postgresql/src/backend/executor/nodeCtescan.c

351 lines
9.8 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* nodeCtescan.c
* routines to handle CteScan nodes.
*
* Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
2010-09-20 22:08:53 +02:00
* src/backend/executor/nodeCtescan.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "executor/execdebug.h"
#include "executor/nodeCtescan.h"
#include "miscadmin.h"
static TupleTableSlot *CteScanNext(CteScanState *node);
/* ----------------------------------------------------------------
* CteScanNext
*
* This is a workhorse for ExecCteScan
* ----------------------------------------------------------------
*/
static TupleTableSlot *
CteScanNext(CteScanState *node)
{
EState *estate;
ScanDirection dir;
bool forward;
Tuplestorestate *tuplestorestate;
bool eof_tuplestore;
TupleTableSlot *slot;
/*
* get state info from node
*/
estate = node->ss.ps.state;
dir = estate->es_direction;
forward = ScanDirectionIsForward(dir);
tuplestorestate = node->leader->cte_table;
tuplestore_select_read_pointer(tuplestorestate, node->readptr);
slot = node->ss.ss_ScanTupleSlot;
/*
* If we are not at the end of the tuplestore, or are going backwards, try
* to fetch a tuple from tuplestore.
*/
eof_tuplestore = tuplestore_ateof(tuplestorestate);
if (!forward && eof_tuplestore)
{
if (!node->leader->eof_cte)
{
/*
* When reversing direction at tuplestore EOF, the first
* gettupleslot call will fetch the last-added tuple; but we want
* to return the one before that, if possible. So do an extra
* fetch.
*/
if (!tuplestore_advance(tuplestorestate, forward))
return NULL; /* the tuplestore must be empty */
}
eof_tuplestore = false;
}
/*
* If we can fetch another tuple from the tuplestore, return it.
*
* Note: we have to use copy=true in the tuplestore_gettupleslot call,
* because we are sharing the tuplestore with other nodes that might write
* into the tuplestore before we get called again.
*/
if (!eof_tuplestore)
{
if (tuplestore_gettupleslot(tuplestorestate, forward, true, slot))
return slot;
if (forward)
eof_tuplestore = true;
}
/*
* If necessary, try to fetch another row from the CTE query.
*
* Note: the eof_cte state variable exists to short-circuit further calls
* of the CTE plan. It's not optional, unfortunately, because some plan
* node types are not robust about being called again when they've already
* returned NULL.
*/
if (eof_tuplestore && !node->leader->eof_cte)
{
TupleTableSlot *cteslot;
/*
* We can only get here with forward==true, so no need to worry about
* which direction the subplan will go.
*/
cteslot = ExecProcNode(node->cteplanstate);
if (TupIsNull(cteslot))
{
node->leader->eof_cte = true;
return NULL;
}
/*
* There are corner cases where the subplan could change which
* tuplestore read pointer is active, so be sure to reselect ours
* before storing the tuple we got.
*/
tuplestore_select_read_pointer(tuplestorestate, node->readptr);
/*
* Append a copy of the returned tuple to tuplestore. NOTE: because
* our read pointer is certainly in EOF state, its read position will
* move forward over the added tuple. This is what we want. Also,
* any other readers will *not* move past the new tuple, which is what
* they want.
*/
tuplestore_puttupleslot(tuplestorestate, cteslot);
/*
* We MUST copy the CTE query's output tuple into our own slot. This
* is because other CteScan nodes might advance the CTE query before
* we are called again, and our output tuple must stay stable over
* that.
*/
return ExecCopySlot(slot, cteslot);
}
/*
* Nothing left ...
*/
return ExecClearTuple(slot);
}
/*
* CteScanRecheck -- access method routine to recheck a tuple in EvalPlanQual
*/
static bool
CteScanRecheck(CteScanState *node, TupleTableSlot *slot)
{
/* nothing to check */
return true;
}
/* ----------------------------------------------------------------
* ExecCteScan(node)
*
* Scans the CTE sequentially and returns the next qualifying tuple.
* We call the ExecScan() routine and pass it the appropriate
* access method functions.
* ----------------------------------------------------------------
*/
static TupleTableSlot *
ExecCteScan(PlanState *pstate)
{
CteScanState *node = castNode(CteScanState, pstate);
return ExecScan(&node->ss,
(ExecScanAccessMtd) CteScanNext,
(ExecScanRecheckMtd) CteScanRecheck);
}
/* ----------------------------------------------------------------
* ExecInitCteScan
* ----------------------------------------------------------------
*/
CteScanState *
ExecInitCteScan(CteScan *node, EState *estate, int eflags)
{
CteScanState *scanstate;
ParamExecData *prmdata;
/* check for unsupported flags */
Assert(!(eflags & EXEC_FLAG_MARK));
/*
* For the moment we have to force the tuplestore to allow REWIND, because
* we might be asked to rescan the CTE even though upper levels didn't
* tell us to be prepared to do it efficiently. Annoying, since this
* prevents truncation of the tuplestore. XXX FIXME
*
* Note: if we are in an EPQ recheck plan tree, it's likely that no access
* to the tuplestore is needed at all, making this even more annoying.
* It's not worth improving that as long as all the read pointers would
* have REWIND anyway, but if we ever improve this logic then that aspect
* should be considered too.
*/
eflags |= EXEC_FLAG_REWIND;
/*
* CteScan should not have any children.
*/
Assert(outerPlan(node) == NULL);
Assert(innerPlan(node) == NULL);
/*
* create new CteScanState for node
*/
scanstate = makeNode(CteScanState);
scanstate->ss.ps.plan = (Plan *) node;
scanstate->ss.ps.state = estate;
scanstate->ss.ps.ExecProcNode = ExecCteScan;
scanstate->eflags = eflags;
scanstate->cte_table = NULL;
scanstate->eof_cte = false;
/*
* Find the already-initialized plan for the CTE query.
*/
scanstate->cteplanstate = (PlanState *) list_nth(estate->es_subplanstates,
node->ctePlanId - 1);
/*
* The Param slot associated with the CTE query is used to hold a pointer
* to the CteState of the first CteScan node that initializes for this
* CTE. This node will be the one that holds the shared state for all the
* CTEs, particularly the shared tuplestore.
*/
prmdata = &(estate->es_param_exec_vals[node->cteParam]);
Assert(prmdata->execPlan == NULL);
Assert(!prmdata->isnull);
scanstate->leader = castNode(CteScanState, DatumGetPointer(prmdata->value));
if (scanstate->leader == NULL)
{
/* I am the leader */
prmdata->value = PointerGetDatum(scanstate);
scanstate->leader = scanstate;
scanstate->cte_table = tuplestore_begin_heap(true, false, work_mem);
tuplestore_set_eflags(scanstate->cte_table, scanstate->eflags);
scanstate->readptr = 0;
}
else
{
/* Not the leader */
/* Create my own read pointer, and ensure it is at start */
scanstate->readptr =
tuplestore_alloc_read_pointer(scanstate->leader->cte_table,
scanstate->eflags);
tuplestore_select_read_pointer(scanstate->leader->cte_table,
scanstate->readptr);
tuplestore_rescan(scanstate->leader->cte_table);
}
/*
* Miscellaneous initialization
*
* create expression context for node
*/
ExecAssignExprContext(estate, &scanstate->ss.ps);
/*
* The scan tuple type (ie, the rowtype we expect to find in the work
* table) is the same as the result rowtype of the CTE query.
*/
ExecInitScanTupleSlot(estate, &scanstate->ss,
ExecGetResultType(scanstate->cteplanstate));
/*
Don't require return slots for nodes without projection. In a lot of nodes the return slot is not required. That can either be because the node doesn't do any projection (say an Append node), or because the node does perform projections but the projection is optimized away because the projection would yield an identical row. Slots aren't that small, especially for wide rows, so it's worthwhile to avoid creating them. It's not possible to just skip creating the slot - it's currently used to determine the tuple descriptor returned by ExecGetResultType(). So separate the determination of the result type from the slot creation. The work previously done internally ExecInitResultTupleSlotTL() can now also be done separately with ExecInitResultTypeTL() and ExecInitResultSlot(). That way nodes that aren't guaranteed to need a result slot, can use ExecInitResultTypeTL() to determine the result type of the node, and ExecAssignScanProjectionInfo() (via ExecConditionalAssignProjectionInfo()) determines that a result slot is needed, it is created with ExecInitResultSlot(). Besides the advantage of avoiding to create slots that then are unused, this is necessary preparation for later patches around tuple table slot abstraction. In particular separating the return descriptor and slot is a prerequisite to allow JITing of tuple deforming with knowledge of the underlying tuple format, and to avoid unnecessarily creating JITed tuple deforming for virtual slots. This commit removes a redundant argument from ExecInitResultTupleSlotTL(). While this commit touches a lot of the relevant lines anyway, it'd normally still not worthwhile to cause breakage, except that aforementioned later commits will touch *all* ExecInitResultTupleSlotTL() callers anyway (but fits worse thematically). Author: Andres Freund Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-10 02:19:39 +01:00
* Initialize result type and projection.
*/
Don't require return slots for nodes without projection. In a lot of nodes the return slot is not required. That can either be because the node doesn't do any projection (say an Append node), or because the node does perform projections but the projection is optimized away because the projection would yield an identical row. Slots aren't that small, especially for wide rows, so it's worthwhile to avoid creating them. It's not possible to just skip creating the slot - it's currently used to determine the tuple descriptor returned by ExecGetResultType(). So separate the determination of the result type from the slot creation. The work previously done internally ExecInitResultTupleSlotTL() can now also be done separately with ExecInitResultTypeTL() and ExecInitResultSlot(). That way nodes that aren't guaranteed to need a result slot, can use ExecInitResultTypeTL() to determine the result type of the node, and ExecAssignScanProjectionInfo() (via ExecConditionalAssignProjectionInfo()) determines that a result slot is needed, it is created with ExecInitResultSlot(). Besides the advantage of avoiding to create slots that then are unused, this is necessary preparation for later patches around tuple table slot abstraction. In particular separating the return descriptor and slot is a prerequisite to allow JITing of tuple deforming with knowledge of the underlying tuple format, and to avoid unnecessarily creating JITed tuple deforming for virtual slots. This commit removes a redundant argument from ExecInitResultTupleSlotTL(). While this commit touches a lot of the relevant lines anyway, it'd normally still not worthwhile to cause breakage, except that aforementioned later commits will touch *all* ExecInitResultTupleSlotTL() callers anyway (but fits worse thematically). Author: Andres Freund Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-10 02:19:39 +01:00
ExecInitResultTypeTL(&scanstate->ss.ps);
ExecAssignScanProjectionInfo(&scanstate->ss);
/*
* initialize child expressions
*/
scanstate->ss.ps.qual =
ExecInitQual(node->scan.plan.qual, (PlanState *) scanstate);
return scanstate;
}
/* ----------------------------------------------------------------
* ExecEndCteScan
*
* frees any storage allocated through C routines.
* ----------------------------------------------------------------
*/
void
ExecEndCteScan(CteScanState *node)
{
/*
* Free exprcontext
*/
ExecFreeExprContext(&node->ss.ps);
/*
* clean out the tuple table
*/
Don't require return slots for nodes without projection. In a lot of nodes the return slot is not required. That can either be because the node doesn't do any projection (say an Append node), or because the node does perform projections but the projection is optimized away because the projection would yield an identical row. Slots aren't that small, especially for wide rows, so it's worthwhile to avoid creating them. It's not possible to just skip creating the slot - it's currently used to determine the tuple descriptor returned by ExecGetResultType(). So separate the determination of the result type from the slot creation. The work previously done internally ExecInitResultTupleSlotTL() can now also be done separately with ExecInitResultTypeTL() and ExecInitResultSlot(). That way nodes that aren't guaranteed to need a result slot, can use ExecInitResultTypeTL() to determine the result type of the node, and ExecAssignScanProjectionInfo() (via ExecConditionalAssignProjectionInfo()) determines that a result slot is needed, it is created with ExecInitResultSlot(). Besides the advantage of avoiding to create slots that then are unused, this is necessary preparation for later patches around tuple table slot abstraction. In particular separating the return descriptor and slot is a prerequisite to allow JITing of tuple deforming with knowledge of the underlying tuple format, and to avoid unnecessarily creating JITed tuple deforming for virtual slots. This commit removes a redundant argument from ExecInitResultTupleSlotTL(). While this commit touches a lot of the relevant lines anyway, it'd normally still not worthwhile to cause breakage, except that aforementioned later commits will touch *all* ExecInitResultTupleSlotTL() callers anyway (but fits worse thematically). Author: Andres Freund Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-10 02:19:39 +01:00
if (node->ss.ps.ps_ResultTupleSlot)
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
ExecClearTuple(node->ss.ss_ScanTupleSlot);
/*
* If I am the leader, free the tuplestore.
*/
if (node->leader == node)
{
tuplestore_end(node->cte_table);
node->cte_table = NULL;
}
}
/* ----------------------------------------------------------------
* ExecReScanCteScan
*
* Rescans the relation.
* ----------------------------------------------------------------
*/
void
ExecReScanCteScan(CteScanState *node)
{
Tuplestorestate *tuplestorestate = node->leader->cte_table;
Don't require return slots for nodes without projection. In a lot of nodes the return slot is not required. That can either be because the node doesn't do any projection (say an Append node), or because the node does perform projections but the projection is optimized away because the projection would yield an identical row. Slots aren't that small, especially for wide rows, so it's worthwhile to avoid creating them. It's not possible to just skip creating the slot - it's currently used to determine the tuple descriptor returned by ExecGetResultType(). So separate the determination of the result type from the slot creation. The work previously done internally ExecInitResultTupleSlotTL() can now also be done separately with ExecInitResultTypeTL() and ExecInitResultSlot(). That way nodes that aren't guaranteed to need a result slot, can use ExecInitResultTypeTL() to determine the result type of the node, and ExecAssignScanProjectionInfo() (via ExecConditionalAssignProjectionInfo()) determines that a result slot is needed, it is created with ExecInitResultSlot(). Besides the advantage of avoiding to create slots that then are unused, this is necessary preparation for later patches around tuple table slot abstraction. In particular separating the return descriptor and slot is a prerequisite to allow JITing of tuple deforming with knowledge of the underlying tuple format, and to avoid unnecessarily creating JITed tuple deforming for virtual slots. This commit removes a redundant argument from ExecInitResultTupleSlotTL(). While this commit touches a lot of the relevant lines anyway, it'd normally still not worthwhile to cause breakage, except that aforementioned later commits will touch *all* ExecInitResultTupleSlotTL() callers anyway (but fits worse thematically). Author: Andres Freund Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-10 02:19:39 +01:00
if (node->ss.ps.ps_ResultTupleSlot)
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
ExecScanReScan(&node->ss);
/*
* Clear the tuplestore if a new scan of the underlying CTE is required.
* This implicitly resets all the tuplestore's read pointers. Note that
* multiple CTE nodes might redundantly clear the tuplestore; that's OK,
* and not unduly expensive. We'll stop taking this path as soon as
* somebody has attempted to read something from the underlying CTE
* (thereby causing its chgParam to be cleared).
*/
if (node->leader->cteplanstate->chgParam != NULL)
{
tuplestore_clear(tuplestorestate);
node->leader->eof_cte = false;
}
else
{
/*
* Else, just rewind my own pointer. Either the underlying CTE
* doesn't need a rescan (and we can re-read what's in the tuplestore
* now), or somebody else already took care of it.
*/
tuplestore_select_read_pointer(tuplestorestate, node->readptr);
tuplestore_rescan(tuplestorestate);
}
}