postgresql/src/backend/utils/hash/dynahash.c

1763 lines
50 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* dynahash.c
* dynamic hash tables
*
* dynahash.c supports both local-to-a-backend hash tables and hash tables in
* shared memory. For shared hash tables, it is the caller's responsibility
* to provide appropriate access interlocking. The simplest convention is
* that a single LWLock protects the whole hash table. Searches (HASH_FIND or
* hash_seq_search) need only shared lock, but any update requires exclusive
* lock. For heavily-used shared tables, the single-lock approach creates a
* concurrency bottleneck, so we also support "partitioned" locking wherein
* there are multiple LWLocks guarding distinct subsets of the table. To use
* a hash table in partitioned mode, the HASH_PARTITION flag must be given
* to hash_create. This prevents any attempt to split buckets on-the-fly.
* Therefore, each hash bucket chain operates independently, and no fields
* of the hash header change after init except nentries and freeList.
* A partitioned table uses a spinlock to guard changes of those two fields.
* This lets any subset of the hash buckets be treated as a separately
* lockable partition. We expect callers to use the low-order bits of a
* lookup key's hash value as a partition number --- this will work because
* of the way calc_bucket() maps hash values to bucket numbers.
*
* For hash tables in shared memory, the memory allocator function should
* match malloc's semantics of returning NULL on failure. For hash tables
* in local memory, we typically use palloc() which will throw error on
* failure. The code in this file has to cope with both cases.
*
Improve hash_create's API for selecting simple-binary-key hash functions. Previously, if you wanted anything besides C-string hash keys, you had to specify a custom hashing function to hash_create(). Nearly all such callers were specifying tag_hash or oid_hash; which is tedious, and rather error-prone, since a caller could easily miss the opportunity to optimize by using hash_uint32 when appropriate. Replace this with a design whereby callers using simple binary-data keys just specify HASH_BLOBS and don't need to mess with specific support functions. hash_create() itself will take care of optimizing when the key size is four bytes. This nets out saving a few hundred bytes of code space, and offers a measurable performance improvement in tidbitmap.c (which was not exploiting the opportunity to use hash_uint32 for its 4-byte keys). There might be some wins elsewhere too, I didn't analyze closely. In future we could look into offering a similar optimized hashing function for 8-byte keys. Under this design that could be done in a centralized and machine-independent fashion, whereas getting it right for keys of platform-dependent sizes would've been notationally painful before. For the moment, the old way still works fine, so as not to break source code compatibility for loadable modules. Eventually we might want to remove tag_hash and friends from the exported API altogether, since there's no real need for them to be explicitly referenced from outside dynahash.c. Teodor Sigaev and Tom Lane
2014-12-18 19:36:29 +01:00
* dynahash.c provides support for these types of lookup keys:
*
* 1. Null-terminated C strings (truncated if necessary to fit in keysize),
* compared as though by strcmp(). This is the default behavior.
*
* 2. Arbitrary binary data of size keysize, compared as though by memcmp().
* (Caller must ensure there are no undefined padding bits in the keys!)
* This is selected by specifying HASH_BLOBS flag to hash_create.
*
* 3. More complex key behavior can be selected by specifying user-supplied
* hashing, comparison, and/or key-copying functions. At least a hashing
* function must be supplied; comparison defaults to memcmp() and key copying
* to memcpy() when a user-defined hashing function is selected.
*
* Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
2010-09-20 22:08:53 +02:00
* src/backend/utils/hash/dynahash.c
*
*-------------------------------------------------------------------------
*/
/*
* Original comments:
*
* Dynamic hashing, after CACM April 1988 pp 446-457, by Per-Ake Larson.
* Coded into C, with minor code improvements, and with hsearch(3) interface,
* by ejp@ausmelb.oz, Jul 26, 1988: 13:16;
* also, hcreate/hdestroy routines added to simulate hsearch(3).
*
* These routines simulate hsearch(3) and family, with the important
* difference that the hash table is dynamic - can grow indefinitely
* beyond its original size (as supplied to hcreate()).
*
* Performance appears to be comparable to that of hsearch(3).
* The 'source-code' options referred to in hsearch(3)'s 'man' page
* are not implemented; otherwise functionality is identical.
*
* Compilation controls:
* DEBUG controls some informative traces, mainly for debugging.
* HASH_STATISTICS causes HashAccesses and HashCollisions to be maintained;
* when combined with HASH_DEBUG, these are displayed by hdestroy().
*
* Problems & fixes to ejp@ausmelb.oz. WARNING: relies on pre-processor
* concatenation property, in probably unnecessary code 'optimisation'.
*
* Modified margo@postgres.berkeley.edu February 1990
* added multiple table interface
* Modified by sullivan@postgres.berkeley.edu April 1990
* changed ctl structure for shared memory
*/
#include "postgres.h"
#include <limits.h>
#include "access/xact.h"
#include "storage/shmem.h"
#include "storage/spin.h"
#include "utils/dynahash.h"
#include "utils/memutils.h"
/*
* Constants
*
* A hash table has a top-level "directory", each of whose entries points
* to a "segment" of ssize bucket headers. The maximum number of hash
* buckets is thus dsize * ssize (but dsize may be expansible). Of course,
* the number of records in the table can be larger, but we don't want a
* whole lot of records per bucket or performance goes down.
*
* In a hash table allocated in shared memory, the directory cannot be
* expanded because it must stay at a fixed address. The directory size
* should be selected using hash_select_dirsize (and you'd better have
* a good idea of the maximum number of entries!). For non-shared hash
* tables, the initial directory size can be left at the default.
*/
#define DEF_SEGSIZE 256
#define DEF_SEGSIZE_SHIFT 8 /* must be log2(DEF_SEGSIZE) */
#define DEF_DIRSIZE 256
#define DEF_FFACTOR 1 /* default fill factor */
/* A hash bucket is a linked list of HASHELEMENTs */
typedef HASHELEMENT *HASHBUCKET;
/* A hash segment is an array of bucket headers */
typedef HASHBUCKET *HASHSEGMENT;
/*
* Header structure for a hash table --- contains all changeable info
*
* In a shared-memory hash table, the HASHHDR is in shared memory, while
* each backend has a local HTAB struct. For a non-shared table, there isn't
* any functional difference between HASHHDR and HTAB, but we separate them
* anyway to share code between shared and non-shared tables.
*/
struct HASHHDR
{
/* In a partitioned table, take this lock to touch nentries or freeList */
slock_t mutex; /* unused if not partitioned table */
/* These fields change during entry addition/deletion */
long nentries; /* number of entries in hash table */
HASHELEMENT *freeList; /* linked list of free elements */
/* These fields can change, but not in a partitioned table */
/* Also, dsize can't change in a shared table, even if unpartitioned */
long dsize; /* directory size */
long nsegs; /* number of allocated segments (<= dsize) */
uint32 max_bucket; /* ID of maximum bucket in use */
uint32 high_mask; /* mask to modulo into entire table */
uint32 low_mask; /* mask to modulo into lower half of table */
/* These fields are fixed at hashtable creation */
Size keysize; /* hash key length in bytes */
Size entrysize; /* total user element size in bytes */
2006-10-04 02:30:14 +02:00
long num_partitions; /* # partitions (must be power of 2), or 0 */
long ffactor; /* target fill factor */
long max_dsize; /* 'dsize' limit if directory is fixed size */
long ssize; /* segment size --- must be power of 2 */
int sshift; /* segment shift = log2(ssize) */
int nelem_alloc; /* number of entries to allocate at once */
#ifdef HASH_STATISTICS
2006-10-04 02:30:14 +02:00
/*
2006-10-04 02:30:14 +02:00
* Count statistics here. NB: stats code doesn't bother with mutex, so
* counts could be corrupted a bit in a partitioned table.
*/
long accesses;
long collisions;
#endif
};
#define IS_PARTITIONED(hctl) ((hctl)->num_partitions != 0)
/*
* Top control structure for a hashtable --- in a shared table, each backend
* has its own copy (OK since no fields change at runtime)
*/
struct HTAB
{
HASHHDR *hctl; /* => shared control information */
HASHSEGMENT *dir; /* directory of segment starts */
HashValueFunc hash; /* hash function */
HashCompareFunc match; /* key comparison function */
HashCopyFunc keycopy; /* key copying function */
HashAllocFunc alloc; /* memory allocator */
MemoryContext hcxt; /* memory context if default allocator used */
char *tabname; /* table name (for error messages) */
bool isshared; /* true if table is in shared memory */
bool isfixed; /* if true, don't enlarge */
/* freezing a shared table isn't allowed, so we can keep state here */
bool frozen; /* true = no more inserts allowed */
/* We keep local copies of these fixed values to reduce contention */
Size keysize; /* hash key length in bytes */
long ssize; /* segment size --- must be power of 2 */
int sshift; /* segment shift = log2(ssize) */
};
/*
* Key (also entry) part of a HASHELEMENT
*/
#define ELEMENTKEY(helem) (((char *)(helem)) + MAXALIGN(sizeof(HASHELEMENT)))
/*
* Obtain element pointer given pointer to key
*/
#define ELEMENT_FROM_KEY(key) \
((HASHELEMENT *) (((char *) (key)) - MAXALIGN(sizeof(HASHELEMENT))))
/*
* Fast MOD arithmetic, assuming that y is a power of 2 !
*/
#define MOD(x,y) ((x) & ((y)-1))
#if HASH_STATISTICS
static long hash_accesses,
hash_collisions,
hash_expansions;
#endif
/*
* Private function prototypes
*/
static void *DynaHashAlloc(Size size);
static HASHSEGMENT seg_alloc(HTAB *hashp);
static bool element_alloc(HTAB *hashp, int nelem);
static bool dir_realloc(HTAB *hashp);
static bool expand_table(HTAB *hashp);
static HASHBUCKET get_hash_entry(HTAB *hashp);
static void hdefault(HTAB *hashp);
static int choose_nelem_alloc(Size entrysize);
static bool init_htab(HTAB *hashp, long nelem);
static void hash_corrupted(HTAB *hashp);
static long next_pow2_long(long num);
static int next_pow2_int(long num);
static void register_seq_scan(HTAB *hashp);
static void deregister_seq_scan(HTAB *hashp);
static bool has_seq_scans(HTAB *hashp);
/*
* memory allocation support
*/
static MemoryContext CurrentDynaHashCxt = NULL;
static void *
DynaHashAlloc(Size size)
{
Assert(MemoryContextIsValid(CurrentDynaHashCxt));
return MemoryContextAlloc(CurrentDynaHashCxt, size);
}
/*
* HashCompareFunc for string keys
*
* Because we copy keys with strlcpy(), they will be truncated at keysize-1
* bytes, so we can only compare that many ... hence strncmp is almost but
* not quite the right thing.
*/
static int
string_compare(const char *key1, const char *key2, Size keysize)
{
return strncmp(key1, key2, keysize - 1);
}
/************************** CREATE ROUTINES **********************/
/*
* hash_create -- create a new dynamic hash table
*
* tabname: a name for the table (for debugging purposes)
* nelem: maximum number of elements expected
* *info: additional table parameters, as indicated by flags
* flags: bitmask indicating which parameters to take from *info
*
* Note: for a shared-memory hashtable, nelem needs to be a pretty good
* estimate, since we can't expand the table on the fly. But an unshared
* hashtable can be expanded on-the-fly, so it's better for nelem to be
* on the small side and let the table grow if it's exceeded. An overly
* large nelem will penalize hash_seq_search speed without buying much.
*/
HTAB *
hash_create(const char *tabname, long nelem, HASHCTL *info, int flags)
{
HTAB *hashp;
HASHHDR *hctl;
/*
2005-10-15 04:49:52 +02:00
* For shared hash tables, we have a local hash header (HTAB struct) that
* we allocate in TopMemoryContext; all else is in shared memory.
*
* For non-shared hash tables, everything including the hash header is in
* a memory context created specially for the hash table --- this makes
2005-10-15 04:49:52 +02:00
* hash_destroy very simple. The memory context is made a child of either
* a context specified by the caller, or TopMemoryContext if nothing is
* specified.
*/
if (flags & HASH_SHARED_MEM)
{
/* Set up to allocate the hash header */
CurrentDynaHashCxt = TopMemoryContext;
}
else
{
/* Create the hash table's private memory context */
if (flags & HASH_CONTEXT)
CurrentDynaHashCxt = info->hcxt;
else
CurrentDynaHashCxt = TopMemoryContext;
CurrentDynaHashCxt = AllocSetContextCreate(CurrentDynaHashCxt,
tabname,
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
}
/* Initialize the hash header, plus a copy of the table name */
2005-10-15 04:49:52 +02:00
hashp = (HTAB *) DynaHashAlloc(sizeof(HTAB) + strlen(tabname) +1);
1997-09-18 22:22:58 +02:00
MemSet(hashp, 0, sizeof(HTAB));
hashp->tabname = (char *) (hashp + 1);
strcpy(hashp->tabname, tabname);
Improve hash_create's API for selecting simple-binary-key hash functions. Previously, if you wanted anything besides C-string hash keys, you had to specify a custom hashing function to hash_create(). Nearly all such callers were specifying tag_hash or oid_hash; which is tedious, and rather error-prone, since a caller could easily miss the opportunity to optimize by using hash_uint32 when appropriate. Replace this with a design whereby callers using simple binary-data keys just specify HASH_BLOBS and don't need to mess with specific support functions. hash_create() itself will take care of optimizing when the key size is four bytes. This nets out saving a few hundred bytes of code space, and offers a measurable performance improvement in tidbitmap.c (which was not exploiting the opportunity to use hash_uint32 for its 4-byte keys). There might be some wins elsewhere too, I didn't analyze closely. In future we could look into offering a similar optimized hashing function for 8-byte keys. Under this design that could be done in a centralized and machine-independent fashion, whereas getting it right for keys of platform-dependent sizes would've been notationally painful before. For the moment, the old way still works fine, so as not to break source code compatibility for loadable modules. Eventually we might want to remove tag_hash and friends from the exported API altogether, since there's no real need for them to be explicitly referenced from outside dynahash.c. Teodor Sigaev and Tom Lane
2014-12-18 19:36:29 +01:00
/*
* Select the appropriate hash function (see comments at head of file).
*/
if (flags & HASH_FUNCTION)
hashp->hash = info->hash;
Improve hash_create's API for selecting simple-binary-key hash functions. Previously, if you wanted anything besides C-string hash keys, you had to specify a custom hashing function to hash_create(). Nearly all such callers were specifying tag_hash or oid_hash; which is tedious, and rather error-prone, since a caller could easily miss the opportunity to optimize by using hash_uint32 when appropriate. Replace this with a design whereby callers using simple binary-data keys just specify HASH_BLOBS and don't need to mess with specific support functions. hash_create() itself will take care of optimizing when the key size is four bytes. This nets out saving a few hundred bytes of code space, and offers a measurable performance improvement in tidbitmap.c (which was not exploiting the opportunity to use hash_uint32 for its 4-byte keys). There might be some wins elsewhere too, I didn't analyze closely. In future we could look into offering a similar optimized hashing function for 8-byte keys. Under this design that could be done in a centralized and machine-independent fashion, whereas getting it right for keys of platform-dependent sizes would've been notationally painful before. For the moment, the old way still works fine, so as not to break source code compatibility for loadable modules. Eventually we might want to remove tag_hash and friends from the exported API altogether, since there's no real need for them to be explicitly referenced from outside dynahash.c. Teodor Sigaev and Tom Lane
2014-12-18 19:36:29 +01:00
else if (flags & HASH_BLOBS)
{
/* We can optimize hashing for common key sizes */
Assert(flags & HASH_ELEM);
if (info->keysize == sizeof(uint32))
hashp->hash = uint32_hash;
else
hashp->hash = tag_hash;
}
else
hashp->hash = string_hash; /* default hash function */
/*
2006-10-04 02:30:14 +02:00
* If you don't specify a match function, it defaults to string_compare if
* you used string_hash (either explicitly or by default) and to memcmp
Improve hash_create's API for selecting simple-binary-key hash functions. Previously, if you wanted anything besides C-string hash keys, you had to specify a custom hashing function to hash_create(). Nearly all such callers were specifying tag_hash or oid_hash; which is tedious, and rather error-prone, since a caller could easily miss the opportunity to optimize by using hash_uint32 when appropriate. Replace this with a design whereby callers using simple binary-data keys just specify HASH_BLOBS and don't need to mess with specific support functions. hash_create() itself will take care of optimizing when the key size is four bytes. This nets out saving a few hundred bytes of code space, and offers a measurable performance improvement in tidbitmap.c (which was not exploiting the opportunity to use hash_uint32 for its 4-byte keys). There might be some wins elsewhere too, I didn't analyze closely. In future we could look into offering a similar optimized hashing function for 8-byte keys. Under this design that could be done in a centralized and machine-independent fashion, whereas getting it right for keys of platform-dependent sizes would've been notationally painful before. For the moment, the old way still works fine, so as not to break source code compatibility for loadable modules. Eventually we might want to remove tag_hash and friends from the exported API altogether, since there's no real need for them to be explicitly referenced from outside dynahash.c. Teodor Sigaev and Tom Lane
2014-12-18 19:36:29 +01:00
* otherwise.
*
* Note: explicitly specifying string_hash is deprecated, because this
* might not work for callers in loadable modules on some platforms due to
* referencing a trampoline instead of the string_hash function proper.
* Just let it default, eh?
*/
if (flags & HASH_COMPARE)
hashp->match = info->match;
else if (hashp->hash == string_hash)
hashp->match = (HashCompareFunc) string_compare;
else
hashp->match = memcmp;
/*
* Similarly, the key-copying function defaults to strlcpy or memcpy.
*/
if (flags & HASH_KEYCOPY)
hashp->keycopy = info->keycopy;
else if (hashp->hash == string_hash)
hashp->keycopy = (HashCopyFunc) strlcpy;
else
hashp->keycopy = memcpy;
Improve hash_create's API for selecting simple-binary-key hash functions. Previously, if you wanted anything besides C-string hash keys, you had to specify a custom hashing function to hash_create(). Nearly all such callers were specifying tag_hash or oid_hash; which is tedious, and rather error-prone, since a caller could easily miss the opportunity to optimize by using hash_uint32 when appropriate. Replace this with a design whereby callers using simple binary-data keys just specify HASH_BLOBS and don't need to mess with specific support functions. hash_create() itself will take care of optimizing when the key size is four bytes. This nets out saving a few hundred bytes of code space, and offers a measurable performance improvement in tidbitmap.c (which was not exploiting the opportunity to use hash_uint32 for its 4-byte keys). There might be some wins elsewhere too, I didn't analyze closely. In future we could look into offering a similar optimized hashing function for 8-byte keys. Under this design that could be done in a centralized and machine-independent fashion, whereas getting it right for keys of platform-dependent sizes would've been notationally painful before. For the moment, the old way still works fine, so as not to break source code compatibility for loadable modules. Eventually we might want to remove tag_hash and friends from the exported API altogether, since there's no real need for them to be explicitly referenced from outside dynahash.c. Teodor Sigaev and Tom Lane
2014-12-18 19:36:29 +01:00
/* And select the entry allocation function, too. */
if (flags & HASH_ALLOC)
hashp->alloc = info->alloc;
else
hashp->alloc = DynaHashAlloc;
if (flags & HASH_SHARED_MEM)
{
1999-05-25 18:15:34 +02:00
/*
* ctl structure and directory are preallocated for shared memory
* tables. Note that HASH_DIRSIZE and HASH_ALLOC had better be set as
2006-10-04 02:30:14 +02:00
* well.
*/
hashp->hctl = info->hctl;
hashp->dir = (HASHSEGMENT *) (((char *) info->hctl) + sizeof(HASHHDR));
hashp->hcxt = NULL;
hashp->isshared = true;
/* hash table already exists, we're just attaching to it */
if (flags & HASH_ATTACH)
{
/* make local copies of some heavily-used values */
hctl = hashp->hctl;
hashp->keysize = hctl->keysize;
hashp->ssize = hctl->ssize;
hashp->sshift = hctl->sshift;
1998-09-01 05:29:17 +02:00
return hashp;
}
}
else
{
/* setup hash table defaults */
hashp->hctl = NULL;
hashp->dir = NULL;
hashp->hcxt = CurrentDynaHashCxt;
hashp->isshared = false;
}
if (!hashp->hctl)
{
hashp->hctl = (HASHHDR *) hashp->alloc(sizeof(HASHHDR));
if (!hashp->hctl)
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory")));
}
hashp->frozen = false;
hdefault(hashp);
hctl = hashp->hctl;
if (flags & HASH_PARTITION)
{
/* Doesn't make sense to partition a local hash table */
Assert(flags & HASH_SHARED_MEM);
/*
* The number of partitions had better be a power of 2. Also, it must
* be less than INT_MAX (see init_htab()), so call the int version of
* next_pow2.
*/
Assert(info->num_partitions == next_pow2_int(info->num_partitions));
hctl->num_partitions = info->num_partitions;
}
if (flags & HASH_SEGMENT)
{
hctl->ssize = info->ssize;
hctl->sshift = my_log2(info->ssize);
/* ssize had better be a power of 2 */
Assert(hctl->ssize == (1L << hctl->sshift));
}
if (flags & HASH_FFACTOR)
hctl->ffactor = info->ffactor;
/*
* SHM hash tables have fixed directory size passed by the caller.
*/
if (flags & HASH_DIRSIZE)
{
hctl->max_dsize = info->max_dsize;
hctl->dsize = info->dsize;
}
/*
2005-10-15 04:49:52 +02:00
* hash table now allocates space for key and data but you have to say how
* much space to allocate
*/
if (flags & HASH_ELEM)
{
Assert(info->entrysize >= info->keysize);
hctl->keysize = info->keysize;
hctl->entrysize = info->entrysize;
}
/* make local copies of heavily-used constant fields */
hashp->keysize = hctl->keysize;
hashp->ssize = hctl->ssize;
hashp->sshift = hctl->sshift;
/* Build the hash directory structure */
if (!init_htab(hashp, nelem))
elog(ERROR, "failed to initialize hash table \"%s\"", hashp->tabname);
/*
* For a shared hash table, preallocate the requested number of elements.
* This reduces problems with run-time out-of-shared-memory conditions.
*
* For a non-shared hash table, preallocate the requested number of
2006-10-04 02:30:14 +02:00
* elements if it's less than our chosen nelem_alloc. This avoids wasting
* space if the caller correctly estimates a small table size.
*/
if ((flags & HASH_SHARED_MEM) ||
nelem < hctl->nelem_alloc)
{
if (!element_alloc(hashp, (int) nelem))
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory")));
}
if (flags & HASH_FIXED_SIZE)
hashp->isfixed = true;
1998-09-01 05:29:17 +02:00
return hashp;
}
/*
* Set default HASHHDR parameters.
*/
static void
hdefault(HTAB *hashp)
{
HASHHDR *hctl = hashp->hctl;
MemSet(hctl, 0, sizeof(HASHHDR));
hctl->nentries = 0;
hctl->freeList = NULL;
hctl->dsize = DEF_DIRSIZE;
hctl->nsegs = 0;
/* rather pointless defaults for key & entry size */
hctl->keysize = sizeof(char *);
hctl->entrysize = 2 * sizeof(char *);
hctl->num_partitions = 0; /* not partitioned */
hctl->ffactor = DEF_FFACTOR;
/* table has no fixed maximum size */
hctl->max_dsize = NO_MAX_DSIZE;
hctl->ssize = DEF_SEGSIZE;
hctl->sshift = DEF_SEGSIZE_SHIFT;
#ifdef HASH_STATISTICS
hctl->accesses = hctl->collisions = 0;
#endif
}
/*
* Given the user-specified entry size, choose nelem_alloc, ie, how many
* elements to add to the hash table when we need more.
*/
static int
choose_nelem_alloc(Size entrysize)
{
int nelem_alloc;
Size elementSize;
Size allocSize;
/* Each element has a HASHELEMENT header plus user data. */
/* NB: this had better match element_alloc() */
elementSize = MAXALIGN(sizeof(HASHELEMENT)) + MAXALIGN(entrysize);
/*
2006-10-04 02:30:14 +02:00
* The idea here is to choose nelem_alloc at least 32, but round up so
* that the allocation request will be a power of 2 or just less. This
* makes little difference for hash tables in shared memory, but for hash
* tables managed by palloc, the allocation request will be rounded up to
* a power of 2 anyway. If we fail to take this into account, we'll waste
* as much as half the allocated space.
*/
allocSize = 32 * 4; /* assume elementSize at least 8 */
2006-10-04 02:30:14 +02:00
do
{
allocSize <<= 1;
nelem_alloc = allocSize / elementSize;
} while (nelem_alloc < 32);
return nelem_alloc;
}
/*
* Compute derived fields of hctl and build the initial directory/segment
* arrays
*/
static bool
init_htab(HTAB *hashp, long nelem)
{
HASHHDR *hctl = hashp->hctl;
HASHSEGMENT *segp;
int nbuckets;
int nsegs;
/*
* initialize mutex if it's a partitioned table
*/
if (IS_PARTITIONED(hctl))
SpinLockInit(&hctl->mutex);
/*
1999-05-25 18:15:34 +02:00
* Divide number of elements by the fill factor to determine a desired
2005-10-15 04:49:52 +02:00
* number of buckets. Allocate space for the next greater power of two
* number of buckets
*/
nbuckets = next_pow2_int((nelem - 1) / hctl->ffactor + 1);
/*
* In a partitioned table, nbuckets must be at least equal to
* num_partitions; were it less, keys with apparently different partition
* numbers would map to the same bucket, breaking partition independence.
* (Normally nbuckets will be much bigger; this is just a safety check.)
*/
while (nbuckets < hctl->num_partitions)
nbuckets <<= 1;
hctl->max_bucket = hctl->low_mask = nbuckets - 1;
hctl->high_mask = (nbuckets << 1) - 1;
/*
2005-10-15 04:49:52 +02:00
* Figure number of directory segments needed, round up to a power of 2
*/
nsegs = (nbuckets - 1) / hctl->ssize + 1;
nsegs = next_pow2_int(nsegs);
/*
2005-10-15 04:49:52 +02:00
* Make sure directory is big enough. If pre-allocated directory is too
* small, choke (caller screwed up).
*/
if (nsegs > hctl->dsize)
{
if (!(hashp->dir))
hctl->dsize = nsegs;
else
return false;
}
/* Allocate a directory */
if (!(hashp->dir))
{
CurrentDynaHashCxt = hashp->hcxt;
hashp->dir = (HASHSEGMENT *)
hashp->alloc(hctl->dsize * sizeof(HASHSEGMENT));
if (!hashp->dir)
return false;
}
/* Allocate initial segments */
for (segp = hashp->dir; hctl->nsegs < nsegs; hctl->nsegs++, segp++)
{
*segp = seg_alloc(hashp);
if (*segp == NULL)
return false;
}
/* Choose number of entries to allocate at a time */
hctl->nelem_alloc = choose_nelem_alloc(hctl->entrysize);
#if HASH_DEBUG
fprintf(stderr, "init_htab:\n%s%p\n%s%ld\n%s%ld\n%s%d\n%s%ld\n%s%u\n%s%x\n%s%x\n%s%ld\n%s%ld\n",
"TABLE POINTER ", hashp,
"DIRECTORY SIZE ", hctl->dsize,
"SEGMENT SIZE ", hctl->ssize,
"SEGMENT SHIFT ", hctl->sshift,
"FILL FACTOR ", hctl->ffactor,
"MAX BUCKET ", hctl->max_bucket,
"HIGH MASK ", hctl->high_mask,
"LOW MASK ", hctl->low_mask,
"NSEGS ", hctl->nsegs,
"NENTRIES ", hctl->nentries);
#endif
return true;
}
/*
* Estimate the space needed for a hashtable containing the given number
* of entries of given size.
* NOTE: this is used to estimate the footprint of hashtables in shared
* memory; therefore it does not count HTAB which is in local memory.
* NB: assumes that all hash structure parameters have default values!
*/
Size
hash_estimate_size(long num_entries, Size entrysize)
{
Size size;
1999-05-25 18:15:34 +02:00
long nBuckets,
nSegments,
nDirEntries,
nElementAllocs,
elementSize,
elementAllocCnt;
/* estimate number of buckets wanted */
nBuckets = next_pow2_long((num_entries - 1) / DEF_FFACTOR + 1);
/* # of segments needed for nBuckets */
nSegments = next_pow2_long((nBuckets - 1) / DEF_SEGSIZE + 1);
/* directory entries */
nDirEntries = DEF_DIRSIZE;
while (nDirEntries < nSegments)
nDirEntries <<= 1; /* dir_alloc doubles dsize at each call */
/* fixed control info */
size = MAXALIGN(sizeof(HASHHDR)); /* but not HTAB, per above */
/* directory */
size = add_size(size, mul_size(nDirEntries, sizeof(HASHSEGMENT)));
/* segments */
size = add_size(size, mul_size(nSegments,
2005-10-15 04:49:52 +02:00
MAXALIGN(DEF_SEGSIZE * sizeof(HASHBUCKET))));
/* elements --- allocated in groups of choose_nelem_alloc() entries */
elementAllocCnt = choose_nelem_alloc(entrysize);
nElementAllocs = (num_entries - 1) / elementAllocCnt + 1;
elementSize = MAXALIGN(sizeof(HASHELEMENT)) + MAXALIGN(entrysize);
size = add_size(size,
mul_size(nElementAllocs,
mul_size(elementAllocCnt, elementSize)));
return size;
}
/*
* Select an appropriate directory size for a hashtable with the given
* maximum number of entries.
* This is only needed for hashtables in shared memory, whose directories
* cannot be expanded dynamically.
* NB: assumes that all hash structure parameters have default values!
*
* XXX this had better agree with the behavior of init_htab()...
*/
long
hash_select_dirsize(long num_entries)
{
long nBuckets,
nSegments,
nDirEntries;
/* estimate number of buckets wanted */
nBuckets = next_pow2_long((num_entries - 1) / DEF_FFACTOR + 1);
/* # of segments needed for nBuckets */
nSegments = next_pow2_long((nBuckets - 1) / DEF_SEGSIZE + 1);
/* directory entries */
nDirEntries = DEF_DIRSIZE;
while (nDirEntries < nSegments)
nDirEntries <<= 1; /* dir_alloc doubles dsize at each call */
return nDirEntries;
}
/*
* Compute the required initial memory allocation for a shared-memory
* hashtable with the given parameters. We need space for the HASHHDR
* and for the (non expansible) directory.
*/
Size
hash_get_shared_size(HASHCTL *info, int flags)
{
Assert(flags & HASH_DIRSIZE);
Assert(info->dsize == info->max_dsize);
return sizeof(HASHHDR) + info->dsize * sizeof(HASHSEGMENT);
}
/********************** DESTROY ROUTINES ************************/
void
hash_destroy(HTAB *hashp)
{
if (hashp != NULL)
{
/* allocation method must be one we know how to free, too */
Assert(hashp->alloc == DynaHashAlloc);
/* so this hashtable must have it's own context */
Assert(hashp->hcxt != NULL);
hash_stats("destroy", hashp);
/*
* Free everything by destroying the hash table's memory context.
*/
MemoryContextDelete(hashp->hcxt);
}
}
void
hash_stats(const char *where, HTAB *hashp)
{
#if HASH_STATISTICS
fprintf(stderr, "%s: this HTAB -- accesses %ld collisions %ld\n",
where, hashp->hctl->accesses, hashp->hctl->collisions);
fprintf(stderr, "hash_stats: entries %ld keysize %ld maxp %u segmentcount %ld\n",
hashp->hctl->nentries, (long) hashp->hctl->keysize,
hashp->hctl->max_bucket, hashp->hctl->nsegs);
fprintf(stderr, "%s: total accesses %ld total collisions %ld\n",
where, hash_accesses, hash_collisions);
fprintf(stderr, "hash_stats: total expansions %ld\n",
hash_expansions);
#endif
}
/*******************************SEARCH ROUTINES *****************************/
/*
* get_hash_value -- exported routine to calculate a key's hash value
*
* We export this because for partitioned tables, callers need to compute
* the partition number (from the low-order bits of the hash value) before
* searching.
*/
uint32
get_hash_value(HTAB *hashp, const void *keyPtr)
{
return hashp->hash(keyPtr, hashp->keysize);
}
/* Convert a hash value to a bucket number */
static inline uint32
calc_bucket(HASHHDR *hctl, uint32 hash_val)
{
uint32 bucket;
bucket = hash_val & hctl->high_mask;
if (bucket > hctl->max_bucket)
bucket = bucket & hctl->low_mask;
return bucket;
}
/*
* hash_search -- look up key in table and perform action
* hash_search_with_hash_value -- same, with key's hash value already computed
*
* action is one of:
* HASH_FIND: look up key in table
* HASH_ENTER: look up key in table, creating entry if not present
* HASH_ENTER_NULL: same, but return NULL if out of memory
* HASH_REMOVE: look up key in table, remove entry if present
*
* Return value is a pointer to the element found/entered/removed if any,
* or NULL if no match was found. (NB: in the case of the REMOVE action,
* the result is a dangling pointer that shouldn't be dereferenced!)
*
* HASH_ENTER will normally ereport a generic "out of memory" error if
* it is unable to create a new entry. The HASH_ENTER_NULL operation is
* the same except it will return NULL if out of memory. Note that
* HASH_ENTER_NULL cannot be used with the default palloc-based allocator,
* since palloc internally ereports on out-of-memory.
*
* If foundPtr isn't NULL, then *foundPtr is set TRUE if we found an
* existing entry in the table, FALSE otherwise. This is needed in the
* HASH_ENTER case, but is redundant with the return value otherwise.
*
* For hash_search_with_hash_value, the hashvalue parameter must have been
* calculated with get_hash_value().
*/
void *
hash_search(HTAB *hashp,
const void *keyPtr,
HASHACTION action,
bool *foundPtr)
{
return hash_search_with_hash_value(hashp,
keyPtr,
hashp->hash(keyPtr, hashp->keysize),
action,
foundPtr);
}
void *
hash_search_with_hash_value(HTAB *hashp,
const void *keyPtr,
uint32 hashvalue,
HASHACTION action,
bool *foundPtr)
{
HASHHDR *hctl = hashp->hctl;
Size keysize;
uint32 bucket;
long segment_num;
long segment_ndx;
HASHSEGMENT segp;
HASHBUCKET currBucket;
HASHBUCKET *prevBucketPtr;
HashCompareFunc match;
#if HASH_STATISTICS
hash_accesses++;
hctl->accesses++;
#endif
/*
* If inserting, check if it is time to split a bucket.
*
* NOTE: failure to expand table is not a fatal error, it just means we
* have to run at higher fill factor than we wanted. However, if we're
* using the palloc allocator then it will throw error anyway on
* out-of-memory, so we must do this before modifying the table.
*/
if (action == HASH_ENTER || action == HASH_ENTER_NULL)
{
/*
* Can't split if running in partitioned mode, nor if frozen, nor if
* table is the subject of any active hash_seq_search scans. Strange
* order of these tests is to try to check cheaper conditions first.
*/
if (!IS_PARTITIONED(hctl) && !hashp->frozen &&
hctl->nentries / (long) (hctl->max_bucket + 1) >= hctl->ffactor &&
!has_seq_scans(hashp))
(void) expand_table(hashp);
}
/*
* Do the initial lookup
*/
bucket = calc_bucket(hctl, hashvalue);
segment_num = bucket >> hashp->sshift;
segment_ndx = MOD(bucket, hashp->ssize);
segp = hashp->dir[segment_num];
if (segp == NULL)
hash_corrupted(hashp);
prevBucketPtr = &segp[segment_ndx];
currBucket = *prevBucketPtr;
/*
* Follow collision chain looking for matching key
*/
match = hashp->match; /* save one fetch in inner loop */
keysize = hashp->keysize; /* ditto */
while (currBucket != NULL)
{
if (currBucket->hashvalue == hashvalue &&
match(ELEMENTKEY(currBucket), keyPtr, keysize) == 0)
break;
prevBucketPtr = &(currBucket->link);
currBucket = *prevBucketPtr;
#if HASH_STATISTICS
hash_collisions++;
hctl->collisions++;
#endif
}
if (foundPtr)
*foundPtr = (bool) (currBucket != NULL);
/*
* OK, now what?
*/
switch (action)
{
case HASH_FIND:
if (currBucket != NULL)
return (void *) ELEMENTKEY(currBucket);
return NULL;
case HASH_REMOVE:
if (currBucket != NULL)
{
/* use volatile pointer to prevent code rearrangement */
volatile HASHHDR *hctlv = hctl;
/* if partitioned, must lock to touch nentries and freeList */
if (IS_PARTITIONED(hctlv))
SpinLockAcquire(&hctlv->mutex);
Assert(hctlv->nentries > 0);
hctlv->nentries--;
/* remove record from hash bucket's chain. */
*prevBucketPtr = currBucket->link;
/* add the record to the freelist for this table. */
currBucket->link = hctlv->freeList;
hctlv->freeList = currBucket;
if (IS_PARTITIONED(hctlv))
SpinLockRelease(&hctlv->mutex);
/*
* better hope the caller is synchronizing access to this
2005-10-15 04:49:52 +02:00
* element, because someone else is going to reuse it the next
* time something is added to the table
*/
return (void *) ELEMENTKEY(currBucket);
}
return NULL;
case HASH_ENTER_NULL:
/* ENTER_NULL does not work with palloc-based allocator */
Assert(hashp->alloc != DynaHashAlloc);
/* FALL THRU */
case HASH_ENTER:
/* Return existing element if found, else create one */
if (currBucket != NULL)
return (void *) ELEMENTKEY(currBucket);
/* disallow inserts if frozen */
if (hashp->frozen)
elog(ERROR, "cannot insert into frozen hashtable \"%s\"",
hashp->tabname);
currBucket = get_hash_entry(hashp);
if (currBucket == NULL)
{
/* out of memory */
if (action == HASH_ENTER_NULL)
return NULL;
/* report a generic message */
if (hashp->isshared)
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of shared memory")));
else
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory")));
}
/* link into hashbucket chain */
*prevBucketPtr = currBucket;
currBucket->link = NULL;
/* copy key into record */
currBucket->hashvalue = hashvalue;
hashp->keycopy(ELEMENTKEY(currBucket), keyPtr, keysize);
/*
* Caller is expected to fill the data field on return. DO NOT
* insert any code that could possibly throw error here, as doing
* so would leave the table entry incomplete and hence corrupt the
* caller's data structure.
*/
1999-05-25 18:15:34 +02:00
return (void *) ELEMENTKEY(currBucket);
}
elog(ERROR, "unrecognized hash action code: %d", (int) action);
return NULL; /* keep compiler quiet */
}
/*
* hash_update_hash_key -- change the hash key of an existing table entry
*
* This is equivalent to removing the entry, making a new entry, and copying
* over its data, except that the entry never goes to the table's freelist.
* Therefore this cannot suffer an out-of-memory failure, even if there are
* other processes operating in other partitions of the hashtable.
*
* Returns TRUE if successful, FALSE if the requested new hash key is already
* present. Throws error if the specified entry pointer isn't actually a
* table member.
*
* NB: currently, there is no special case for old and new hash keys being
* identical, which means we'll report FALSE for that situation. This is
* preferable for existing uses.
*
* NB: for a partitioned hashtable, caller must hold lock on both relevant
* partitions, if the new hash key would belong to a different partition.
*/
bool
hash_update_hash_key(HTAB *hashp,
void *existingEntry,
const void *newKeyPtr)
{
HASHELEMENT *existingElement = ELEMENT_FROM_KEY(existingEntry);
HASHHDR *hctl = hashp->hctl;
uint32 newhashvalue;
Size keysize;
uint32 bucket;
uint32 newbucket;
long segment_num;
long segment_ndx;
HASHSEGMENT segp;
HASHBUCKET currBucket;
HASHBUCKET *prevBucketPtr;
HASHBUCKET *oldPrevPtr;
HashCompareFunc match;
#if HASH_STATISTICS
hash_accesses++;
hctl->accesses++;
#endif
/* disallow updates if frozen */
if (hashp->frozen)
elog(ERROR, "cannot update in frozen hashtable \"%s\"",
hashp->tabname);
/*
* Lookup the existing element using its saved hash value. We need to do
* this to be able to unlink it from its hash chain, but as a side benefit
* we can verify the validity of the passed existingEntry pointer.
*/
bucket = calc_bucket(hctl, existingElement->hashvalue);
segment_num = bucket >> hashp->sshift;
segment_ndx = MOD(bucket, hashp->ssize);
segp = hashp->dir[segment_num];
if (segp == NULL)
hash_corrupted(hashp);
prevBucketPtr = &segp[segment_ndx];
currBucket = *prevBucketPtr;
while (currBucket != NULL)
{
if (currBucket == existingElement)
break;
prevBucketPtr = &(currBucket->link);
currBucket = *prevBucketPtr;
}
if (currBucket == NULL)
elog(ERROR, "hash_update_hash_key argument is not in hashtable \"%s\"",
hashp->tabname);
oldPrevPtr = prevBucketPtr;
/*
* Now perform the equivalent of a HASH_ENTER operation to locate the hash
* chain we want to put the entry into.
*/
newhashvalue = hashp->hash(newKeyPtr, hashp->keysize);
newbucket = calc_bucket(hctl, newhashvalue);
segment_num = newbucket >> hashp->sshift;
segment_ndx = MOD(newbucket, hashp->ssize);
segp = hashp->dir[segment_num];
if (segp == NULL)
hash_corrupted(hashp);
prevBucketPtr = &segp[segment_ndx];
currBucket = *prevBucketPtr;
/*
* Follow collision chain looking for matching key
*/
match = hashp->match; /* save one fetch in inner loop */
keysize = hashp->keysize; /* ditto */
while (currBucket != NULL)
{
if (currBucket->hashvalue == newhashvalue &&
match(ELEMENTKEY(currBucket), newKeyPtr, keysize) == 0)
break;
prevBucketPtr = &(currBucket->link);
currBucket = *prevBucketPtr;
#if HASH_STATISTICS
hash_collisions++;
hctl->collisions++;
#endif
}
if (currBucket != NULL)
return false; /* collision with an existing entry */
currBucket = existingElement;
/*
* If old and new hash values belong to the same bucket, we need not
* change any chain links, and indeed should not since this simplistic
* update will corrupt the list if currBucket is the last element. (We
* cannot fall out earlier, however, since we need to scan the bucket to
* check for duplicate keys.)
*/
if (bucket != newbucket)
{
/* OK to remove record from old hash bucket's chain. */
*oldPrevPtr = currBucket->link;
/* link into new hashbucket chain */
*prevBucketPtr = currBucket;
currBucket->link = NULL;
}
/* copy new key into record */
currBucket->hashvalue = newhashvalue;
hashp->keycopy(ELEMENTKEY(currBucket), newKeyPtr, keysize);
/* rest of record is untouched */
return true;
}
/*
* create a new entry if possible
*/
static HASHBUCKET
get_hash_entry(HTAB *hashp)
{
/* use volatile pointer to prevent code rearrangement */
volatile HASHHDR *hctlv = hashp->hctl;
HASHBUCKET newElement;
for (;;)
{
/* if partitioned, must lock to touch nentries and freeList */
if (IS_PARTITIONED(hctlv))
SpinLockAcquire(&hctlv->mutex);
/* try to get an entry from the freelist */
newElement = hctlv->freeList;
if (newElement != NULL)
break;
/* no free elements. allocate another chunk of buckets */
if (IS_PARTITIONED(hctlv))
SpinLockRelease(&hctlv->mutex);
if (!element_alloc(hashp, hctlv->nelem_alloc))
{
/* out of memory */
return NULL;
}
}
/* remove entry from freelist, bump nentries */
hctlv->freeList = newElement->link;
hctlv->nentries++;
if (IS_PARTITIONED(hctlv))
SpinLockRelease(&hctlv->mutex);
return newElement;
}
/*
* hash_get_num_entries -- get the number of entries in a hashtable
*/
long
hash_get_num_entries(HTAB *hashp)
{
/*
* We currently don't bother with the mutex; it's only sensible to call
* this function if you've got lock on all partitions of the table.
*/
return hashp->hctl->nentries;
}
/*
* hash_seq_init/_search/_term
* Sequentially search through hash table and return
* all the elements one by one, return NULL when no more.
*
* hash_seq_term should be called if and only if the scan is abandoned before
* completion; if hash_seq_search returns NULL then it has already done the
* end-of-scan cleanup.
*
* NOTE: caller may delete the returned element before continuing the scan.
* However, deleting any other element while the scan is in progress is
* UNDEFINED (it might be the one that curIndex is pointing at!). Also,
* if elements are added to the table while the scan is in progress, it is
* unspecified whether they will be visited by the scan or not.
*
* NOTE: it is possible to use hash_seq_init/hash_seq_search without any
* worry about hash_seq_term cleanup, if the hashtable is first locked against
* further insertions by calling hash_freeze. This is used by nodeAgg.c,
* wherein it is inconvenient to track whether a scan is still open, and
* there's no possibility of further insertions after readout has begun.
*
* NOTE: to use this with a partitioned hashtable, caller had better hold
* at least shared lock on all partitions of the table throughout the scan!
* We can cope with insertions or deletions by our own backend, but *not*
* with concurrent insertions or deletions by another.
*/
void
hash_seq_init(HASH_SEQ_STATUS *status, HTAB *hashp)
{
status->hashp = hashp;
status->curBucket = 0;
status->curEntry = NULL;
if (!hashp->frozen)
register_seq_scan(hashp);
}
void *
hash_seq_search(HASH_SEQ_STATUS *status)
{
HTAB *hashp;
HASHHDR *hctl;
uint32 max_bucket;
long ssize;
long segment_num;
long segment_ndx;
HASHSEGMENT segp;
uint32 curBucket;
HASHELEMENT *curElem;
if ((curElem = status->curEntry) != NULL)
{
/* Continuing scan of curBucket... */
status->curEntry = curElem->link;
2005-10-15 04:49:52 +02:00
if (status->curEntry == NULL) /* end of this bucket */
++status->curBucket;
return (void *) ELEMENTKEY(curElem);
}
/*
* Search for next nonempty bucket starting at curBucket.
*/
curBucket = status->curBucket;
hashp = status->hashp;
hctl = hashp->hctl;
ssize = hashp->ssize;
max_bucket = hctl->max_bucket;
if (curBucket > max_bucket)
{
hash_seq_term(status);
2005-10-15 04:49:52 +02:00
return NULL; /* search is done */
}
/*
* first find the right segment in the table directory.
*/
segment_num = curBucket >> hashp->sshift;
segment_ndx = MOD(curBucket, ssize);
segp = hashp->dir[segment_num];
/*
2005-05-16 02:19:04 +02:00
* Pick up the first item in this bucket's chain. If chain is not empty
* we can begin searching it. Otherwise we have to advance to find the
* next nonempty bucket. We try to optimize that case since searching a
* near-empty hashtable has to iterate this loop a lot.
*/
while ((curElem = segp[segment_ndx]) == NULL)
{
/* empty bucket, advance to next */
if (++curBucket > max_bucket)
{
status->curBucket = curBucket;
hash_seq_term(status);
2005-10-15 04:49:52 +02:00
return NULL; /* search is done */
}
if (++segment_ndx >= ssize)
{
segment_num++;
segment_ndx = 0;
segp = hashp->dir[segment_num];
}
}
/* Begin scan of curBucket... */
status->curEntry = curElem->link;
if (status->curEntry == NULL) /* end of this bucket */
++curBucket;
status->curBucket = curBucket;
return (void *) ELEMENTKEY(curElem);
}
void
hash_seq_term(HASH_SEQ_STATUS *status)
{
if (!status->hashp->frozen)
deregister_seq_scan(status->hashp);
}
/*
* hash_freeze
* Freeze a hashtable against future insertions (deletions are
* still allowed)
*
* The reason for doing this is that by preventing any more bucket splits,
* we no longer need to worry about registering hash_seq_search scans,
* and thus caller need not be careful about ensuring hash_seq_term gets
* called at the right times.
*
* Multiple calls to hash_freeze() are allowed, but you can't freeze a table
* with active scans (since hash_seq_term would then do the wrong thing).
*/
void
hash_freeze(HTAB *hashp)
{
if (hashp->isshared)
elog(ERROR, "cannot freeze shared hashtable \"%s\"", hashp->tabname);
if (!hashp->frozen && has_seq_scans(hashp))
elog(ERROR, "cannot freeze hashtable \"%s\" because it has active scans",
hashp->tabname);
hashp->frozen = true;
}
/********************************* UTILITIES ************************/
/*
* Expand the table by adding one more hash bucket.
*/
static bool
expand_table(HTAB *hashp)
{
HASHHDR *hctl = hashp->hctl;
HASHSEGMENT old_seg,
new_seg;
long old_bucket,
new_bucket;
long new_segnum,
new_segndx;
long old_segnum,
old_segndx;
HASHBUCKET *oldlink,
*newlink;
HASHBUCKET currElement,
nextElement;
Assert(!IS_PARTITIONED(hctl));
#ifdef HASH_STATISTICS
hash_expansions++;
#endif
new_bucket = hctl->max_bucket + 1;
new_segnum = new_bucket >> hashp->sshift;
new_segndx = MOD(new_bucket, hashp->ssize);
if (new_segnum >= hctl->nsegs)
{
/* Allocate new segment if necessary -- could fail if dir full */
if (new_segnum >= hctl->dsize)
1999-05-25 18:15:34 +02:00
if (!dir_realloc(hashp))
return false;
if (!(hashp->dir[new_segnum] = seg_alloc(hashp)))
return false;
hctl->nsegs++;
}
/* OK, we created a new bucket */
hctl->max_bucket++;
/*
* *Before* changing masks, find old bucket corresponding to same hash
2005-10-15 04:49:52 +02:00
* values; values in that bucket may need to be relocated to new bucket.
* Note that new_bucket is certainly larger than low_mask at this point,
* so we can skip the first step of the regular hash mask calc.
*/
old_bucket = (new_bucket & hctl->low_mask);
/*
* If we crossed a power of 2, readjust masks.
*/
if ((uint32) new_bucket > hctl->high_mask)
{
hctl->low_mask = hctl->high_mask;
hctl->high_mask = (uint32) new_bucket | hctl->low_mask;
}
/*
* Relocate records to the new bucket. NOTE: because of the way the hash
2005-10-15 04:49:52 +02:00
* masking is done in calc_bucket, only one old bucket can need to be
* split at this point. With a different way of reducing the hash value,
* that might not be true!
*/
old_segnum = old_bucket >> hashp->sshift;
old_segndx = MOD(old_bucket, hashp->ssize);
old_seg = hashp->dir[old_segnum];
new_seg = hashp->dir[new_segnum];
oldlink = &old_seg[old_segndx];
newlink = &new_seg[new_segndx];
for (currElement = *oldlink;
currElement != NULL;
currElement = nextElement)
{
nextElement = currElement->link;
if ((long) calc_bucket(hctl, currElement->hashvalue) == old_bucket)
{
*oldlink = currElement;
oldlink = &currElement->link;
}
else
{
*newlink = currElement;
newlink = &currElement->link;
}
}
/* don't forget to terminate the rebuilt hash chains... */
*oldlink = NULL;
*newlink = NULL;
return true;
}
static bool
dir_realloc(HTAB *hashp)
{
HASHSEGMENT *p;
HASHSEGMENT *old_p;
long new_dsize;
long old_dirsize;
long new_dirsize;
if (hashp->hctl->max_dsize != NO_MAX_DSIZE)
return false;
/* Reallocate directory */
new_dsize = hashp->hctl->dsize << 1;
old_dirsize = hashp->hctl->dsize * sizeof(HASHSEGMENT);
new_dirsize = new_dsize * sizeof(HASHSEGMENT);
old_p = hashp->dir;
CurrentDynaHashCxt = hashp->hcxt;
p = (HASHSEGMENT *) hashp->alloc((Size) new_dirsize);
if (p != NULL)
{
memcpy(p, old_p, old_dirsize);
MemSet(((char *) p) + old_dirsize, 0, new_dirsize - old_dirsize);
hashp->dir = p;
hashp->hctl->dsize = new_dsize;
/* XXX assume the allocator is palloc, so we know how to free */
Assert(hashp->alloc == DynaHashAlloc);
pfree(old_p);
return true;
}
return false;
}
static HASHSEGMENT
seg_alloc(HTAB *hashp)
{
HASHSEGMENT segp;
CurrentDynaHashCxt = hashp->hcxt;
segp = (HASHSEGMENT) hashp->alloc(sizeof(HASHBUCKET) * hashp->ssize);
if (!segp)
return NULL;
MemSet(segp, 0, sizeof(HASHBUCKET) * hashp->ssize);
return segp;
}
/*
* allocate some new elements and link them into the free list
*/
static bool
element_alloc(HTAB *hashp, int nelem)
{
/* use volatile pointer to prevent code rearrangement */
volatile HASHHDR *hctlv = hashp->hctl;
Size elementSize;
HASHELEMENT *firstElement;
HASHELEMENT *tmpElement;
HASHELEMENT *prevElement;
int i;
if (hashp->isfixed)
return false;
/* Each element has a HASHELEMENT header plus user data. */
elementSize = MAXALIGN(sizeof(HASHELEMENT)) + MAXALIGN(hctlv->entrysize);
CurrentDynaHashCxt = hashp->hcxt;
firstElement = (HASHELEMENT *) hashp->alloc(nelem * elementSize);
if (!firstElement)
return false;
/* prepare to link all the new entries into the freelist */
prevElement = NULL;
tmpElement = firstElement;
for (i = 0; i < nelem; i++)
{
tmpElement->link = prevElement;
prevElement = tmpElement;
tmpElement = (HASHELEMENT *) (((char *) tmpElement) + elementSize);
}
/* if partitioned, must lock to touch freeList */
if (IS_PARTITIONED(hctlv))
SpinLockAcquire(&hctlv->mutex);
/* freelist could be nonempty if two backends did this concurrently */
firstElement->link = hctlv->freeList;
hctlv->freeList = prevElement;
if (IS_PARTITIONED(hctlv))
SpinLockRelease(&hctlv->mutex);
return true;
}
/* complain when we have detected a corrupted hashtable */
static void
hash_corrupted(HTAB *hashp)
{
/*
* If the corruption is in a shared hashtable, we'd better force a
* systemwide restart. Otherwise, just shut down this one backend.
*/
if (hashp->isshared)
elog(PANIC, "hash table \"%s\" corrupted", hashp->tabname);
else
elog(FATAL, "hash table \"%s\" corrupted", hashp->tabname);
}
/* calculate ceil(log base 2) of num */
int
my_log2(long num)
{
int i;
long limit;
/* guard against too-large input, which would put us into infinite loop */
if (num > LONG_MAX / 2)
num = LONG_MAX / 2;
for (i = 0, limit = 1; limit < num; i++, limit <<= 1)
;
1998-09-01 05:29:17 +02:00
return i;
}
/* calculate first power of 2 >= num, bounded to what will fit in a long */
static long
next_pow2_long(long num)
{
/* my_log2's internal range check is sufficient */
return 1L << my_log2(num);
}
/* calculate first power of 2 >= num, bounded to what will fit in an int */
static int
next_pow2_int(long num)
{
if (num > INT_MAX / 2)
num = INT_MAX / 2;
return 1 << my_log2(num);
}
/************************* SEQ SCAN TRACKING ************************/
/*
* We track active hash_seq_search scans here. The need for this mechanism
* comes from the fact that a scan will get confused if a bucket split occurs
* while it's in progress: it might visit entries twice, or even miss some
* entirely (if it's partway through the same bucket that splits). Hence
* we want to inhibit bucket splits if there are any active scans on the
* table being inserted into. This is a fairly rare case in current usage,
* so just postponing the split until the next insertion seems sufficient.
*
* Given present usages of the function, only a few scans are likely to be
* open concurrently; so a finite-size stack of open scans seems sufficient,
* and we don't worry that linear search is too slow. Note that we do
* allow multiple scans of the same hashtable to be open concurrently.
*
* This mechanism can support concurrent scan and insertion in a shared
* hashtable if it's the same backend doing both. It would fail otherwise,
* but locking reasons seem to preclude any such scenario anyway, so we don't
* worry.
*
* This arrangement is reasonably robust if a transient hashtable is deleted
* without notifying us. The absolute worst case is we might inhibit splits
* in another table created later at exactly the same address. We will give
* a warning at transaction end for reference leaks, so any bugs leading to
* lack of notification should be easy to catch.
*/
#define MAX_SEQ_SCANS 100
static HTAB *seq_scan_tables[MAX_SEQ_SCANS]; /* tables being scanned */
static int seq_scan_level[MAX_SEQ_SCANS]; /* subtransaction nest level */
static int num_seq_scans = 0;
/* Register a table as having an active hash_seq_search scan */
static void
register_seq_scan(HTAB *hashp)
{
if (num_seq_scans >= MAX_SEQ_SCANS)
elog(ERROR, "too many active hash_seq_search scans, cannot start one on \"%s\"",
hashp->tabname);
seq_scan_tables[num_seq_scans] = hashp;
seq_scan_level[num_seq_scans] = GetCurrentTransactionNestLevel();
num_seq_scans++;
}
/* Deregister an active scan */
static void
deregister_seq_scan(HTAB *hashp)
{
2007-11-15 22:14:46 +01:00
int i;
/* Search backward since it's most likely at the stack top */
for (i = num_seq_scans - 1; i >= 0; i--)
{
if (seq_scan_tables[i] == hashp)
{
seq_scan_tables[i] = seq_scan_tables[num_seq_scans - 1];
seq_scan_level[i] = seq_scan_level[num_seq_scans - 1];
num_seq_scans--;
return;
}
}
elog(ERROR, "no hash_seq_search scan for hash table \"%s\"",
hashp->tabname);
}
/* Check if a table has any active scan */
static bool
has_seq_scans(HTAB *hashp)
{
2007-11-15 22:14:46 +01:00
int i;
for (i = 0; i < num_seq_scans; i++)
{
if (seq_scan_tables[i] == hashp)
return true;
}
return false;
}
/* Clean up any open scans at end of transaction */
void
AtEOXact_HashTables(bool isCommit)
{
/*
* During abort cleanup, open scans are expected; just silently clean 'em
* out. An open scan at commit means someone forgot a hash_seq_term()
* call, so complain.
*
* Note: it's tempting to try to print the tabname here, but refrain for
* fear of touching deallocated memory. This isn't a user-facing message
* anyway, so it needn't be pretty.
*/
if (isCommit)
{
2007-11-15 22:14:46 +01:00
int i;
for (i = 0; i < num_seq_scans; i++)
{
elog(WARNING, "leaked hash_seq_search scan for hash table %p",
seq_scan_tables[i]);
}
}
num_seq_scans = 0;
}
/* Clean up any open scans at end of subtransaction */
void
AtEOSubXact_HashTables(bool isCommit, int nestDepth)
{
2007-11-15 22:14:46 +01:00
int i;
/*
* Search backward to make cleanup easy. Note we must check all entries,
* not only those at the end of the array, because deletion technique
* doesn't keep them in order.
*/
for (i = num_seq_scans - 1; i >= 0; i--)
{
if (seq_scan_level[i] >= nestDepth)
{
if (isCommit)
elog(WARNING, "leaked hash_seq_search scan for hash table %p",
seq_scan_tables[i]);
seq_scan_tables[i] = seq_scan_tables[num_seq_scans - 1];
seq_scan_level[i] = seq_scan_level[num_seq_scans - 1];
num_seq_scans--;
}
}
}