postgresql/src/backend/commands/analyze.c

2798 lines
81 KiB
C
Raw Normal View History

2000-05-29 19:44:17 +02:00
/*-------------------------------------------------------------------------
*
* analyze.c
* the Postgres statistics generator
2000-05-29 19:44:17 +02:00
*
* Portions Copyright (c) 1996-2013, PostgreSQL Global Development Group
2000-05-29 19:44:17 +02:00
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
2010-09-20 22:08:53 +02:00
* src/backend/commands/analyze.c
2000-05-29 19:44:17 +02:00
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <math.h>
2000-05-29 19:44:17 +02:00
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
#include "access/multixact.h"
#include "access/transam.h"
#include "access/tupconvert.h"
#include "access/tuptoaster.h"
#include "access/visibilitymap.h"
#include "access/xact.h"
#include "catalog/index.h"
2000-05-29 19:44:17 +02:00
#include "catalog/indexing.h"
#include "catalog/pg_collation.h"
#include "catalog/pg_inherits_fn.h"
#include "catalog/pg_namespace.h"
#include "commands/dbcommands.h"
#include "commands/tablecmds.h"
2000-05-29 19:44:17 +02:00
#include "commands/vacuum.h"
#include "executor/executor.h"
#include "foreign/fdwapi.h"
2000-05-29 19:44:17 +02:00
#include "miscadmin.h"
#include "nodes/nodeFuncs.h"
2000-05-29 19:44:17 +02:00
#include "parser/parse_oper.h"
#include "parser/parse_relation.h"
#include "pgstat.h"
#include "postmaster/autovacuum.h"
#include "storage/bufmgr.h"
#include "storage/lmgr.h"
#include "storage/proc.h"
#include "storage/procarray.h"
2000-05-29 19:44:17 +02:00
#include "utils/acl.h"
#include "utils/attoptcache.h"
#include "utils/datum.h"
#include "utils/guc.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/pg_rusage.h"
#include "utils/sortsupport.h"
2000-05-29 19:44:17 +02:00
#include "utils/syscache.h"
#include "utils/timestamp.h"
#include "utils/tqual.h"
2000-05-29 19:44:17 +02:00
/* Data structure for Algorithm S from Knuth 3.4.2 */
typedef struct
{
2004-08-29 07:07:03 +02:00
BlockNumber N; /* number of blocks, known in advance */
int n; /* desired sample size */
2004-08-29 07:07:03 +02:00
BlockNumber t; /* current block number */
int m; /* blocks selected so far */
} BlockSamplerData;
typedef BlockSamplerData *BlockSampler;
/* Per-index data for ANALYZE */
typedef struct AnlIndexData
{
IndexInfo *indexInfo; /* BuildIndexInfo result */
double tupleFract; /* fraction of rows for partial index */
VacAttrStats **vacattrstats; /* index attrs to analyze */
int attr_cnt;
} AnlIndexData;
/* Default statistics target (GUC parameter) */
int default_statistics_target = 100;
/* A few variables that don't seem worth passing around as parameters */
static MemoryContext anl_context = NULL;
static BufferAccessStrategy vac_strategy;
static void do_analyze_rel(Relation onerel, VacuumStmt *vacstmt,
AcquireSampleRowsFunc acquirefunc, BlockNumber relpages,
bool inh, int elevel);
static void BlockSampler_Init(BlockSampler bs, BlockNumber nblocks,
2004-08-29 07:07:03 +02:00
int samplesize);
static bool BlockSampler_HasMore(BlockSampler bs);
static BlockNumber BlockSampler_Next(BlockSampler bs);
static void compute_index_stats(Relation onerel, double totalrows,
2004-08-29 07:07:03 +02:00
AnlIndexData *indexdata, int nindexes,
HeapTuple *rows, int numrows,
MemoryContext col_context);
static VacAttrStats *examine_attribute(Relation onerel, int attnum,
2011-04-10 17:42:00 +02:00
Node *index_expr);
static int acquire_sample_rows(Relation onerel, int elevel,
HeapTuple *rows, int targrows,
double *totalrows, double *totaldeadrows);
static int compare_rows(const void *a, const void *b);
static int acquire_inherited_sample_rows(Relation onerel, int elevel,
HeapTuple *rows, int targrows,
double *totalrows, double *totaldeadrows);
static void update_attstats(Oid relid, bool inh,
2010-02-26 03:01:40 +01:00
int natts, VacAttrStats **vacattrstats);
static Datum std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull);
static Datum ind_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull);
2000-05-29 19:44:17 +02:00
/*
* analyze_rel() -- analyze one relation
2000-05-29 19:44:17 +02:00
*/
void
Fix VACUUM so that it always updates pg_class.reltuples/relpages. When we added the ability for vacuum to skip heap pages by consulting the visibility map, we made it just not update the reltuples/relpages statistics if it skipped any pages. But this could leave us with extremely out-of-date stats for a table that contains any unchanging areas, especially for TOAST tables which never get processed by ANALYZE. In particular this could result in autovacuum making poor decisions about when to process the table, as in recent report from Florian Helmberger. And in general it's a bad idea to not update the stats at all. Instead, use the previous values of reltuples/relpages as an estimate of the tuple density in unvisited pages. This approach results in a "moving average" estimate of reltuples, which should converge to the correct value over multiple VACUUM and ANALYZE cycles even when individual measurements aren't very good. This new method for updating reltuples is used by both VACUUM and ANALYZE, with the result that we no longer need the grotty interconnections that caused ANALYZE to not update the stats depending on what had happened in the parent VACUUM command. Also, fix the logic for skipping all-visible pages during VACUUM so that it looks ahead rather than behind to decide what to do, as per a suggestion from Greg Stark. This eliminates useless scanning of all-visible pages at the start of the relation or just after a not-all-visible page. In particular, the first few pages of the relation will not be invariably included in the scanned pages, which seems to help in not overweighting them in the reltuples estimate. Back-patch to 8.4, where the visibility map was introduced.
2011-05-30 23:05:26 +02:00
analyze_rel(Oid relid, VacuumStmt *vacstmt, BufferAccessStrategy bstrategy)
2000-05-29 19:44:17 +02:00
{
Relation onerel;
int elevel;
AcquireSampleRowsFunc acquirefunc = NULL;
BlockNumber relpages = 0;
/* Select logging level */
if (vacstmt->options & VACOPT_VERBOSE)
elevel = INFO;
else
elevel = DEBUG2;
/* Set up static variables */
vac_strategy = bstrategy;
/*
* Check for user-requested abort.
2000-05-29 19:44:17 +02:00
*/
CHECK_FOR_INTERRUPTS();
2000-05-29 19:44:17 +02:00
/*
2006-10-04 02:30:14 +02:00
* Open the relation, getting ShareUpdateExclusiveLock to ensure that two
* ANALYZEs don't run on it concurrently. (This also locks out a
* concurrent VACUUM, which doesn't matter much at the moment but might
* matter if we ever try to accumulate stats on dead tuples.) If the rel
* has been dropped since we last saw it, we don't need to process it.
2000-05-29 19:44:17 +02:00
*/
if (!(vacstmt->options & VACOPT_NOWAIT))
onerel = try_relation_open(relid, ShareUpdateExclusiveLock);
else if (ConditionalLockRelationOid(relid, ShareUpdateExclusiveLock))
onerel = try_relation_open(relid, NoLock);
else
{
onerel = NULL;
if (IsAutoVacuumWorkerProcess() && Log_autovacuum_min_duration >= 0)
ereport(LOG,
(errcode(ERRCODE_LOCK_NOT_AVAILABLE),
2011-04-10 17:42:00 +02:00
errmsg("skipping analyze of \"%s\" --- lock not available",
vacstmt->relation->relname)));
}
if (!onerel)
return;
2001-03-22 05:01:46 +01:00
2000-05-29 19:44:17 +02:00
/*
* Check permissions --- this should match vacuum's check!
2000-05-29 19:44:17 +02:00
*/
if (!(pg_class_ownercheck(RelationGetRelid(onerel), GetUserId()) ||
2003-06-27 16:45:32 +02:00
(pg_database_ownercheck(MyDatabaseId, GetUserId()) && !onerel->rd_rel->relisshared)))
2000-05-29 19:44:17 +02:00
{
/* No need for a WARNING if we already complained during VACUUM */
if (!(vacstmt->options & VACOPT_VACUUM))
{
if (onerel->rd_rel->relisshared)
ereport(WARNING,
(errmsg("skipping \"%s\" --- only superuser can analyze it",
RelationGetRelationName(onerel))));
else if (onerel->rd_rel->relnamespace == PG_CATALOG_NAMESPACE)
ereport(WARNING,
(errmsg("skipping \"%s\" --- only superuser or database owner can analyze it",
RelationGetRelationName(onerel))));
else
ereport(WARNING,
(errmsg("skipping \"%s\" --- only table or database owner can analyze it",
RelationGetRelationName(onerel))));
}
relation_close(onerel, ShareUpdateExclusiveLock);
2000-05-29 19:44:17 +02:00
return;
}
/*
* Silently ignore tables that are temp tables of other backends ---
* trying to analyze these is rather pointless, since their contents are
* probably not up-to-date on disk. (We don't throw a warning here; it
* would just lead to chatter during a database-wide ANALYZE.)
*/
if (RELATION_IS_OTHER_TEMP(onerel))
{
relation_close(onerel, ShareUpdateExclusiveLock);
return;
}
/*
* We can ANALYZE any table except pg_statistic. See update_attstats
*/
if (RelationGetRelid(onerel) == StatisticRelationId)
{
relation_close(onerel, ShareUpdateExclusiveLock);
return;
}
/*
* Check that it's a plain table, materialized view, or foreign table; we
* used to do this in get_rel_oids() but seems safer to check after we've
* locked the relation.
*/
if (onerel->rd_rel->relkind == RELKIND_RELATION ||
onerel->rd_rel->relkind == RELKIND_MATVIEW)
{
/* Regular table, so we'll use the regular row acquisition function */
acquirefunc = acquire_sample_rows;
/* Also get regular table's size */
relpages = RelationGetNumberOfBlocks(onerel);
}
else if (onerel->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
{
/*
* For a foreign table, call the FDW's hook function to see whether it
* supports analysis.
*/
FdwRoutine *fdwroutine;
bool ok = false;
fdwroutine = GetFdwRoutineForRelation(onerel, false);
if (fdwroutine->AnalyzeForeignTable != NULL)
ok = fdwroutine->AnalyzeForeignTable(onerel,
&acquirefunc,
&relpages);
if (!ok)
{
ereport(WARNING,
(errmsg("skipping \"%s\" --- cannot analyze this foreign table",
RelationGetRelationName(onerel))));
relation_close(onerel, ShareUpdateExclusiveLock);
return;
}
}
else
2000-05-29 19:44:17 +02:00
{
/* No need for a WARNING if we already complained during VACUUM */
if (!(vacstmt->options & VACOPT_VACUUM))
ereport(WARNING,
(errmsg("skipping \"%s\" --- cannot analyze non-tables or special system tables",
RelationGetRelationName(onerel))));
relation_close(onerel, ShareUpdateExclusiveLock);
return;
}
/*
* OK, let's do it. First let other backends know I'm in ANALYZE.
*/
LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
MyPgXact->vacuumFlags |= PROC_IN_ANALYZE;
LWLockRelease(ProcArrayLock);
/*
* Do the normal non-recursive ANALYZE.
*/
do_analyze_rel(onerel, vacstmt, acquirefunc, relpages, false, elevel);
/*
* If there are child tables, do recursive ANALYZE.
*/
if (onerel->rd_rel->relhassubclass)
do_analyze_rel(onerel, vacstmt, acquirefunc, relpages, true, elevel);
/*
* Close source relation now, but keep lock so that no one deletes it
* before we commit. (If someone did, they'd fail to clean up the entries
* we made in pg_statistic. Also, releasing the lock before commit would
* expose us to concurrent-update failures in update_attstats.)
*/
relation_close(onerel, NoLock);
/*
* Reset my PGXACT flag. Note: we need this here, and not in vacuum_rel,
* because the vacuum flag is cleared by the end-of-xact code.
*/
LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
MyPgXact->vacuumFlags &= ~PROC_IN_ANALYZE;
LWLockRelease(ProcArrayLock);
}
/*
* do_analyze_rel() -- analyze one relation, recursively or not
*
* Note that "acquirefunc" is only relevant for the non-inherited case.
* If we supported foreign tables in inheritance trees,
* acquire_inherited_sample_rows would need to determine the appropriate
* acquirefunc for each child table.
*/
static void
do_analyze_rel(Relation onerel, VacuumStmt *vacstmt,
AcquireSampleRowsFunc acquirefunc, BlockNumber relpages,
bool inh, int elevel)
{
int attr_cnt,
tcnt,
i,
ind;
Relation *Irel;
int nindexes;
bool hasindex;
VacAttrStats **vacattrstats;
AnlIndexData *indexdata;
int targrows,
numrows;
double totalrows,
totaldeadrows;
HeapTuple *rows;
PGRUsage ru0;
TimestampTz starttime = 0;
MemoryContext caller_context;
Oid save_userid;
int save_sec_context;
int save_nestlevel;
if (inh)
ereport(elevel,
(errmsg("analyzing \"%s.%s\" inheritance tree",
get_namespace_name(RelationGetNamespace(onerel)),
RelationGetRelationName(onerel))));
else
ereport(elevel,
(errmsg("analyzing \"%s.%s\"",
get_namespace_name(RelationGetNamespace(onerel)),
RelationGetRelationName(onerel))));
/*
2010-02-26 03:01:40 +01:00
* Set up a working context so that we can easily free whatever junk gets
* created.
*/
anl_context = AllocSetContextCreate(CurrentMemoryContext,
"Analyze",
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
caller_context = MemoryContextSwitchTo(anl_context);
/*
* Switch to the table owner's userid, so that any index functions are run
2009-12-09 22:57:51 +01:00
* as that user. Also lock down security-restricted operations and
* arrange to make GUC variable changes local to this command.
*/
2009-12-09 22:57:51 +01:00
GetUserIdAndSecContext(&save_userid, &save_sec_context);
SetUserIdAndSecContext(onerel->rd_rel->relowner,
save_sec_context | SECURITY_RESTRICTED_OPERATION);
save_nestlevel = NewGUCNestLevel();
/* measure elapsed time iff autovacuum logging requires it */
if (IsAutoVacuumWorkerProcess() && Log_autovacuum_min_duration >= 0)
{
pg_rusage_init(&ru0);
if (Log_autovacuum_min_duration > 0)
starttime = GetCurrentTimestamp();
}
/*
* Determine which columns to analyze
*
* Note that system attributes are never analyzed.
*/
if (vacstmt->va_cols != NIL)
2000-05-29 19:44:17 +02:00
{
ListCell *le;
2000-05-29 19:44:17 +02:00
vacattrstats = (VacAttrStats **) palloc(list_length(vacstmt->va_cols) *
sizeof(VacAttrStats *));
tcnt = 0;
foreach(le, vacstmt->va_cols)
2000-05-29 19:44:17 +02:00
{
char *col = strVal(lfirst(le));
2000-05-29 19:44:17 +02:00
i = attnameAttNum(onerel, col, false);
if (i == InvalidAttrNumber)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
2006-10-04 02:30:14 +02:00
errmsg("column \"%s\" of relation \"%s\" does not exist",
col, RelationGetRelationName(onerel))));
vacattrstats[tcnt] = examine_attribute(onerel, i, NULL);
if (vacattrstats[tcnt] != NULL)
tcnt++;
}
attr_cnt = tcnt;
}
else
{
attr_cnt = onerel->rd_att->natts;
vacattrstats = (VacAttrStats **)
palloc(attr_cnt * sizeof(VacAttrStats *));
tcnt = 0;
for (i = 1; i <= attr_cnt; i++)
{
vacattrstats[tcnt] = examine_attribute(onerel, i, NULL);
if (vacattrstats[tcnt] != NULL)
tcnt++;
2000-05-29 19:44:17 +02:00
}
attr_cnt = tcnt;
}
/*
2005-10-15 04:49:52 +02:00
* Open all indexes of the relation, and see if there are any analyzable
* columns in the indexes. We do not analyze index columns if there was
* an explicit column list in the ANALYZE command, however. If we are
2010-02-26 03:01:40 +01:00
* doing a recursive scan, we don't want to touch the parent's indexes at
* all.
*/
if (!inh)
vac_open_indexes(onerel, AccessShareLock, &nindexes, &Irel);
else
{
Irel = NULL;
nindexes = 0;
}
hasindex = (nindexes > 0);
indexdata = NULL;
if (hasindex)
{
indexdata = (AnlIndexData *) palloc0(nindexes * sizeof(AnlIndexData));
for (ind = 0; ind < nindexes; ind++)
{
AnlIndexData *thisdata = &indexdata[ind];
2004-08-29 07:07:03 +02:00
IndexInfo *indexInfo;
thisdata->indexInfo = indexInfo = BuildIndexInfo(Irel[ind]);
2004-08-29 07:07:03 +02:00
thisdata->tupleFract = 1.0; /* fix later if partial */
if (indexInfo->ii_Expressions != NIL && vacstmt->va_cols == NIL)
{
ListCell *indexpr_item = list_head(indexInfo->ii_Expressions);
thisdata->vacattrstats = (VacAttrStats **)
palloc(indexInfo->ii_NumIndexAttrs * sizeof(VacAttrStats *));
tcnt = 0;
for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
{
int keycol = indexInfo->ii_KeyAttrNumbers[i];
if (keycol == 0)
{
/* Found an index expression */
Node *indexkey;
2004-08-29 07:07:03 +02:00
if (indexpr_item == NULL) /* shouldn't happen */
elog(ERROR, "too few entries in indexprs list");
indexkey = (Node *) lfirst(indexpr_item);
indexpr_item = lnext(indexpr_item);
thisdata->vacattrstats[tcnt] =
examine_attribute(Irel[ind], i + 1, indexkey);
if (thisdata->vacattrstats[tcnt] != NULL)
tcnt++;
}
}
thisdata->attr_cnt = tcnt;
}
}
}
/*
2005-10-15 04:49:52 +02:00
* Determine how many rows we need to sample, using the worst case from
* all analyzable columns. We use a lower bound of 100 rows to avoid
* possible overflow in Vitter's algorithm. (Note: that will also be the
* target in the corner case where there are no analyzable columns.)
*/
targrows = 100;
2000-05-29 19:44:17 +02:00
for (i = 0; i < attr_cnt; i++)
{
if (targrows < vacattrstats[i]->minrows)
targrows = vacattrstats[i]->minrows;
}
for (ind = 0; ind < nindexes; ind++)
{
AnlIndexData *thisdata = &indexdata[ind];
for (i = 0; i < thisdata->attr_cnt; i++)
{
if (targrows < thisdata->vacattrstats[i]->minrows)
targrows = thisdata->vacattrstats[i]->minrows;
}
}
/*
* Acquire the sample rows
*/
rows = (HeapTuple *) palloc(targrows * sizeof(HeapTuple));
if (inh)
numrows = acquire_inherited_sample_rows(onerel, elevel,
rows, targrows,
&totalrows, &totaldeadrows);
else
numrows = (*acquirefunc) (onerel, elevel,
rows, targrows,
&totalrows, &totaldeadrows);
2000-05-29 19:44:17 +02:00
/*
2005-10-15 04:49:52 +02:00
* Compute the statistics. Temporary results during the calculations for
* each column are stored in a child context. The calc routines are
* responsible to make sure that whatever they store into the VacAttrStats
* structure is allocated in anl_context.
*/
if (numrows > 0)
{
MemoryContext col_context,
old_context;
col_context = AllocSetContextCreate(anl_context,
"Analyze Column",
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
old_context = MemoryContextSwitchTo(col_context);
for (i = 0; i < attr_cnt; i++)
2000-05-29 19:44:17 +02:00
{
VacAttrStats *stats = vacattrstats[i];
AttributeOpts *aopt;
stats->rows = rows;
stats->tupDesc = onerel->rd_att;
(*stats->compute_stats) (stats,
std_fetch_func,
numrows,
totalrows);
/*
* If the appropriate flavor of the n_distinct option is
* specified, override with the corresponding value.
*/
aopt = get_attribute_options(onerel->rd_id, stats->attr->attnum);
if (aopt != NULL)
{
float8 n_distinct;
2010-02-26 03:01:40 +01:00
n_distinct = inh ? aopt->n_distinct_inherited : aopt->n_distinct;
if (n_distinct != 0.0)
stats->stadistinct = n_distinct;
}
MemoryContextResetAndDeleteChildren(col_context);
2000-05-29 19:44:17 +02:00
}
if (hasindex)
compute_index_stats(onerel, totalrows,
indexdata, nindexes,
rows, numrows,
col_context);
MemoryContextSwitchTo(old_context);
MemoryContextDelete(col_context);
/*
* Emit the completed stats rows into pg_statistic, replacing any
2005-10-15 04:49:52 +02:00
* previous statistics for the target columns. (If there are stats in
* pg_statistic for columns we didn't process, we leave them alone.)
*/
update_attstats(RelationGetRelid(onerel), inh,
attr_cnt, vacattrstats);
for (ind = 0; ind < nindexes; ind++)
{
AnlIndexData *thisdata = &indexdata[ind];
update_attstats(RelationGetRelid(Irel[ind]), false,
thisdata->attr_cnt, thisdata->vacattrstats);
}
}
/*
Fix VACUUM so that it always updates pg_class.reltuples/relpages. When we added the ability for vacuum to skip heap pages by consulting the visibility map, we made it just not update the reltuples/relpages statistics if it skipped any pages. But this could leave us with extremely out-of-date stats for a table that contains any unchanging areas, especially for TOAST tables which never get processed by ANALYZE. In particular this could result in autovacuum making poor decisions about when to process the table, as in recent report from Florian Helmberger. And in general it's a bad idea to not update the stats at all. Instead, use the previous values of reltuples/relpages as an estimate of the tuple density in unvisited pages. This approach results in a "moving average" estimate of reltuples, which should converge to the correct value over multiple VACUUM and ANALYZE cycles even when individual measurements aren't very good. This new method for updating reltuples is used by both VACUUM and ANALYZE, with the result that we no longer need the grotty interconnections that caused ANALYZE to not update the stats depending on what had happened in the parent VACUUM command. Also, fix the logic for skipping all-visible pages during VACUUM so that it looks ahead rather than behind to decide what to do, as per a suggestion from Greg Stark. This eliminates useless scanning of all-visible pages at the start of the relation or just after a not-all-visible page. In particular, the first few pages of the relation will not be invariably included in the scanned pages, which seems to help in not overweighting them in the reltuples estimate. Back-patch to 8.4, where the visibility map was introduced.
2011-05-30 23:05:26 +02:00
* Update pages/tuples stats in pg_class ... but not if we're doing
* inherited stats.
*/
Fix VACUUM so that it always updates pg_class.reltuples/relpages. When we added the ability for vacuum to skip heap pages by consulting the visibility map, we made it just not update the reltuples/relpages statistics if it skipped any pages. But this could leave us with extremely out-of-date stats for a table that contains any unchanging areas, especially for TOAST tables which never get processed by ANALYZE. In particular this could result in autovacuum making poor decisions about when to process the table, as in recent report from Florian Helmberger. And in general it's a bad idea to not update the stats at all. Instead, use the previous values of reltuples/relpages as an estimate of the tuple density in unvisited pages. This approach results in a "moving average" estimate of reltuples, which should converge to the correct value over multiple VACUUM and ANALYZE cycles even when individual measurements aren't very good. This new method for updating reltuples is used by both VACUUM and ANALYZE, with the result that we no longer need the grotty interconnections that caused ANALYZE to not update the stats depending on what had happened in the parent VACUUM command. Also, fix the logic for skipping all-visible pages during VACUUM so that it looks ahead rather than behind to decide what to do, as per a suggestion from Greg Stark. This eliminates useless scanning of all-visible pages at the start of the relation or just after a not-all-visible page. In particular, the first few pages of the relation will not be invariably included in the scanned pages, which seems to help in not overweighting them in the reltuples estimate. Back-patch to 8.4, where the visibility map was introduced.
2011-05-30 23:05:26 +02:00
if (!inh)
vac_update_relstats(onerel,
relpages,
totalrows,
visibilitymap_count(onerel),
hasindex,
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
InvalidTransactionId,
InvalidMultiXactId);
/*
* Same for indexes. Vacuum always scans all indexes, so if we're part of
* VACUUM ANALYZE, don't overwrite the accurate count already inserted by
* VACUUM.
*/
Fix VACUUM so that it always updates pg_class.reltuples/relpages. When we added the ability for vacuum to skip heap pages by consulting the visibility map, we made it just not update the reltuples/relpages statistics if it skipped any pages. But this could leave us with extremely out-of-date stats for a table that contains any unchanging areas, especially for TOAST tables which never get processed by ANALYZE. In particular this could result in autovacuum making poor decisions about when to process the table, as in recent report from Florian Helmberger. And in general it's a bad idea to not update the stats at all. Instead, use the previous values of reltuples/relpages as an estimate of the tuple density in unvisited pages. This approach results in a "moving average" estimate of reltuples, which should converge to the correct value over multiple VACUUM and ANALYZE cycles even when individual measurements aren't very good. This new method for updating reltuples is used by both VACUUM and ANALYZE, with the result that we no longer need the grotty interconnections that caused ANALYZE to not update the stats depending on what had happened in the parent VACUUM command. Also, fix the logic for skipping all-visible pages during VACUUM so that it looks ahead rather than behind to decide what to do, as per a suggestion from Greg Stark. This eliminates useless scanning of all-visible pages at the start of the relation or just after a not-all-visible page. In particular, the first few pages of the relation will not be invariably included in the scanned pages, which seems to help in not overweighting them in the reltuples estimate. Back-patch to 8.4, where the visibility map was introduced.
2011-05-30 23:05:26 +02:00
if (!inh && !(vacstmt->options & VACOPT_VACUUM))
{
for (ind = 0; ind < nindexes; ind++)
{
AnlIndexData *thisdata = &indexdata[ind];
double totalindexrows;
totalindexrows = ceil(thisdata->tupleFract * totalrows);
vac_update_relstats(Irel[ind],
RelationGetNumberOfBlocks(Irel[ind]),
totalindexrows,
0,
false,
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
InvalidTransactionId,
InvalidMultiXactId);
}
}
Revise pgstat's tracking of tuple changes to improve the reliability of decisions about when to auto-analyze. The previous code depended on n_live_tuples + n_dead_tuples - last_anl_tuples, where all three of these numbers could be bad estimates from ANALYZE itself. Even worse, in the presence of a steady flow of HOT updates and matching HOT-tuple reclamations, auto-analyze might never trigger at all, even if all three numbers are exactly right, because n_dead_tuples could hold steady. To fix, replace last_anl_tuples with an accurately tracked count of the total number of committed tuple inserts + updates + deletes since the last ANALYZE on the table. This can still be compared to the same threshold as before, but it's much more trustworthy than the old computation. Tracking this requires one more intra-transaction counter per modified table within backends, but no additional memory space in the stats collector. There probably isn't any measurable speed difference; if anything it might be a bit faster than before, since I was able to eliminate some per-tuple arithmetic operations in favor of adding sums once per (sub)transaction. Also, simplify the logic around pgstat vacuum and analyze reporting messages by not trying to fold VACUUM ANALYZE into a single pgstat message. The original thought behind this patch was to allow scheduling of analyzes on parent tables by artificially inflating their changes_since_analyze count. I've left that for a separate patch since this change seems to stand on its own merit.
2009-12-30 21:32:14 +01:00
/*
2011-06-09 20:32:50 +02:00
* Report ANALYZE to the stats collector, too. However, if doing
Fix VACUUM so that it always updates pg_class.reltuples/relpages. When we added the ability for vacuum to skip heap pages by consulting the visibility map, we made it just not update the reltuples/relpages statistics if it skipped any pages. But this could leave us with extremely out-of-date stats for a table that contains any unchanging areas, especially for TOAST tables which never get processed by ANALYZE. In particular this could result in autovacuum making poor decisions about when to process the table, as in recent report from Florian Helmberger. And in general it's a bad idea to not update the stats at all. Instead, use the previous values of reltuples/relpages as an estimate of the tuple density in unvisited pages. This approach results in a "moving average" estimate of reltuples, which should converge to the correct value over multiple VACUUM and ANALYZE cycles even when individual measurements aren't very good. This new method for updating reltuples is used by both VACUUM and ANALYZE, with the result that we no longer need the grotty interconnections that caused ANALYZE to not update the stats depending on what had happened in the parent VACUUM command. Also, fix the logic for skipping all-visible pages during VACUUM so that it looks ahead rather than behind to decide what to do, as per a suggestion from Greg Stark. This eliminates useless scanning of all-visible pages at the start of the relation or just after a not-all-visible page. In particular, the first few pages of the relation will not be invariably included in the scanned pages, which seems to help in not overweighting them in the reltuples estimate. Back-patch to 8.4, where the visibility map was introduced.
2011-05-30 23:05:26 +02:00
* inherited stats we shouldn't report, because the stats collector only
* tracks per-table stats.
Revise pgstat's tracking of tuple changes to improve the reliability of decisions about when to auto-analyze. The previous code depended on n_live_tuples + n_dead_tuples - last_anl_tuples, where all three of these numbers could be bad estimates from ANALYZE itself. Even worse, in the presence of a steady flow of HOT updates and matching HOT-tuple reclamations, auto-analyze might never trigger at all, even if all three numbers are exactly right, because n_dead_tuples could hold steady. To fix, replace last_anl_tuples with an accurately tracked count of the total number of committed tuple inserts + updates + deletes since the last ANALYZE on the table. This can still be compared to the same threshold as before, but it's much more trustworthy than the old computation. Tracking this requires one more intra-transaction counter per modified table within backends, but no additional memory space in the stats collector. There probably isn't any measurable speed difference; if anything it might be a bit faster than before, since I was able to eliminate some per-tuple arithmetic operations in favor of adding sums once per (sub)transaction. Also, simplify the logic around pgstat vacuum and analyze reporting messages by not trying to fold VACUUM ANALYZE into a single pgstat message. The original thought behind this patch was to allow scheduling of analyzes on parent tables by artificially inflating their changes_since_analyze count. I've left that for a separate patch since this change seems to stand on its own merit.
2009-12-30 21:32:14 +01:00
*/
if (!inh)
Fix VACUUM so that it always updates pg_class.reltuples/relpages. When we added the ability for vacuum to skip heap pages by consulting the visibility map, we made it just not update the reltuples/relpages statistics if it skipped any pages. But this could leave us with extremely out-of-date stats for a table that contains any unchanging areas, especially for TOAST tables which never get processed by ANALYZE. In particular this could result in autovacuum making poor decisions about when to process the table, as in recent report from Florian Helmberger. And in general it's a bad idea to not update the stats at all. Instead, use the previous values of reltuples/relpages as an estimate of the tuple density in unvisited pages. This approach results in a "moving average" estimate of reltuples, which should converge to the correct value over multiple VACUUM and ANALYZE cycles even when individual measurements aren't very good. This new method for updating reltuples is used by both VACUUM and ANALYZE, with the result that we no longer need the grotty interconnections that caused ANALYZE to not update the stats depending on what had happened in the parent VACUUM command. Also, fix the logic for skipping all-visible pages during VACUUM so that it looks ahead rather than behind to decide what to do, as per a suggestion from Greg Stark. This eliminates useless scanning of all-visible pages at the start of the relation or just after a not-all-visible page. In particular, the first few pages of the relation will not be invariably included in the scanned pages, which seems to help in not overweighting them in the reltuples estimate. Back-patch to 8.4, where the visibility map was introduced.
2011-05-30 23:05:26 +02:00
pgstat_report_analyze(onerel, totalrows, totaldeadrows);
Revise pgstat's tracking of tuple changes to improve the reliability of decisions about when to auto-analyze. The previous code depended on n_live_tuples + n_dead_tuples - last_anl_tuples, where all three of these numbers could be bad estimates from ANALYZE itself. Even worse, in the presence of a steady flow of HOT updates and matching HOT-tuple reclamations, auto-analyze might never trigger at all, even if all three numbers are exactly right, because n_dead_tuples could hold steady. To fix, replace last_anl_tuples with an accurately tracked count of the total number of committed tuple inserts + updates + deletes since the last ANALYZE on the table. This can still be compared to the same threshold as before, but it's much more trustworthy than the old computation. Tracking this requires one more intra-transaction counter per modified table within backends, but no additional memory space in the stats collector. There probably isn't any measurable speed difference; if anything it might be a bit faster than before, since I was able to eliminate some per-tuple arithmetic operations in favor of adding sums once per (sub)transaction. Also, simplify the logic around pgstat vacuum and analyze reporting messages by not trying to fold VACUUM ANALYZE into a single pgstat message. The original thought behind this patch was to allow scheduling of analyzes on parent tables by artificially inflating their changes_since_analyze count. I've left that for a separate patch since this change seems to stand on its own merit.
2009-12-30 21:32:14 +01:00
/* If this isn't part of VACUUM ANALYZE, let index AMs do cleanup */
if (!(vacstmt->options & VACOPT_VACUUM))
{
for (ind = 0; ind < nindexes; ind++)
{
IndexBulkDeleteResult *stats;
IndexVacuumInfo ivinfo;
ivinfo.index = Irel[ind];
ivinfo.analyze_only = true;
ivinfo.estimated_count = true;
ivinfo.message_level = elevel;
ivinfo.num_heap_tuples = onerel->rd_rel->reltuples;
ivinfo.strategy = vac_strategy;
stats = index_vacuum_cleanup(&ivinfo, NULL);
if (stats)
pfree(stats);
}
}
/* Done with indexes */
vac_close_indexes(nindexes, Irel, NoLock);
/* Log the action if appropriate */
if (IsAutoVacuumWorkerProcess() && Log_autovacuum_min_duration >= 0)
{
if (Log_autovacuum_min_duration == 0 ||
TimestampDifferenceExceeds(starttime, GetCurrentTimestamp(),
Log_autovacuum_min_duration))
ereport(LOG,
(errmsg("automatic analyze of table \"%s.%s.%s\" system usage: %s",
get_database_name(MyDatabaseId),
get_namespace_name(RelationGetNamespace(onerel)),
RelationGetRelationName(onerel),
pg_rusage_show(&ru0))));
}
2009-12-09 22:57:51 +01:00
/* Roll back any GUC changes executed by index functions */
AtEOXact_GUC(false, save_nestlevel);
/* Restore userid and security context */
SetUserIdAndSecContext(save_userid, save_sec_context);
/* Restore current context and release memory */
MemoryContextSwitchTo(caller_context);
MemoryContextDelete(anl_context);
anl_context = NULL;
}
/*
* Compute statistics about indexes of a relation
*/
static void
compute_index_stats(Relation onerel, double totalrows,
AnlIndexData *indexdata, int nindexes,
HeapTuple *rows, int numrows,
MemoryContext col_context)
{
MemoryContext ind_context,
2004-08-29 07:07:03 +02:00
old_context;
Datum values[INDEX_MAX_KEYS];
bool isnull[INDEX_MAX_KEYS];
int ind,
i;
ind_context = AllocSetContextCreate(anl_context,
"Analyze Index",
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
old_context = MemoryContextSwitchTo(ind_context);
for (ind = 0; ind < nindexes; ind++)
{
AnlIndexData *thisdata = &indexdata[ind];
2004-08-29 07:07:03 +02:00
IndexInfo *indexInfo = thisdata->indexInfo;
int attr_cnt = thisdata->attr_cnt;
TupleTableSlot *slot;
EState *estate;
ExprContext *econtext;
List *predicate;
Datum *exprvals;
bool *exprnulls;
int numindexrows,
tcnt,
rowno;
double totalindexrows;
/* Ignore index if no columns to analyze and not partial */
if (attr_cnt == 0 && indexInfo->ii_Predicate == NIL)
continue;
/*
* Need an EState for evaluation of index expressions and
2005-10-15 04:49:52 +02:00
* partial-index predicates. Create it in the per-index context to be
* sure it gets cleaned up at the bottom of the loop.
*/
estate = CreateExecutorState();
econtext = GetPerTupleExprContext(estate);
/* Need a slot to hold the current heap tuple, too */
slot = MakeSingleTupleTableSlot(RelationGetDescr(onerel));
/* Arrange for econtext's scan tuple to be the tuple under test */
econtext->ecxt_scantuple = slot;
/* Set up execution state for predicate. */
predicate = (List *)
ExecPrepareExpr((Expr *) indexInfo->ii_Predicate,
estate);
/* Compute and save index expression values */
exprvals = (Datum *) palloc(numrows * attr_cnt * sizeof(Datum));
exprnulls = (bool *) palloc(numrows * attr_cnt * sizeof(bool));
numindexrows = 0;
tcnt = 0;
for (rowno = 0; rowno < numrows; rowno++)
{
HeapTuple heapTuple = rows[rowno];
/*
* Reset the per-tuple context each time, to reclaim any cruft
* left behind by evaluating the predicate or index expressions.
*/
ResetExprContext(econtext);
/* Set up for predicate or expression evaluation */
ExecStoreTuple(heapTuple, slot, InvalidBuffer, false);
/* If index is partial, check predicate */
if (predicate != NIL)
{
if (!ExecQual(predicate, econtext, false))
continue;
}
numindexrows++;
if (attr_cnt > 0)
{
/*
2004-08-29 07:07:03 +02:00
* Evaluate the index row to compute expression values. We
2005-10-15 04:49:52 +02:00
* could do this by hand, but FormIndexDatum is convenient.
*/
FormIndexDatum(indexInfo,
slot,
estate,
values,
isnull);
2004-08-29 07:07:03 +02:00
/*
* Save just the columns we care about. We copy the values
* into ind_context from the estate's per-tuple context.
*/
for (i = 0; i < attr_cnt; i++)
{
VacAttrStats *stats = thisdata->vacattrstats[i];
2004-08-29 07:07:03 +02:00
int attnum = stats->attr->attnum;
if (isnull[attnum - 1])
{
exprvals[tcnt] = (Datum) 0;
exprnulls[tcnt] = true;
}
else
{
exprvals[tcnt] = datumCopy(values[attnum - 1],
stats->attrtype->typbyval,
stats->attrtype->typlen);
exprnulls[tcnt] = false;
}
tcnt++;
}
}
}
/*
2005-10-15 04:49:52 +02:00
* Having counted the number of rows that pass the predicate in the
* sample, we can estimate the total number of rows in the index.
*/
thisdata->tupleFract = (double) numindexrows / (double) numrows;
totalindexrows = ceil(thisdata->tupleFract * totalrows);
/*
* Now we can compute the statistics for the expression columns.
*/
if (numindexrows > 0)
{
MemoryContextSwitchTo(col_context);
for (i = 0; i < attr_cnt; i++)
{
VacAttrStats *stats = thisdata->vacattrstats[i];
AttributeOpts *aopt =
2010-02-26 03:01:40 +01:00
get_attribute_options(stats->attr->attrelid,
stats->attr->attnum);
stats->exprvals = exprvals + i;
stats->exprnulls = exprnulls + i;
stats->rowstride = attr_cnt;
(*stats->compute_stats) (stats,
ind_fetch_func,
numindexrows,
totalindexrows);
/*
* If the n_distinct option is specified, it overrides the
* above computation. For indices, we always use just
* n_distinct, not n_distinct_inherited.
*/
if (aopt != NULL && aopt->n_distinct != 0.0)
stats->stadistinct = aopt->n_distinct;
MemoryContextResetAndDeleteChildren(col_context);
}
}
/* And clean up */
MemoryContextSwitchTo(ind_context);
ExecDropSingleTupleTableSlot(slot);
FreeExecutorState(estate);
MemoryContextResetAndDeleteChildren(ind_context);
}
MemoryContextSwitchTo(old_context);
MemoryContextDelete(ind_context);
}
/*
* examine_attribute -- pre-analysis of a single column
*
* Determine whether the column is analyzable; if so, create and initialize
* a VacAttrStats struct for it. If not, return NULL.
*
* If index_expr isn't NULL, then we're trying to analyze an expression index,
* and index_expr is the expression tree representing the column's data.
*/
static VacAttrStats *
examine_attribute(Relation onerel, int attnum, Node *index_expr)
{
Form_pg_attribute attr = onerel->rd_att->attrs[attnum - 1];
HeapTuple typtuple;
VacAttrStats *stats;
int i;
bool ok;
/* Never analyze dropped columns */
if (attr->attisdropped)
return NULL;
/* Don't analyze column if user has specified not to */
if (attr->attstattarget == 0)
return NULL;
/*
* Create the VacAttrStats struct. Note that we only have a copy of the
* fixed fields of the pg_attribute tuple.
*/
stats = (VacAttrStats *) palloc0(sizeof(VacAttrStats));
stats->attr = (Form_pg_attribute) palloc(ATTRIBUTE_FIXED_PART_SIZE);
memcpy(stats->attr, attr, ATTRIBUTE_FIXED_PART_SIZE);
/*
* When analyzing an expression index, believe the expression tree's type
* not the column datatype --- the latter might be the opckeytype storage
2011-04-10 17:42:00 +02:00
* type of the opclass, which is not interesting for our purposes. (Note:
* if we did anything with non-expression index columns, we'd need to
* figure out where to get the correct type info from, but for now that's
2011-04-10 17:42:00 +02:00
* not a problem.) It's not clear whether anyone will care about the
* typmod, but we store that too just in case.
*/
if (index_expr)
{
stats->attrtypid = exprType(index_expr);
stats->attrtypmod = exprTypmod(index_expr);
}
else
{
stats->attrtypid = attr->atttypid;
stats->attrtypmod = attr->atttypmod;
}
typtuple = SearchSysCacheCopy1(TYPEOID,
ObjectIdGetDatum(stats->attrtypid));
if (!HeapTupleIsValid(typtuple))
elog(ERROR, "cache lookup failed for type %u", stats->attrtypid);
stats->attrtype = (Form_pg_type) GETSTRUCT(typtuple);
stats->anl_context = anl_context;
stats->tupattnum = attnum;
/*
* The fields describing the stats->stavalues[n] element types default to
* the type of the data being analyzed, but the type-specific typanalyze
* function can change them if it wants to store something else.
*/
for (i = 0; i < STATISTIC_NUM_SLOTS; i++)
{
stats->statypid[i] = stats->attrtypid;
stats->statyplen[i] = stats->attrtype->typlen;
stats->statypbyval[i] = stats->attrtype->typbyval;
stats->statypalign[i] = stats->attrtype->typalign;
}
/*
2005-10-15 04:49:52 +02:00
* Call the type-specific typanalyze function. If none is specified, use
* std_typanalyze().
*/
if (OidIsValid(stats->attrtype->typanalyze))
ok = DatumGetBool(OidFunctionCall1(stats->attrtype->typanalyze,
PointerGetDatum(stats)));
else
ok = std_typanalyze(stats);
if (!ok || stats->compute_stats == NULL || stats->minrows <= 0)
{
heap_freetuple(typtuple);
pfree(stats->attr);
pfree(stats);
return NULL;
}
return stats;
}
2000-05-29 19:44:17 +02:00
/*
* BlockSampler_Init -- prepare for random sampling of blocknumbers
*
* BlockSampler is used for stage one of our new two-stage tuple
* sampling mechanism as discussed on pgsql-hackers 2004-04-02 (subject
* "Large DB"). It selects a random sample of samplesize blocks out of
* the nblocks blocks in the table. If the table has less than
* samplesize blocks, all blocks are selected.
*
* Since we know the total number of blocks in advance, we can use the
* straightforward Algorithm S from Knuth 3.4.2, rather than Vitter's
* algorithm.
*/
static void
BlockSampler_Init(BlockSampler bs, BlockNumber nblocks, int samplesize)
{
bs->N = nblocks; /* measured table size */
2004-08-29 07:07:03 +02:00
/*
2005-10-15 04:49:52 +02:00
* If we decide to reduce samplesize for tables that have less or not much
* more than samplesize blocks, here is the place to do it.
*/
bs->n = samplesize;
bs->t = 0; /* blocks scanned so far */
bs->m = 0; /* blocks selected so far */
}
static bool
BlockSampler_HasMore(BlockSampler bs)
{
return (bs->t < bs->N) && (bs->m < bs->n);
}
static BlockNumber
BlockSampler_Next(BlockSampler bs)
{
2004-08-29 07:07:03 +02:00
BlockNumber K = bs->N - bs->t; /* remaining blocks */
int k = bs->n - bs->m; /* blocks still to sample */
2004-08-29 07:07:03 +02:00
double p; /* probability to skip block */
double V; /* random */
Assert(BlockSampler_HasMore(bs)); /* hence K > 0 and k > 0 */
if ((BlockNumber) k >= K)
{
/* need all the rest */
bs->m++;
return bs->t++;
}
/*----------
* It is not obvious that this code matches Knuth's Algorithm S.
* Knuth says to skip the current block with probability 1 - k/K.
* If we are to skip, we should advance t (hence decrease K), and
* repeat the same probabilistic test for the next block. The naive
* implementation thus requires an anl_random_fract() call for each block
* number. But we can reduce this to one anl_random_fract() call per
* selected block, by noting that each time the while-test succeeds,
* we can reinterpret V as a uniform random number in the range 0 to p.
* Therefore, instead of choosing a new V, we just adjust p to be
* the appropriate fraction of its former value, and our next loop
* makes the appropriate probabilistic test.
*
* We have initially K > k > 0. If the loop reduces K to equal k,
* the next while-test must fail since p will become exactly zero
* (we assume there will not be roundoff error in the division).
* (Note: Knuth suggests a "<=" loop condition, but we use "<" just
* to be doubly sure about roundoff error.) Therefore K cannot become
* less than k, which means that we cannot fail to select enough blocks.
*----------
*/
V = anl_random_fract();
p = 1.0 - (double) k / (double) K;
while (V < p)
{
/* skip */
bs->t++;
K--; /* keep K == N - t */
/* adjust p to be new cutoff point in reduced range */
p *= 1.0 - (double) k / (double) K;
}
/* select */
bs->m++;
return bs->t++;
}
/*
* acquire_sample_rows -- acquire a random sample of rows from the table
*
* Selected rows are returned in the caller-allocated array rows[], which
* must have at least targrows entries.
* The actual number of rows selected is returned as the function result.
* We also estimate the total numbers of live and dead rows in the table,
* and return them into *totalrows and *totaldeadrows, respectively.
*
* The returned list of tuples is in order by physical position in the table.
* (We will rely on this later to derive correlation estimates.)
*
* As of May 2004 we use a new two-stage method: Stage one selects up
* to targrows random blocks (or all blocks, if there aren't so many).
* Stage two scans these blocks and uses the Vitter algorithm to create
* a random sample of targrows rows (or less, if there are less in the
* sample of blocks). The two stages are executed simultaneously: each
* block is processed as soon as stage one returns its number and while
* the rows are read stage two controls which ones are to be inserted
* into the sample.
*
* Although every row has an equal chance of ending up in the final
* sample, this sampling method is not perfect: not every possible
* sample has an equal chance of being selected. For large relations
* the number of different blocks represented by the sample tends to be
* too small. We can live with that for now. Improvements are welcome.
*
* An important property of this sampling method is that because we do
* look at a statistically unbiased set of blocks, we should get
* unbiased estimates of the average numbers of live and dead rows per
* block. The previous sampling method put too much credence in the row
* density near the start of the table.
*/
static int
acquire_sample_rows(Relation onerel, int elevel,
HeapTuple *rows, int targrows,
double *totalrows, double *totaldeadrows)
{
int numrows = 0; /* # rows now in reservoir */
double samplerows = 0; /* total # rows collected */
double liverows = 0; /* # live rows seen */
double deadrows = 0; /* # dead rows seen */
2004-08-29 07:07:03 +02:00
double rowstoskip = -1; /* -1 means not set yet */
BlockNumber totalblocks;
TransactionId OldestXmin;
BlockSamplerData bs;
double rstate;
Assert(targrows > 0);
totalblocks = RelationGetNumberOfBlocks(onerel);
/* Need a cutoff xmin for HeapTupleSatisfiesVacuum */
OldestXmin = GetOldestXmin(onerel->rd_rel->relisshared, true);
/* Prepare for sampling block numbers */
BlockSampler_Init(&bs, totalblocks, targrows);
/* Prepare for sampling rows */
rstate = anl_init_selection_state(targrows);
/* Outer loop over blocks to sample */
while (BlockSampler_HasMore(&bs))
{
BlockNumber targblock = BlockSampler_Next(&bs);
Buffer targbuffer;
Page targpage;
OffsetNumber targoffset,
maxoffset;
vacuum_delay_point();
/*
2005-10-15 04:49:52 +02:00
* We must maintain a pin on the target page's buffer to ensure that
* the maxoffset value stays good (else concurrent VACUUM might delete
* tuples out from under us). Hence, pin the page until we are done
* looking at it. We also choose to hold sharelock on the buffer
* throughout --- we could release and re-acquire sharelock for each
* tuple, but since we aren't doing much work per tuple, the extra
* lock traffic is probably better avoided.
*/
targbuffer = ReadBufferExtended(onerel, MAIN_FORKNUM, targblock,
RBM_NORMAL, vac_strategy);
LockBuffer(targbuffer, BUFFER_LOCK_SHARE);
targpage = BufferGetPage(targbuffer);
maxoffset = PageGetMaxOffsetNumber(targpage);
/* Inner loop over all tuples on the selected page */
for (targoffset = FirstOffsetNumber; targoffset <= maxoffset; targoffset++)
2000-05-29 19:44:17 +02:00
{
ItemId itemid;
HeapTupleData targtuple;
bool sample_it = false;
itemid = PageGetItemId(targpage, targoffset);
/*
* We ignore unused and redirect line pointers. DEAD line
* pointers should be counted as dead, because we need vacuum to
* run to get rid of them. Note that this rule agrees with the
* way that heap_page_prune() counts things.
*/
if (!ItemIdIsNormal(itemid))
{
if (ItemIdIsDead(itemid))
deadrows += 1;
continue;
}
ItemPointerSet(&targtuple.t_self, targblock, targoffset);
targtuple.t_tableOid = RelationGetRelid(onerel);
targtuple.t_data = (HeapTupleHeader) PageGetItem(targpage, itemid);
targtuple.t_len = ItemIdGetLength(itemid);
switch (HeapTupleSatisfiesVacuum(&targtuple,
OldestXmin,
targbuffer))
{
case HEAPTUPLE_LIVE:
sample_it = true;
liverows += 1;
break;
case HEAPTUPLE_DEAD:
case HEAPTUPLE_RECENTLY_DEAD:
/* Count dead and recently-dead rows */
deadrows += 1;
break;
case HEAPTUPLE_INSERT_IN_PROGRESS:
/*
* Insert-in-progress rows are not counted. We assume
* that when the inserting transaction commits or aborts,
* it will send a stats message to increment the proper
* count. This works right only if that transaction ends
* after we finish analyzing the table; if things happen
* in the other order, its stats update will be
* overwritten by ours. However, the error will be large
* only if the other transaction runs long enough to
* insert many tuples, so assuming it will finish after us
* is the safer option.
*
* A special case is that the inserting transaction might
* be our own. In this case we should count and sample
* the row, to accommodate users who load a table and
* analyze it in one transaction. (pgstat_report_analyze
* has to adjust the numbers we send to the stats
* collector to make this come out right.)
*/
if (TransactionIdIsCurrentTransactionId(HeapTupleHeaderGetXmin(targtuple.t_data)))
{
sample_it = true;
liverows += 1;
}
break;
case HEAPTUPLE_DELETE_IN_PROGRESS:
/*
* We count delete-in-progress rows as still live, using
* the same reasoning given above; but we don't bother to
* include them in the sample.
*
* If the delete was done by our own transaction, however,
* we must count the row as dead to make
* pgstat_report_analyze's stats adjustments come out
* right. (Note: this works out properly when the row was
* both inserted and deleted in our xact.)
*/
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
if (TransactionIdIsCurrentTransactionId(HeapTupleHeaderGetUpdateXid(targtuple.t_data)))
deadrows += 1;
else
liverows += 1;
break;
default:
elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result");
break;
}
if (sample_it)
{
/*
* The first targrows sample rows are simply copied into the
2004-08-29 07:07:03 +02:00
* reservoir. Then we start replacing tuples in the sample
2005-10-15 04:49:52 +02:00
* until we reach the end of the relation. This algorithm is
* from Jeff Vitter's paper (see full citation below). It
* works by repeatedly computing the number of tuples to skip
* before selecting a tuple, which replaces a randomly chosen
* element of the reservoir (current set of tuples). At all
* times the reservoir is a true random sample of the tuples
* we've passed over so far, so when we fall off the end of
* the relation we're done.
*/
if (numrows < targrows)
rows[numrows++] = heap_copytuple(&targtuple);
else
{
/*
2005-10-15 04:49:52 +02:00
* t in Vitter's paper is the number of records already
* processed. If we need to compute a new S value, we
* must use the not-yet-incremented value of samplerows as
* t.
*/
if (rowstoskip < 0)
rowstoskip = anl_get_next_S(samplerows, targrows,
&rstate);
if (rowstoskip <= 0)
{
/*
2005-10-15 04:49:52 +02:00
* Found a suitable tuple, so save it, replacing one
* old tuple at random
*/
int k = (int) (targrows * anl_random_fract());
Assert(k >= 0 && k < targrows);
heap_freetuple(rows[k]);
rows[k] = heap_copytuple(&targtuple);
}
rowstoskip -= 1;
}
samplerows += 1;
}
2000-05-29 19:44:17 +02:00
}
/* Now release the lock and pin on the page */
UnlockReleaseBuffer(targbuffer);
2000-05-29 19:44:17 +02:00
}
/*
2005-10-15 04:49:52 +02:00
* If we didn't find as many tuples as we wanted then we're done. No sort
* is needed, since they're already in order.
*
* Otherwise we need to sort the collected tuples by position
* (itempointer). It's not worth worrying about corner cases where the
* tuples are already sorted.
*/
if (numrows == targrows)
qsort((void *) rows, numrows, sizeof(HeapTuple), compare_rows);
2000-05-29 19:44:17 +02:00
/*
2011-06-09 20:32:50 +02:00
* Estimate total numbers of rows in relation. For live rows, use
Fix VACUUM so that it always updates pg_class.reltuples/relpages. When we added the ability for vacuum to skip heap pages by consulting the visibility map, we made it just not update the reltuples/relpages statistics if it skipped any pages. But this could leave us with extremely out-of-date stats for a table that contains any unchanging areas, especially for TOAST tables which never get processed by ANALYZE. In particular this could result in autovacuum making poor decisions about when to process the table, as in recent report from Florian Helmberger. And in general it's a bad idea to not update the stats at all. Instead, use the previous values of reltuples/relpages as an estimate of the tuple density in unvisited pages. This approach results in a "moving average" estimate of reltuples, which should converge to the correct value over multiple VACUUM and ANALYZE cycles even when individual measurements aren't very good. This new method for updating reltuples is used by both VACUUM and ANALYZE, with the result that we no longer need the grotty interconnections that caused ANALYZE to not update the stats depending on what had happened in the parent VACUUM command. Also, fix the logic for skipping all-visible pages during VACUUM so that it looks ahead rather than behind to decide what to do, as per a suggestion from Greg Stark. This eliminates useless scanning of all-visible pages at the start of the relation or just after a not-all-visible page. In particular, the first few pages of the relation will not be invariably included in the scanned pages, which seems to help in not overweighting them in the reltuples estimate. Back-patch to 8.4, where the visibility map was introduced.
2011-05-30 23:05:26 +02:00
* vac_estimate_reltuples; for dead rows, we have no source of old
* information, so we have to assume the density is the same in unseen
* pages as in the pages we scanned.
*/
Fix VACUUM so that it always updates pg_class.reltuples/relpages. When we added the ability for vacuum to skip heap pages by consulting the visibility map, we made it just not update the reltuples/relpages statistics if it skipped any pages. But this could leave us with extremely out-of-date stats for a table that contains any unchanging areas, especially for TOAST tables which never get processed by ANALYZE. In particular this could result in autovacuum making poor decisions about when to process the table, as in recent report from Florian Helmberger. And in general it's a bad idea to not update the stats at all. Instead, use the previous values of reltuples/relpages as an estimate of the tuple density in unvisited pages. This approach results in a "moving average" estimate of reltuples, which should converge to the correct value over multiple VACUUM and ANALYZE cycles even when individual measurements aren't very good. This new method for updating reltuples is used by both VACUUM and ANALYZE, with the result that we no longer need the grotty interconnections that caused ANALYZE to not update the stats depending on what had happened in the parent VACUUM command. Also, fix the logic for skipping all-visible pages during VACUUM so that it looks ahead rather than behind to decide what to do, as per a suggestion from Greg Stark. This eliminates useless scanning of all-visible pages at the start of the relation or just after a not-all-visible page. In particular, the first few pages of the relation will not be invariably included in the scanned pages, which seems to help in not overweighting them in the reltuples estimate. Back-patch to 8.4, where the visibility map was introduced.
2011-05-30 23:05:26 +02:00
*totalrows = vac_estimate_reltuples(onerel, true,
totalblocks,
bs.m,
liverows);
if (bs.m > 0)
Fix VACUUM so that it always updates pg_class.reltuples/relpages. When we added the ability for vacuum to skip heap pages by consulting the visibility map, we made it just not update the reltuples/relpages statistics if it skipped any pages. But this could leave us with extremely out-of-date stats for a table that contains any unchanging areas, especially for TOAST tables which never get processed by ANALYZE. In particular this could result in autovacuum making poor decisions about when to process the table, as in recent report from Florian Helmberger. And in general it's a bad idea to not update the stats at all. Instead, use the previous values of reltuples/relpages as an estimate of the tuple density in unvisited pages. This approach results in a "moving average" estimate of reltuples, which should converge to the correct value over multiple VACUUM and ANALYZE cycles even when individual measurements aren't very good. This new method for updating reltuples is used by both VACUUM and ANALYZE, with the result that we no longer need the grotty interconnections that caused ANALYZE to not update the stats depending on what had happened in the parent VACUUM command. Also, fix the logic for skipping all-visible pages during VACUUM so that it looks ahead rather than behind to decide what to do, as per a suggestion from Greg Stark. This eliminates useless scanning of all-visible pages at the start of the relation or just after a not-all-visible page. In particular, the first few pages of the relation will not be invariably included in the scanned pages, which seems to help in not overweighting them in the reltuples estimate. Back-patch to 8.4, where the visibility map was introduced.
2011-05-30 23:05:26 +02:00
*totaldeadrows = floor((deadrows / bs.m) * totalblocks + 0.5);
else
*totaldeadrows = 0.0;
2000-05-29 19:44:17 +02:00
/*
2004-08-29 07:07:03 +02:00
* Emit some interesting relation info
*/
ereport(elevel,
(errmsg("\"%s\": scanned %d of %u pages, "
"containing %.0f live rows and %.0f dead rows; "
"%d rows in sample, %.0f estimated total rows",
RelationGetRelationName(onerel),
bs.m, totalblocks,
liverows, deadrows,
numrows, *totalrows)));
return numrows;
}
2000-05-29 19:44:17 +02:00
/* Select a random value R uniformly distributed in (0 - 1) */
double
anl_random_fract(void)
{
return ((double) random() + 1) / ((double) MAX_RANDOM_VALUE + 2);
2000-05-29 19:44:17 +02:00
}
/*
* These two routines embody Algorithm Z from "Random sampling with a
* reservoir" by Jeffrey S. Vitter, in ACM Trans. Math. Softw. 11, 1
* (Mar. 1985), Pages 37-57. Vitter describes his algorithm in terms
* of the count S of records to skip before processing another record.
* It is computed primarily based on t, the number of records already read.
* The only extra state needed between calls is W, a random state variable.
*
* anl_init_selection_state computes the initial W value.
2000-05-29 19:44:17 +02:00
*
* Given that we've already read t records (t >= n), anl_get_next_S
* determines the number of records to skip before the next record is
* processed.
*/
double
anl_init_selection_state(int n)
{
/* Initial value of W (for use when Algorithm Z is first applied) */
return exp(-log(anl_random_fract()) / n);
}
double
anl_get_next_S(double t, int n, double *stateptr)
{
double S;
/* The magic constant here is T from Vitter's paper */
if (t <= (22.0 * n))
{
/* Process records using Algorithm X until t is large enough */
double V,
quot;
V = anl_random_fract(); /* Generate V */
S = 0;
t += 1;
/* Note: "num" in Vitter's code is always equal to t - n */
quot = (t - (double) n) / t;
/* Find min S satisfying (4.1) */
while (quot > V)
{
S += 1;
t += 1;
quot *= (t - (double) n) / t;
}
}
else
{
/* Now apply Algorithm Z */
double W = *stateptr;
double term = t - (double) n + 1;
for (;;)
{
double numer,
numer_lim,
denom;
double U,
X,
lhs,
rhs,
y,
tmp;
/* Generate U and X */
U = anl_random_fract();
X = t * (W - 1.0);
S = floor(X); /* S is tentatively set to floor(X) */
/* Test if U <= h(S)/cg(X) in the manner of (6.3) */
tmp = (t + 1) / term;
lhs = exp(log(((U * tmp * tmp) * (term + S)) / (t + X)) / n);
rhs = (((t + X) / (term + S)) * term) / t;
if (lhs <= rhs)
{
W = rhs / lhs;
break;
}
/* Test if U <= f(S)/cg(X) */
y = (((U * (t + 1)) / term) * (t + S + 1)) / (t + X);
if ((double) n < S)
{
denom = t;
numer_lim = term + S;
}
else
{
denom = t - (double) n + S;
numer_lim = t + 1;
}
for (numer = t + S; numer >= numer_lim; numer -= 1)
{
y *= numer / denom;
denom -= 1;
}
W = exp(-log(anl_random_fract()) / n); /* Generate W in advance */
if (exp(log(y) / n) <= (t + X) / t)
break;
}
*stateptr = W;
}
return S;
}
/*
* qsort comparator for sorting rows[] array
*/
static int
compare_rows(const void *a, const void *b)
{
HeapTuple ha = *(const HeapTuple *) a;
HeapTuple hb = *(const HeapTuple *) b;
BlockNumber ba = ItemPointerGetBlockNumber(&ha->t_self);
OffsetNumber oa = ItemPointerGetOffsetNumber(&ha->t_self);
BlockNumber bb = ItemPointerGetBlockNumber(&hb->t_self);
OffsetNumber ob = ItemPointerGetOffsetNumber(&hb->t_self);
if (ba < bb)
return -1;
if (ba > bb)
return 1;
if (oa < ob)
return -1;
if (oa > ob)
return 1;
return 0;
}
/*
* acquire_inherited_sample_rows -- acquire sample rows from inheritance tree
*
* This has the same API as acquire_sample_rows, except that rows are
* collected from all inheritance children as well as the specified table.
* We fail and return zero if there are no inheritance children.
*/
static int
acquire_inherited_sample_rows(Relation onerel, int elevel,
HeapTuple *rows, int targrows,
double *totalrows, double *totaldeadrows)
{
List *tableOIDs;
Relation *rels;
double *relblocks;
double totalblocks;
int numrows,
nrels,
i;
ListCell *lc;
/*
* Find all members of inheritance set. We only need AccessShareLock on
* the children.
*/
tableOIDs =
find_all_inheritors(RelationGetRelid(onerel), AccessShareLock, NULL);
/*
* Check that there's at least one descendant, else fail. This could
* happen despite analyze_rel's relhassubclass check, if table once had a
* child but no longer does. In that case, we can clear the
* relhassubclass field so as not to make the same mistake again later.
* (This is safe because we hold ShareUpdateExclusiveLock.)
*/
if (list_length(tableOIDs) < 2)
{
/* CCI because we already updated the pg_class row in this command */
CommandCounterIncrement();
SetRelationHasSubclass(RelationGetRelid(onerel), false);
return 0;
}
/*
* Count the blocks in all the relations. The result could overflow
* BlockNumber, so we use double arithmetic.
*/
rels = (Relation *) palloc(list_length(tableOIDs) * sizeof(Relation));
relblocks = (double *) palloc(list_length(tableOIDs) * sizeof(double));
totalblocks = 0;
nrels = 0;
foreach(lc, tableOIDs)
{
Oid childOID = lfirst_oid(lc);
Relation childrel;
/* We already got the needed lock */
childrel = heap_open(childOID, NoLock);
/* Ignore if temp table of another backend */
if (RELATION_IS_OTHER_TEMP(childrel))
{
/* ... but release the lock on it */
Assert(childrel != onerel);
heap_close(childrel, AccessShareLock);
continue;
}
rels[nrels] = childrel;
relblocks[nrels] = (double) RelationGetNumberOfBlocks(childrel);
totalblocks += relblocks[nrels];
nrels++;
}
/*
2010-02-26 03:01:40 +01:00
* Now sample rows from each relation, proportionally to its fraction of
* the total block count. (This might be less than desirable if the child
* rels have radically different free-space percentages, but it's not
* clear that it's worth working harder.)
*/
numrows = 0;
*totalrows = 0;
*totaldeadrows = 0;
for (i = 0; i < nrels; i++)
{
Relation childrel = rels[i];
double childblocks = relblocks[i];
if (childblocks > 0)
{
2010-02-26 03:01:40 +01:00
int childtargrows;
childtargrows = (int) rint(targrows * childblocks / totalblocks);
/* Make sure we don't overrun due to roundoff error */
childtargrows = Min(childtargrows, targrows - numrows);
if (childtargrows > 0)
{
int childrows;
double trows,
tdrows;
/* Fetch a random sample of the child's rows */
childrows = acquire_sample_rows(childrel,
elevel,
rows + numrows,
childtargrows,
&trows,
&tdrows);
/* We may need to convert from child's rowtype to parent's */
if (childrows > 0 &&
!equalTupleDescs(RelationGetDescr(childrel),
RelationGetDescr(onerel)))
{
TupleConversionMap *map;
map = convert_tuples_by_name(RelationGetDescr(childrel),
RelationGetDescr(onerel),
2010-02-26 03:01:40 +01:00
gettext_noop("could not convert row type"));
if (map != NULL)
{
2010-02-26 03:01:40 +01:00
int j;
for (j = 0; j < childrows; j++)
{
HeapTuple newtup;
newtup = do_convert_tuple(rows[numrows + j], map);
heap_freetuple(rows[numrows + j]);
rows[numrows + j] = newtup;
}
free_conversion_map(map);
}
}
/* And add to counts */
numrows += childrows;
*totalrows += trows;
*totaldeadrows += tdrows;
}
}
/*
* Note: we cannot release the child-table locks, since we may have
* pointers to their TOAST tables in the sampled rows.
*/
heap_close(childrel, NoLock);
}
return numrows;
}
/*
* update_attstats() -- update attribute statistics for one relation
*
* Statistics are stored in several places: the pg_class row for the
* relation has stats about the whole relation, and there is a
* pg_statistic row for each (non-system) attribute that has ever
* been analyzed. The pg_class values are updated by VACUUM, not here.
*
* pg_statistic rows are just added or updated normally. This means
* that pg_statistic will probably contain some deleted rows at the
* completion of a vacuum cycle, unless it happens to get vacuumed last.
*
* To keep things simple, we punt for pg_statistic, and don't try
* to compute or store rows for pg_statistic itself in pg_statistic.
* This could possibly be made to work, but it's not worth the trouble.
* Note analyze_rel() has seen to it that we won't come here when
* vacuuming pg_statistic itself.
*
* Note: there would be a race condition here if two backends could
* ANALYZE the same table concurrently. Presently, we lock that out
* by taking a self-exclusive lock on the relation in analyze_rel().
*/
static void
update_attstats(Oid relid, bool inh, int natts, VacAttrStats **vacattrstats)
{
Relation sd;
int attno;
if (natts <= 0)
return; /* nothing to do */
sd = heap_open(StatisticRelationId, RowExclusiveLock);
for (attno = 0; attno < natts; attno++)
{
VacAttrStats *stats = vacattrstats[attno];
HeapTuple stup,
oldtup;
int i,
k,
n;
Datum values[Natts_pg_statistic];
bool nulls[Natts_pg_statistic];
bool replaces[Natts_pg_statistic];
/* Ignore attr if we weren't able to collect stats */
if (!stats->stats_valid)
continue;
/*
* Construct a new pg_statistic tuple
*/
for (i = 0; i < Natts_pg_statistic; ++i)
{
nulls[i] = false;
replaces[i] = true;
}
values[Anum_pg_statistic_starelid - 1] = ObjectIdGetDatum(relid);
values[Anum_pg_statistic_staattnum - 1] = Int16GetDatum(stats->attr->attnum);
values[Anum_pg_statistic_stainherit - 1] = BoolGetDatum(inh);
values[Anum_pg_statistic_stanullfrac - 1] = Float4GetDatum(stats->stanullfrac);
values[Anum_pg_statistic_stawidth - 1] = Int32GetDatum(stats->stawidth);
values[Anum_pg_statistic_stadistinct - 1] = Float4GetDatum(stats->stadistinct);
i = Anum_pg_statistic_stakind1 - 1;
for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
{
values[i++] = Int16GetDatum(stats->stakind[k]); /* stakindN */
}
i = Anum_pg_statistic_staop1 - 1;
for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
{
values[i++] = ObjectIdGetDatum(stats->staop[k]); /* staopN */
}
i = Anum_pg_statistic_stanumbers1 - 1;
for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
{
int nnum = stats->numnumbers[k];
if (nnum > 0)
{
Datum *numdatums = (Datum *) palloc(nnum * sizeof(Datum));
ArrayType *arry;
for (n = 0; n < nnum; n++)
numdatums[n] = Float4GetDatum(stats->stanumbers[k][n]);
/* XXX knows more than it should about type float4: */
arry = construct_array(numdatums, nnum,
FLOAT4OID,
sizeof(float4), FLOAT4PASSBYVAL, 'i');
values[i++] = PointerGetDatum(arry); /* stanumbersN */
}
else
{
nulls[i] = true;
values[i++] = (Datum) 0;
}
}
i = Anum_pg_statistic_stavalues1 - 1;
for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
{
if (stats->numvalues[k] > 0)
{
ArrayType *arry;
arry = construct_array(stats->stavalues[k],
stats->numvalues[k],
stats->statypid[k],
stats->statyplen[k],
stats->statypbyval[k],
stats->statypalign[k]);
values[i++] = PointerGetDatum(arry); /* stavaluesN */
}
else
{
nulls[i] = true;
values[i++] = (Datum) 0;
}
}
/* Is there already a pg_statistic tuple for this attribute? */
oldtup = SearchSysCache3(STATRELATTINH,
ObjectIdGetDatum(relid),
Int16GetDatum(stats->attr->attnum),
BoolGetDatum(inh));
if (HeapTupleIsValid(oldtup))
{
/* Yes, replace it */
stup = heap_modify_tuple(oldtup,
RelationGetDescr(sd),
values,
nulls,
replaces);
ReleaseSysCache(oldtup);
simple_heap_update(sd, &stup->t_self, stup);
}
else
{
/* No, insert new tuple */
stup = heap_form_tuple(RelationGetDescr(sd), values, nulls);
simple_heap_insert(sd, stup);
}
/* update indexes too */
CatalogUpdateIndexes(sd, stup);
heap_freetuple(stup);
}
heap_close(sd, RowExclusiveLock);
}
/*
* Standard fetch function for use by compute_stats subroutines.
*
* This exists to provide some insulation between compute_stats routines
* and the actual storage of the sample data.
*/
static Datum
std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
{
int attnum = stats->tupattnum;
HeapTuple tuple = stats->rows[rownum];
TupleDesc tupDesc = stats->tupDesc;
return heap_getattr(tuple, attnum, tupDesc, isNull);
}
/*
* Fetch function for analyzing index expressions.
*
* We have not bothered to construct index tuples, instead the data is
* just in Datum arrays.
*/
static Datum
ind_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
{
int i;
/* exprvals and exprnulls are already offset for proper column */
i = rownum * stats->rowstride;
*isNull = stats->exprnulls[i];
return stats->exprvals[i];
}
/*==========================================================================
*
* Code below this point represents the "standard" type-specific statistics
* analysis algorithms. This code can be replaced on a per-data-type basis
* by setting a nonzero value in pg_type.typanalyze.
*
*==========================================================================
*/
/*
* To avoid consuming too much memory during analysis and/or too much space
* in the resulting pg_statistic rows, we ignore varlena datums that are wider
* than WIDTH_THRESHOLD (after detoasting!). This is legitimate for MCV
* and distinct-value calculations since a wide value is unlikely to be
* duplicated at all, much less be a most-common value. For the same reason,
* ignoring wide values will not affect our estimates of histogram bin
* boundaries very much.
*/
#define WIDTH_THRESHOLD 1024
#define swapInt(a,b) do {int _tmp; _tmp=a; a=b; b=_tmp;} while(0)
#define swapDatum(a,b) do {Datum _tmp; _tmp=a; a=b; b=_tmp;} while(0)
/*
* Extra information used by the default analysis routines
*/
typedef struct
{
Oid eqopr; /* '=' operator for datatype, if any */
Oid eqfunc; /* and associated function */
Oid ltopr; /* '<' operator for datatype, if any */
} StdAnalyzeData;
typedef struct
{
Datum value; /* a data value */
int tupno; /* position index for tuple it came from */
} ScalarItem;
typedef struct
{
int count; /* # of duplicates */
int first; /* values[] index of first occurrence */
} ScalarMCVItem;
typedef struct
{
SortSupport ssup;
int *tupnoLink;
} CompareScalarsContext;
static void compute_minimal_stats(VacAttrStatsP stats,
2004-08-29 07:07:03 +02:00
AnalyzeAttrFetchFunc fetchfunc,
int samplerows,
double totalrows);
static void compute_scalar_stats(VacAttrStatsP stats,
2004-08-29 07:07:03 +02:00
AnalyzeAttrFetchFunc fetchfunc,
int samplerows,
double totalrows);
static int compare_scalars(const void *a, const void *b, void *arg);
static int compare_mcvs(const void *a, const void *b);
/*
* std_typanalyze -- the default type-specific typanalyze function
*/
bool
std_typanalyze(VacAttrStats *stats)
{
Form_pg_attribute attr = stats->attr;
Oid ltopr;
Oid eqopr;
StdAnalyzeData *mystats;
/* If the attstattarget column is negative, use the default value */
/* NB: it is okay to scribble on stats->attr since it's a copy */
if (attr->attstattarget < 0)
attr->attstattarget = default_statistics_target;
/* Look for default "<" and "=" operators for column's type */
get_sort_group_operators(stats->attrtypid,
false, false, false,
&ltopr, &eqopr, NULL,
NULL);
/* If column has no "=" operator, we can't do much of anything */
if (!OidIsValid(eqopr))
return false;
/* Save the operator info for compute_stats routines */
mystats = (StdAnalyzeData *) palloc(sizeof(StdAnalyzeData));
mystats->eqopr = eqopr;
mystats->eqfunc = get_opcode(eqopr);
mystats->ltopr = ltopr;
stats->extra_data = mystats;
/*
* Determine which standard statistics algorithm to use
*/
if (OidIsValid(ltopr))
{
/* Seems to be a scalar datatype */
stats->compute_stats = compute_scalar_stats;
/*--------------------
* The following choice of minrows is based on the paper
* "Random sampling for histogram construction: how much is enough?"
* by Surajit Chaudhuri, Rajeev Motwani and Vivek Narasayya, in
* Proceedings of ACM SIGMOD International Conference on Management
* of Data, 1998, Pages 436-447. Their Corollary 1 to Theorem 5
* says that for table size n, histogram size k, maximum relative
* error in bin size f, and error probability gamma, the minimum
* random sample size is
* r = 4 * k * ln(2*n/gamma) / f^2
* Taking f = 0.5, gamma = 0.01, n = 10^6 rows, we obtain
* r = 305.82 * k
* Note that because of the log function, the dependence on n is
* quite weak; even at n = 10^12, a 300*k sample gives <= 0.66
* bin size error with probability 0.99. So there's no real need to
* scale for n, which is a good thing because we don't necessarily
* know it at this point.
*--------------------
*/
stats->minrows = 300 * attr->attstattarget;
}
else
{
/* Can't do much but the minimal stuff */
stats->compute_stats = compute_minimal_stats;
/* Might as well use the same minrows as above */
stats->minrows = 300 * attr->attstattarget;
}
return true;
}
/*
* compute_minimal_stats() -- compute minimal column statistics
2000-05-29 19:44:17 +02:00
*
* We use this when we can find only an "=" operator for the datatype.
2000-05-29 19:44:17 +02:00
*
* We determine the fraction of non-null rows, the average width, the
* most common values, and the (estimated) number of distinct values.
2000-05-29 19:44:17 +02:00
*
* The most common values are determined by brute force: we keep a list
* of previously seen values, ordered by number of times seen, as we scan
* the samples. A newly seen value is inserted just after the last
* multiply-seen value, causing the bottommost (oldest) singly-seen value
* to drop off the list. The accuracy of this method, and also its cost,
* depend mainly on the length of the list we are willing to keep.
2000-05-29 19:44:17 +02:00
*/
static void
compute_minimal_stats(VacAttrStatsP stats,
AnalyzeAttrFetchFunc fetchfunc,
int samplerows,
double totalrows)
2000-05-29 19:44:17 +02:00
{
int i;
int null_cnt = 0;
int nonnull_cnt = 0;
int toowide_cnt = 0;
double total_width = 0;
bool is_varlena = (!stats->attrtype->typbyval &&
stats->attrtype->typlen == -1);
bool is_varwidth = (!stats->attrtype->typbyval &&
stats->attrtype->typlen < 0);
FmgrInfo f_cmpeq;
typedef struct
{
Datum value;
int count;
} TrackItem;
TrackItem *track;
int track_cnt,
track_max;
int num_mcv = stats->attr->attstattarget;
StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;
/*
2005-10-15 04:49:52 +02:00
* We track up to 2*n values for an n-element MCV list; but at least 10
*/
track_max = 2 * num_mcv;
if (track_max < 10)
track_max = 10;
track = (TrackItem *) palloc(track_max * sizeof(TrackItem));
track_cnt = 0;
fmgr_info(mystats->eqfunc, &f_cmpeq);
for (i = 0; i < samplerows; i++)
2000-05-29 19:44:17 +02:00
{
Datum value;
bool isnull;
bool match;
int firstcount1,
j;
vacuum_delay_point();
value = fetchfunc(stats, i, &isnull);
2000-05-29 19:44:17 +02:00
/* Check for null/nonnull */
2000-05-29 19:44:17 +02:00
if (isnull)
{
null_cnt++;
continue;
}
nonnull_cnt++;
/*
* If it's a variable-width field, add up widths for average width
2005-10-15 04:49:52 +02:00
* calculation. Note that if the value is toasted, we use the toasted
* width. We don't bother with this calculation if it's a fixed-width
* type.
*/
if (is_varlena)
2000-05-29 19:44:17 +02:00
{
total_width += VARSIZE_ANY(DatumGetPointer(value));
/*
* If the value is toasted, we want to detoast it just once to
2005-10-15 04:49:52 +02:00
* avoid repeated detoastings and resultant excess memory usage
* during the comparisons. Also, check to see if the value is
* excessively wide, and if so don't detoast at all --- just
* ignore the value.
*/
if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
2000-05-29 19:44:17 +02:00
{
toowide_cnt++;
continue;
2000-05-29 19:44:17 +02:00
}
value = PointerGetDatum(PG_DETOAST_DATUM(value));
}
else if (is_varwidth)
{
/* must be cstring */
total_width += strlen(DatumGetCString(value)) + 1;
}
2000-05-29 19:44:17 +02:00
/*
* See if the value matches anything we're already tracking.
*/
match = false;
firstcount1 = track_cnt;
for (j = 0; j < track_cnt; j++)
{
/* We always use the default collation for statistics */
if (DatumGetBool(FunctionCall2Coll(&f_cmpeq,
DEFAULT_COLLATION_OID,
value, track[j].value)))
2000-05-29 19:44:17 +02:00
{
match = true;
break;
2000-05-29 19:44:17 +02:00
}
if (j < firstcount1 && track[j].count == 1)
firstcount1 = j;
}
if (match)
{
/* Found a match */
track[j].count++;
/* This value may now need to "bubble up" in the track list */
while (j > 0 && track[j].count > track[j - 1].count)
2000-05-29 19:44:17 +02:00
{
swapDatum(track[j].value, track[j - 1].value);
swapInt(track[j].count, track[j - 1].count);
j--;
2000-05-29 19:44:17 +02:00
}
}
else
{
/* No match. Insert at head of count-1 list */
if (track_cnt < track_max)
track_cnt++;
for (j = track_cnt - 1; j > firstcount1; j--)
{
track[j].value = track[j - 1].value;
track[j].count = track[j - 1].count;
}
if (firstcount1 < track_cnt)
{
track[firstcount1].value = value;
track[firstcount1].count = 1;
}
}
}
/* We can only compute real stats if we found some non-null values. */
if (nonnull_cnt > 0)
{
int nmultiple,
summultiple;
stats->stats_valid = true;
/* Do the simple null-frac and width stats */
stats->stanullfrac = (double) null_cnt / (double) samplerows;
if (is_varwidth)
stats->stawidth = total_width / (double) nonnull_cnt;
else
stats->stawidth = stats->attrtype->typlen;
/* Count the number of values we found multiple times */
summultiple = 0;
for (nmultiple = 0; nmultiple < track_cnt; nmultiple++)
{
if (track[nmultiple].count == 1)
break;
summultiple += track[nmultiple].count;
}
if (nmultiple == 0)
{
/* If we found no repeated values, assume it's a unique column */
stats->stadistinct = -1.0;
}
else if (track_cnt < track_max && toowide_cnt == 0 &&
nmultiple == track_cnt)
{
/*
2005-10-15 04:49:52 +02:00
* Our track list includes every value in the sample, and every
* value appeared more than once. Assume the column has just
* these values.
*/
stats->stadistinct = track_cnt;
2000-05-29 19:44:17 +02:00
}
else
{
/*----------
* Estimate the number of distinct values using the estimator
* proposed by Haas and Stokes in IBM Research Report RJ 10025:
* n*d / (n - f1 + f1*n/N)
* where f1 is the number of distinct values that occurred
* exactly once in our sample of n rows (from a total of N),
* and d is the total number of distinct values in the sample.
* This is their Duj1 estimator; the other estimators they
* recommend are considerably more complex, and are numerically
* very unstable when n is much smaller than N.
*
* We assume (not very reliably!) that all the multiply-occurring
* values are reflected in the final track[] list, and the other
* nonnull values all appeared but once. (XXX this usually
* results in a drastic overestimate of ndistinct. Can we do
* any better?)
*----------
*/
int f1 = nonnull_cnt - summultiple;
int d = f1 + nmultiple;
2002-09-04 22:31:48 +02:00
double numer,
denom,
stadistinct;
numer = (double) samplerows *(double) d;
denom = (double) (samplerows - f1) +
(double) f1 *(double) samplerows / totalrows;
2002-09-04 22:31:48 +02:00
stadistinct = numer / denom;
/* Clamp to sane range in case of roundoff error */
if (stadistinct < (double) d)
stadistinct = (double) d;
if (stadistinct > totalrows)
stadistinct = totalrows;
stats->stadistinct = floor(stadistinct + 0.5);
}
2000-05-29 19:44:17 +02:00
/*
2005-10-15 04:49:52 +02:00
* If we estimated the number of distinct values at more than 10% of
* the total row count (a very arbitrary limit), then assume that
* stadistinct should scale with the row count rather than be a fixed
* value.
*/
if (stats->stadistinct > 0.1 * totalrows)
stats->stadistinct = -(stats->stadistinct / totalrows);
2000-05-29 19:44:17 +02:00
/*
2005-10-15 04:49:52 +02:00
* Decide how many values are worth storing as most-common values. If
* we are able to generate a complete MCV list (all the values in the
* sample will fit, and we think these are all the ones in the table),
* then do so. Otherwise, store only those values that are
* significantly more common than the (estimated) average. We set the
* threshold rather arbitrarily at 25% more than average, with at
* least 2 instances in the sample.
*/
if (track_cnt < track_max && toowide_cnt == 0 &&
stats->stadistinct > 0 &&
track_cnt <= num_mcv)
{
/* Track list includes all values seen, and all will fit */
num_mcv = track_cnt;
}
else
{
double ndistinct = stats->stadistinct;
double avgcount,
mincount;
if (ndistinct < 0)
ndistinct = -ndistinct * totalrows;
/* estimate # of occurrences in sample of a typical value */
avgcount = (double) samplerows / ndistinct;
/* set minimum threshold count to store a value */
mincount = avgcount * 1.25;
if (mincount < 2)
mincount = 2;
if (num_mcv > track_cnt)
num_mcv = track_cnt;
for (i = 0; i < num_mcv; i++)
{
if (track[i].count < mincount)
{
num_mcv = i;
break;
}
}
}
/* Generate MCV slot entry */
if (num_mcv > 0)
2000-05-29 19:44:17 +02:00
{
MemoryContext old_context;
Datum *mcv_values;
float4 *mcv_freqs;
/* Must copy the target values into anl_context */
old_context = MemoryContextSwitchTo(stats->anl_context);
mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
for (i = 0; i < num_mcv; i++)
{
mcv_values[i] = datumCopy(track[i].value,
stats->attrtype->typbyval,
stats->attrtype->typlen);
mcv_freqs[i] = (double) track[i].count / (double) samplerows;
}
MemoryContextSwitchTo(old_context);
stats->stakind[0] = STATISTIC_KIND_MCV;
stats->staop[0] = mystats->eqopr;
stats->stanumbers[0] = mcv_freqs;
stats->numnumbers[0] = num_mcv;
stats->stavalues[0] = mcv_values;
stats->numvalues[0] = num_mcv;
/*
* Accept the defaults for stats->statypid and others. They have
* been set before we were called (see vacuum.h)
*/
2000-05-29 19:44:17 +02:00
}
}
else if (null_cnt > 0)
{
/* We found only nulls; assume the column is entirely null */
stats->stats_valid = true;
stats->stanullfrac = 1.0;
if (is_varwidth)
2005-10-15 04:49:52 +02:00
stats->stawidth = 0; /* "unknown" */
else
stats->stawidth = stats->attrtype->typlen;
2005-10-15 04:49:52 +02:00
stats->stadistinct = 0.0; /* "unknown" */
}
/* We don't need to bother cleaning up any of our temporary palloc's */
2000-05-29 19:44:17 +02:00
}
/*
* compute_scalar_stats() -- compute column statistics
2000-05-29 19:44:17 +02:00
*
* We use this when we can find "=" and "<" operators for the datatype.
*
* We determine the fraction of non-null rows, the average width, the
* most common values, the (estimated) number of distinct values, the
* distribution histogram, and the correlation of physical to logical order.
2000-05-29 19:44:17 +02:00
*
* The desired stats can be determined fairly easily after sorting the
* data values into order.
2000-05-29 19:44:17 +02:00
*/
static void
compute_scalar_stats(VacAttrStatsP stats,
AnalyzeAttrFetchFunc fetchfunc,
int samplerows,
double totalrows)
2000-05-29 19:44:17 +02:00
{
int i;
int null_cnt = 0;
int nonnull_cnt = 0;
int toowide_cnt = 0;
double total_width = 0;
bool is_varlena = (!stats->attrtype->typbyval &&
stats->attrtype->typlen == -1);
bool is_varwidth = (!stats->attrtype->typbyval &&
stats->attrtype->typlen < 0);
double corr_xysum;
SortSupportData ssup;
ScalarItem *values;
int values_cnt = 0;
int *tupnoLink;
ScalarMCVItem *track;
int track_cnt = 0;
int num_mcv = stats->attr->attstattarget;
int num_bins = stats->attr->attstattarget;
StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;
values = (ScalarItem *) palloc(samplerows * sizeof(ScalarItem));
tupnoLink = (int *) palloc(samplerows * sizeof(int));
track = (ScalarMCVItem *) palloc(num_mcv * sizeof(ScalarMCVItem));
memset(&ssup, 0, sizeof(ssup));
ssup.ssup_cxt = CurrentMemoryContext;
/* We always use the default collation for statistics */
ssup.ssup_collation = DEFAULT_COLLATION_OID;
ssup.ssup_nulls_first = false;
PrepareSortSupportFromOrderingOp(mystats->ltopr, &ssup);
/* Initial scan to find sortable values */
for (i = 0; i < samplerows; i++)
2000-05-29 19:44:17 +02:00
{
Datum value;
bool isnull;
2000-05-29 19:44:17 +02:00
vacuum_delay_point();
value = fetchfunc(stats, i, &isnull);
2000-05-29 19:44:17 +02:00
/* Check for null/nonnull */
if (isnull)
2000-05-29 19:44:17 +02:00
{
null_cnt++;
continue;
2000-05-29 19:44:17 +02:00
}
nonnull_cnt++;
2000-05-29 19:44:17 +02:00
/*
* If it's a variable-width field, add up widths for average width
2005-10-15 04:49:52 +02:00
* calculation. Note that if the value is toasted, we use the toasted
* width. We don't bother with this calculation if it's a fixed-width
* type.
*/
if (is_varlena)
2000-05-29 19:44:17 +02:00
{
total_width += VARSIZE_ANY(DatumGetPointer(value));
/*
* If the value is toasted, we want to detoast it just once to
2005-10-15 04:49:52 +02:00
* avoid repeated detoastings and resultant excess memory usage
* during the comparisons. Also, check to see if the value is
* excessively wide, and if so don't detoast at all --- just
* ignore the value.
*/
if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
2000-05-29 19:44:17 +02:00
{
toowide_cnt++;
continue;
2000-05-29 19:44:17 +02:00
}
value = PointerGetDatum(PG_DETOAST_DATUM(value));
}
else if (is_varwidth)
{
/* must be cstring */
total_width += strlen(DatumGetCString(value)) + 1;
}
2001-03-22 05:01:46 +01:00
/* Add it to the list to be sorted */
values[values_cnt].value = value;
values[values_cnt].tupno = values_cnt;
tupnoLink[values_cnt] = values_cnt;
values_cnt++;
}
/* We can only compute real stats if we found some sortable values. */
if (values_cnt > 0)
{
int ndistinct, /* # distinct values in sample */
nmultiple, /* # that appear multiple times */
num_hist,
dups_cnt;
int slot_idx = 0;
CompareScalarsContext cxt;
/* Sort the collected values */
cxt.ssup = &ssup;
cxt.tupnoLink = tupnoLink;
qsort_arg((void *) values, values_cnt, sizeof(ScalarItem),
compare_scalars, (void *) &cxt);
/*
2005-10-15 04:49:52 +02:00
* Now scan the values in order, find the most common ones, and also
* accumulate ordering-correlation statistics.
*
* To determine which are most common, we first have to count the
* number of duplicates of each value. The duplicates are adjacent in
* the sorted list, so a brute-force approach is to compare successive
2005-10-15 04:49:52 +02:00
* datum values until we find two that are not equal. However, that
* requires N-1 invocations of the datum comparison routine, which are
* completely redundant with work that was done during the sort. (The
* sort algorithm must at some point have compared each pair of items
* that are adjacent in the sorted order; otherwise it could not know
* that it's ordered the pair correctly.) We exploit this by having
* compare_scalars remember the highest tupno index that each
* ScalarItem has been found equal to. At the end of the sort, a
2005-10-15 04:49:52 +02:00
* ScalarItem's tupnoLink will still point to itself if and only if it
* is the last item of its group of duplicates (since the group will
* be ordered by tupno).
*/
corr_xysum = 0;
ndistinct = 0;
nmultiple = 0;
dups_cnt = 0;
for (i = 0; i < values_cnt; i++)
{
int tupno = values[i].tupno;
corr_xysum += ((double) i) * ((double) tupno);
dups_cnt++;
if (tupnoLink[tupno] == tupno)
2000-05-29 19:44:17 +02:00
{
/* Reached end of duplicates of this value */
ndistinct++;
if (dups_cnt > 1)
2000-05-29 19:44:17 +02:00
{
nmultiple++;
if (track_cnt < num_mcv ||
dups_cnt > track[track_cnt - 1].count)
{
/*
* Found a new item for the mcv list; find its
2005-10-15 04:49:52 +02:00
* position, bubbling down old items if needed. Loop
* invariant is that j points at an empty/ replaceable
* slot.
*/
int j;
if (track_cnt < num_mcv)
track_cnt++;
for (j = track_cnt - 1; j > 0; j--)
{
if (dups_cnt <= track[j - 1].count)
break;
track[j].count = track[j - 1].count;
track[j].first = track[j - 1].first;
}
track[j].count = dups_cnt;
track[j].first = i + 1 - dups_cnt;
}
}
dups_cnt = 0;
}
}
2000-05-29 19:44:17 +02:00
stats->stats_valid = true;
/* Do the simple null-frac and width stats */
stats->stanullfrac = (double) null_cnt / (double) samplerows;
if (is_varwidth)
stats->stawidth = total_width / (double) nonnull_cnt;
else
stats->stawidth = stats->attrtype->typlen;
2000-05-29 19:44:17 +02:00
if (nmultiple == 0)
{
/* If we found no repeated values, assume it's a unique column */
stats->stadistinct = -1.0;
}
else if (toowide_cnt == 0 && nmultiple == ndistinct)
{
/*
2005-10-15 04:49:52 +02:00
* Every value in the sample appeared more than once. Assume the
* column has just these values.
*/
stats->stadistinct = ndistinct;
}
else
{
/*----------
* Estimate the number of distinct values using the estimator
* proposed by Haas and Stokes in IBM Research Report RJ 10025:
* n*d / (n - f1 + f1*n/N)
* where f1 is the number of distinct values that occurred
* exactly once in our sample of n rows (from a total of N),
* and d is the total number of distinct values in the sample.
* This is their Duj1 estimator; the other estimators they
* recommend are considerably more complex, and are numerically
* very unstable when n is much smaller than N.
*
* Overwidth values are assumed to have been distinct.
*----------
*/
int f1 = ndistinct - nmultiple + toowide_cnt;
int d = f1 + nmultiple;
2002-09-04 22:31:48 +02:00
double numer,
denom,
stadistinct;
numer = (double) samplerows *(double) d;
denom = (double) (samplerows - f1) +
(double) f1 *(double) samplerows / totalrows;
2002-09-04 22:31:48 +02:00
stadistinct = numer / denom;
/* Clamp to sane range in case of roundoff error */
if (stadistinct < (double) d)
stadistinct = (double) d;
if (stadistinct > totalrows)
stadistinct = totalrows;
stats->stadistinct = floor(stadistinct + 0.5);
}
/*
2005-10-15 04:49:52 +02:00
* If we estimated the number of distinct values at more than 10% of
* the total row count (a very arbitrary limit), then assume that
* stadistinct should scale with the row count rather than be a fixed
* value.
*/
if (stats->stadistinct > 0.1 * totalrows)
stats->stadistinct = -(stats->stadistinct / totalrows);
/*
2005-10-15 04:49:52 +02:00
* Decide how many values are worth storing as most-common values. If
* we are able to generate a complete MCV list (all the values in the
* sample will fit, and we think these are all the ones in the table),
* then do so. Otherwise, store only those values that are
* significantly more common than the (estimated) average. We set the
* threshold rather arbitrarily at 25% more than average, with at
* least 2 instances in the sample. Also, we won't suppress values
* that have a frequency of at least 1/K where K is the intended
* number of histogram bins; such values might otherwise cause us to
* emit duplicate histogram bin boundaries. (We might end up with
* duplicate histogram entries anyway, if the distribution is skewed;
* but we prefer to treat such values as MCVs if at all possible.)
*/
if (track_cnt == ndistinct && toowide_cnt == 0 &&
stats->stadistinct > 0 &&
track_cnt <= num_mcv)
{
/* Track list includes all values seen, and all will fit */
num_mcv = track_cnt;
}
else
{
double ndistinct = stats->stadistinct;
double avgcount,
mincount,
maxmincount;
if (ndistinct < 0)
ndistinct = -ndistinct * totalrows;
/* estimate # of occurrences in sample of a typical value */
avgcount = (double) samplerows / ndistinct;
/* set minimum threshold count to store a value */
mincount = avgcount * 1.25;
if (mincount < 2)
mincount = 2;
/* don't let threshold exceed 1/K, however */
maxmincount = (double) samplerows / (double) num_bins;
if (mincount > maxmincount)
mincount = maxmincount;
if (num_mcv > track_cnt)
num_mcv = track_cnt;
for (i = 0; i < num_mcv; i++)
{
if (track[i].count < mincount)
{
num_mcv = i;
break;
}
}
}
/* Generate MCV slot entry */
if (num_mcv > 0)
{
MemoryContext old_context;
Datum *mcv_values;
float4 *mcv_freqs;
/* Must copy the target values into anl_context */
old_context = MemoryContextSwitchTo(stats->anl_context);
mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
for (i = 0; i < num_mcv; i++)
{
mcv_values[i] = datumCopy(values[track[i].first].value,
stats->attrtype->typbyval,
stats->attrtype->typlen);
mcv_freqs[i] = (double) track[i].count / (double) samplerows;
2000-05-29 19:44:17 +02:00
}
MemoryContextSwitchTo(old_context);
stats->stakind[slot_idx] = STATISTIC_KIND_MCV;
stats->staop[slot_idx] = mystats->eqopr;
stats->stanumbers[slot_idx] = mcv_freqs;
stats->numnumbers[slot_idx] = num_mcv;
stats->stavalues[slot_idx] = mcv_values;
stats->numvalues[slot_idx] = num_mcv;
/*
* Accept the defaults for stats->statypid and others. They have
* been set before we were called (see vacuum.h)
*/
slot_idx++;
}
2000-05-29 19:44:17 +02:00
/*
2005-10-15 04:49:52 +02:00
* Generate a histogram slot entry if there are at least two distinct
* values not accounted for in the MCV list. (This ensures the
* histogram won't collapse to empty or a singleton.)
*/
num_hist = ndistinct - num_mcv;
if (num_hist > num_bins)
num_hist = num_bins + 1;
if (num_hist >= 2)
{
MemoryContext old_context;
Datum *hist_values;
int nvals;
int pos,
posfrac,
delta,
deltafrac;
2000-05-29 19:44:17 +02:00
/* Sort the MCV items into position order to speed next loop */
qsort((void *) track, num_mcv,
sizeof(ScalarMCVItem), compare_mcvs);
2000-05-29 19:44:17 +02:00
/*
* Collapse out the MCV items from the values[] array.
2000-05-29 19:44:17 +02:00
*
2005-10-15 04:49:52 +02:00
* Note we destroy the values[] array here... but we don't need it
* for anything more. We do, however, still need values_cnt.
* nvals will be the number of remaining entries in values[].
2000-05-29 19:44:17 +02:00
*/
if (num_mcv > 0)
2000-05-29 19:44:17 +02:00
{
int src,
dest;
int j;
2000-05-29 19:44:17 +02:00
src = dest = 0;
j = 0; /* index of next interesting MCV item */
while (src < values_cnt)
{
int ncopy;
if (j < num_mcv)
{
int first = track[j].first;
if (src >= first)
{
/* advance past this MCV item */
src = first + track[j].count;
j++;
continue;
}
ncopy = first - src;
}
else
ncopy = values_cnt - src;
memmove(&values[dest], &values[src],
ncopy * sizeof(ScalarItem));
src += ncopy;
dest += ncopy;
}
nvals = dest;
}
else
nvals = values_cnt;
Assert(nvals >= num_hist);
2000-05-29 19:44:17 +02:00
/* Must copy the target values into anl_context */
old_context = MemoryContextSwitchTo(stats->anl_context);
hist_values = (Datum *) palloc(num_hist * sizeof(Datum));
/*
* The object of this loop is to copy the first and last values[]
* entries along with evenly-spaced values in between. So the
* i'th value is values[(i * (nvals - 1)) / (num_hist - 1)]. But
* computing that subscript directly risks integer overflow when
* the stats target is more than a couple thousand. Instead we
* add (nvals - 1) / (num_hist - 1) to pos at each step, tracking
* the integral and fractional parts of the sum separately.
*/
delta = (nvals - 1) / (num_hist - 1);
deltafrac = (nvals - 1) % (num_hist - 1);
pos = posfrac = 0;
for (i = 0; i < num_hist; i++)
{
hist_values[i] = datumCopy(values[pos].value,
stats->attrtype->typbyval,
stats->attrtype->typlen);
pos += delta;
posfrac += deltafrac;
if (posfrac >= (num_hist - 1))
{
/* fractional part exceeds 1, carry to integer part */
pos++;
posfrac -= (num_hist - 1);
}
2000-05-29 19:44:17 +02:00
}
MemoryContextSwitchTo(old_context);
stats->stakind[slot_idx] = STATISTIC_KIND_HISTOGRAM;
stats->staop[slot_idx] = mystats->ltopr;
stats->stavalues[slot_idx] = hist_values;
stats->numvalues[slot_idx] = num_hist;
/*
* Accept the defaults for stats->statypid and others. They have
* been set before we were called (see vacuum.h)
*/
slot_idx++;
}
/* Generate a correlation entry if there are multiple values */
if (values_cnt > 1)
{
MemoryContext old_context;
float4 *corrs;
double corr_xsum,
corr_x2sum;
/* Must copy the target values into anl_context */
old_context = MemoryContextSwitchTo(stats->anl_context);
corrs = (float4 *) palloc(sizeof(float4));
MemoryContextSwitchTo(old_context);
/*----------
* Since we know the x and y value sets are both
* 0, 1, ..., values_cnt-1
* we have sum(x) = sum(y) =
* (values_cnt-1)*values_cnt / 2
* and sum(x^2) = sum(y^2) =
* (values_cnt-1)*values_cnt*(2*values_cnt-1) / 6.
*----------
*/
corr_xsum = ((double) (values_cnt - 1)) *
((double) values_cnt) / 2.0;
corr_x2sum = ((double) (values_cnt - 1)) *
((double) values_cnt) * (double) (2 * values_cnt - 1) / 6.0;
/* And the correlation coefficient reduces to */
corrs[0] = (values_cnt * corr_xysum - corr_xsum * corr_xsum) /
(values_cnt * corr_x2sum - corr_xsum * corr_xsum);
stats->stakind[slot_idx] = STATISTIC_KIND_CORRELATION;
stats->staop[slot_idx] = mystats->ltopr;
stats->stanumbers[slot_idx] = corrs;
stats->numnumbers[slot_idx] = 1;
slot_idx++;
2000-05-29 19:44:17 +02:00
}
}
else if (nonnull_cnt == 0 && null_cnt > 0)
{
/* We found only nulls; assume the column is entirely null */
stats->stats_valid = true;
stats->stanullfrac = 1.0;
if (is_varwidth)
2005-10-15 04:49:52 +02:00
stats->stawidth = 0; /* "unknown" */
else
stats->stawidth = stats->attrtype->typlen;
2005-10-15 04:49:52 +02:00
stats->stadistinct = 0.0; /* "unknown" */
}
/* We don't need to bother cleaning up any of our temporary palloc's */
2000-05-29 19:44:17 +02:00
}
/*
* qsort_arg comparator for sorting ScalarItems
2000-05-29 19:44:17 +02:00
*
* Aside from sorting the items, we update the tupnoLink[] array
* whenever two ScalarItems are found to contain equal datums. The array
* is indexed by tupno; for each ScalarItem, it contains the highest
* tupno that that item's datum has been found to be equal to. This allows
* us to avoid additional comparisons in compute_scalar_stats().
2000-05-29 19:44:17 +02:00
*/
static int
compare_scalars(const void *a, const void *b, void *arg)
2000-05-29 19:44:17 +02:00
{
Datum da = ((const ScalarItem *) a)->value;
int ta = ((const ScalarItem *) a)->tupno;
Datum db = ((const ScalarItem *) b)->value;
int tb = ((const ScalarItem *) b)->tupno;
CompareScalarsContext *cxt = (CompareScalarsContext *) arg;
int compare;
2000-05-29 19:44:17 +02:00
compare = ApplySortComparator(da, false, db, false, cxt->ssup);
if (compare != 0)
return compare;
2000-05-29 19:44:17 +02:00
/*
* The two datums are equal, so update cxt->tupnoLink[].
*/
if (cxt->tupnoLink[ta] < tb)
cxt->tupnoLink[ta] = tb;
if (cxt->tupnoLink[tb] < ta)
cxt->tupnoLink[tb] = ta;
/*
* For equal datums, sort by tupno
*/
return ta - tb;
}
/*
* qsort comparator for sorting ScalarMCVItems by position
*/
static int
compare_mcvs(const void *a, const void *b)
{
int da = ((const ScalarMCVItem *) a)->first;
int db = ((const ScalarMCVItem *) b)->first;
return da - db;
}