperator; /* copy of clause operator */
Oid left_sortop; /* leftside sortop needed for mergejoin */
Oid right_sortop; /* rightside sortop needed for mergejoin */
/* cache space for mergeclause processing; NIL if not yet set */
List *left_pathkey; /* canonical pathkey for left side */
List *right_pathkey; /* canonical pathkey for right side */
/* cache space for mergeclause processing; -1 if not yet set */
Selectivity left_mergescansel; /* fraction of left side to scan */
Selectivity right_mergescansel; /* fraction of right side to scan */
/* valid if clause is hashjoinable, else InvalidOid: */
Oid hashjoinoperator; /* copy of clause operator */
/* cache space for hashclause processing; -1 if not yet set */
Selectivity left_bucketsize; /* avg bucketsize of left side */
Selectivity right_bucketsize; /* avg bucketsize of right side */
} RestrictInfo;
/*
* Join clause info.
*
* We make a list of these for each RelOptInfo, containing info about
* all the join clauses this RelOptInfo participates in. (For this
* purpose, a "join clause" is a WHERE clause that mentions both vars
* belonging to this relation and vars belonging to relations not yet
* joined to it.) We group these clauses according to the set of
* other base relations (unjoined relations) mentioned in them.
* There is one JoinInfo for each distinct set of unjoined_relids,
* and its jinfo_restrictinfo lists the clause(s) that use that set
* of other relations.
*/
1998-09-01 05:29:17 +02:00
typedef struct JoinInfo
{
NodeTag type;
Relids unjoined_relids; /* some rels not yet part of my RelOptInfo */
List *jinfo_restrictinfo; /* relevant RestrictInfos */
1999-05-26 00:43:53 +02:00
} JoinInfo;
/*
1999-05-25 18:15:34 +02:00
* Stream:
1999-02-22 20:55:44 +01:00
* A stream represents a root-to-leaf path in a plan tree (i.e. a tree of
* JoinPaths and Paths). The stream includes pointers to all Path nodes,
1999-05-25 18:15:34 +02:00
* as well as to any clauses that reside above Path nodes. This structure
1999-02-22 20:55:44 +01:00
* is used to make Path nodes and clauses look similar, so that Predicate
* Migration can run.
*
* XXX currently, Predicate Migration is dead code, and so is this node type.
* Probably should remove support for it.
*
1999-02-22 20:55:44 +01:00
* pathptr -- pointer to the current path node
* cinfo -- if NULL, this stream node referes to the path node.
* Otherwise this is a pointer to the current clause.
* clausetype -- whether cinfo is in loc_restrictinfo or pathinfo in the
* path node (XXX this is now used only by dead code, which is
* good because the distinction no longer exists...)
1999-02-22 20:55:44 +01:00
* upstream -- linked list pointer upwards
* downstream -- ditto, downwards
* groupup -- whether or not this node is in a group with the node upstream
* groupcost -- total cost of the group that node is in
* groupsel -- total selectivity of the group that node is in
*/
typedef struct Stream *StreamPtr;
typedef struct Stream
{
NodeTag type;
Path *pathptr;
RestrictInfo *cinfo;
int *clausetype;
StreamPtr upstream;
StreamPtr downstream;
bool groupup;
Cost groupcost;
Selectivity groupsel;
} Stream;
#endif /* RELATION_H */