postgresql/src/backend/executor/nodeSeqscan.c

328 lines
8.7 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* nodeSeqscan.c
* Support routines for sequential scans of relations.
*
* Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
2010-09-20 22:08:53 +02:00
* src/backend/executor/nodeSeqscan.c
*
*-------------------------------------------------------------------------
*/
/*
* INTERFACE ROUTINES
* ExecSeqScan sequentially scans a relation.
* ExecSeqNext retrieve next tuple in sequential order.
* ExecInitSeqScan creates and initializes a seqscan node.
* ExecEndSeqScan releases any storage allocated.
* ExecReScanSeqScan rescans the relation
*
* ExecSeqScanEstimate estimates DSM space needed for parallel scan
* ExecSeqScanInitializeDSM initialize DSM for parallel scan
* ExecSeqScanReInitializeDSM reinitialize DSM for fresh parallel scan
* ExecSeqScanInitializeWorker attach to DSM info in parallel worker
*/
#include "postgres.h"
#include "access/relscan.h"
1996-11-08 07:02:30 +01:00
#include "executor/execdebug.h"
#include "executor/nodeSeqscan.h"
#include "utils/rel.h"
static TupleTableSlot *SeqNext(SeqScanState *node);
/* ----------------------------------------------------------------
* Scan Support
* ----------------------------------------------------------------
*/
/* ----------------------------------------------------------------
* SeqNext
*
* This is a workhorse for ExecSeqScan
* ----------------------------------------------------------------
*/
static TupleTableSlot *
SeqNext(SeqScanState *node)
{
HeapTuple tuple;
HeapScanDesc scandesc;
EState *estate;
ScanDirection direction;
TupleTableSlot *slot;
/*
* get information from the estate and scan state
*/
scandesc = node->ss.ss_currentScanDesc;
estate = node->ss.ps.state;
direction = estate->es_direction;
slot = node->ss.ss_ScanTupleSlot;
if (scandesc == NULL)
{
/*
* We reach here if the scan is not parallel, or if we're serially
* executing a scan that was planned to be parallel.
*/
scandesc = heap_beginscan(node->ss.ss_currentRelation,
estate->es_snapshot,
0, NULL);
node->ss.ss_currentScanDesc = scandesc;
}
/*
* get the next tuple from the table
*/
tuple = heap_getnext(scandesc, direction);
/*
2005-10-15 04:49:52 +02:00
* save the tuple and the buffer returned to us by the access methods in
* our scan tuple slot and return the slot. Note: we pass 'false' because
* tuples returned by heap_getnext() are pointers onto disk pages and were
* not created with palloc() and so should not be pfree()'d. Note also
* that ExecStoreHeapTuple will increment the refcount of the buffer; the
2005-10-15 04:49:52 +02:00
* refcount will not be dropped until the tuple table slot is cleared.
*/
if (tuple)
ExecStoreBufferHeapTuple(tuple, /* tuple to store */
slot, /* slot to store in */
scandesc->rs_cbuf); /* buffer associated
* with this tuple */
else
ExecClearTuple(slot);
return slot;
}
/*
* SeqRecheck -- access method routine to recheck a tuple in EvalPlanQual
*/
static bool
SeqRecheck(SeqScanState *node, TupleTableSlot *slot)
{
/*
2010-02-26 03:01:40 +01:00
* Note that unlike IndexScan, SeqScan never use keys in heap_beginscan
* (and this is very bad) - so, here we do not check are keys ok or not.
*/
return true;
}
/* ----------------------------------------------------------------
* ExecSeqScan(node)
*
* Scans the relation sequentially and returns the next qualifying
* tuple.
* We call the ExecScan() routine and pass it the appropriate
* access method functions.
* ----------------------------------------------------------------
*/
static TupleTableSlot *
ExecSeqScan(PlanState *pstate)
{
SeqScanState *node = castNode(SeqScanState, pstate);
return ExecScan(&node->ss,
(ExecScanAccessMtd) SeqNext,
(ExecScanRecheckMtd) SeqRecheck);
}
/* ----------------------------------------------------------------
* ExecInitSeqScan
* ----------------------------------------------------------------
*/
SeqScanState *
ExecInitSeqScan(SeqScan *node, EState *estate, int eflags)
{
SeqScanState *scanstate;
/*
2005-10-15 04:49:52 +02:00
* Once upon a time it was possible to have an outerPlan of a SeqScan, but
* not any more.
*/
Assert(outerPlan(node) == NULL);
Assert(innerPlan(node) == NULL);
/*
* create state structure
*/
scanstate = makeNode(SeqScanState);
scanstate->ss.ps.plan = (Plan *) node;
scanstate->ss.ps.state = estate;
scanstate->ss.ps.ExecProcNode = ExecSeqScan;
/*
* Miscellaneous initialization
*
* create expression context for node
*/
ExecAssignExprContext(estate, &scanstate->ss.ps);
/*
* open the scan relation
*/
scanstate->ss.ss_currentRelation =
ExecOpenScanRelation(estate,
node->scanrelid,
eflags);
/* and create slot with the appropriate rowtype */
ExecInitScanTupleSlot(estate, &scanstate->ss,
RelationGetDescr(scanstate->ss.ss_currentRelation));
/*
Don't require return slots for nodes without projection. In a lot of nodes the return slot is not required. That can either be because the node doesn't do any projection (say an Append node), or because the node does perform projections but the projection is optimized away because the projection would yield an identical row. Slots aren't that small, especially for wide rows, so it's worthwhile to avoid creating them. It's not possible to just skip creating the slot - it's currently used to determine the tuple descriptor returned by ExecGetResultType(). So separate the determination of the result type from the slot creation. The work previously done internally ExecInitResultTupleSlotTL() can now also be done separately with ExecInitResultTypeTL() and ExecInitResultSlot(). That way nodes that aren't guaranteed to need a result slot, can use ExecInitResultTypeTL() to determine the result type of the node, and ExecAssignScanProjectionInfo() (via ExecConditionalAssignProjectionInfo()) determines that a result slot is needed, it is created with ExecInitResultSlot(). Besides the advantage of avoiding to create slots that then are unused, this is necessary preparation for later patches around tuple table slot abstraction. In particular separating the return descriptor and slot is a prerequisite to allow JITing of tuple deforming with knowledge of the underlying tuple format, and to avoid unnecessarily creating JITed tuple deforming for virtual slots. This commit removes a redundant argument from ExecInitResultTupleSlotTL(). While this commit touches a lot of the relevant lines anyway, it'd normally still not worthwhile to cause breakage, except that aforementioned later commits will touch *all* ExecInitResultTupleSlotTL() callers anyway (but fits worse thematically). Author: Andres Freund Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-10 02:19:39 +01:00
* Initialize result type and projection.
*/
Don't require return slots for nodes without projection. In a lot of nodes the return slot is not required. That can either be because the node doesn't do any projection (say an Append node), or because the node does perform projections but the projection is optimized away because the projection would yield an identical row. Slots aren't that small, especially for wide rows, so it's worthwhile to avoid creating them. It's not possible to just skip creating the slot - it's currently used to determine the tuple descriptor returned by ExecGetResultType(). So separate the determination of the result type from the slot creation. The work previously done internally ExecInitResultTupleSlotTL() can now also be done separately with ExecInitResultTypeTL() and ExecInitResultSlot(). That way nodes that aren't guaranteed to need a result slot, can use ExecInitResultTypeTL() to determine the result type of the node, and ExecAssignScanProjectionInfo() (via ExecConditionalAssignProjectionInfo()) determines that a result slot is needed, it is created with ExecInitResultSlot(). Besides the advantage of avoiding to create slots that then are unused, this is necessary preparation for later patches around tuple table slot abstraction. In particular separating the return descriptor and slot is a prerequisite to allow JITing of tuple deforming with knowledge of the underlying tuple format, and to avoid unnecessarily creating JITed tuple deforming for virtual slots. This commit removes a redundant argument from ExecInitResultTupleSlotTL(). While this commit touches a lot of the relevant lines anyway, it'd normally still not worthwhile to cause breakage, except that aforementioned later commits will touch *all* ExecInitResultTupleSlotTL() callers anyway (but fits worse thematically). Author: Andres Freund Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-10 02:19:39 +01:00
ExecInitResultTypeTL(&scanstate->ss.ps);
ExecAssignScanProjectionInfo(&scanstate->ss);
/*
* initialize child expressions
*/
scanstate->ss.ps.qual =
ExecInitQual(node->plan.qual, (PlanState *) scanstate);
return scanstate;
}
/* ----------------------------------------------------------------
* ExecEndSeqScan
*
* frees any storage allocated through C routines.
* ----------------------------------------------------------------
*/
void
ExecEndSeqScan(SeqScanState *node)
{
HeapScanDesc scanDesc;
/*
* get information from node
*/
scanDesc = node->ss.ss_currentScanDesc;
/*
* Free the exprcontext
*/
ExecFreeExprContext(&node->ss.ps);
/*
* clean out the tuple table
*/
Don't require return slots for nodes without projection. In a lot of nodes the return slot is not required. That can either be because the node doesn't do any projection (say an Append node), or because the node does perform projections but the projection is optimized away because the projection would yield an identical row. Slots aren't that small, especially for wide rows, so it's worthwhile to avoid creating them. It's not possible to just skip creating the slot - it's currently used to determine the tuple descriptor returned by ExecGetResultType(). So separate the determination of the result type from the slot creation. The work previously done internally ExecInitResultTupleSlotTL() can now also be done separately with ExecInitResultTypeTL() and ExecInitResultSlot(). That way nodes that aren't guaranteed to need a result slot, can use ExecInitResultTypeTL() to determine the result type of the node, and ExecAssignScanProjectionInfo() (via ExecConditionalAssignProjectionInfo()) determines that a result slot is needed, it is created with ExecInitResultSlot(). Besides the advantage of avoiding to create slots that then are unused, this is necessary preparation for later patches around tuple table slot abstraction. In particular separating the return descriptor and slot is a prerequisite to allow JITing of tuple deforming with knowledge of the underlying tuple format, and to avoid unnecessarily creating JITed tuple deforming for virtual slots. This commit removes a redundant argument from ExecInitResultTupleSlotTL(). While this commit touches a lot of the relevant lines anyway, it'd normally still not worthwhile to cause breakage, except that aforementioned later commits will touch *all* ExecInitResultTupleSlotTL() callers anyway (but fits worse thematically). Author: Andres Freund Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-10 02:19:39 +01:00
if (node->ss.ps.ps_ResultTupleSlot)
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
ExecClearTuple(node->ss.ss_ScanTupleSlot);
/*
* close heap scan
*/
if (scanDesc != NULL)
heap_endscan(scanDesc);
}
/* ----------------------------------------------------------------
* Join Support
* ----------------------------------------------------------------
*/
/* ----------------------------------------------------------------
* ExecReScanSeqScan
*
* Rescans the relation.
* ----------------------------------------------------------------
*/
void
ExecReScanSeqScan(SeqScanState *node)
{
HeapScanDesc scan;
scan = node->ss.ss_currentScanDesc;
if (scan != NULL)
2016-06-10 00:02:36 +02:00
heap_rescan(scan, /* scan desc */
NULL); /* new scan keys */
ExecScanReScan((ScanState *) node);
}
/* ----------------------------------------------------------------
* Parallel Scan Support
* ----------------------------------------------------------------
*/
/* ----------------------------------------------------------------
* ExecSeqScanEstimate
*
* Compute the amount of space we'll need in the parallel
* query DSM, and inform pcxt->estimator about our needs.
* ----------------------------------------------------------------
*/
void
ExecSeqScanEstimate(SeqScanState *node,
ParallelContext *pcxt)
{
EState *estate = node->ss.ps.state;
node->pscan_len = heap_parallelscan_estimate(estate->es_snapshot);
shm_toc_estimate_chunk(&pcxt->estimator, node->pscan_len);
shm_toc_estimate_keys(&pcxt->estimator, 1);
}
/* ----------------------------------------------------------------
* ExecSeqScanInitializeDSM
*
* Set up a parallel heap scan descriptor.
* ----------------------------------------------------------------
*/
void
ExecSeqScanInitializeDSM(SeqScanState *node,
ParallelContext *pcxt)
{
EState *estate = node->ss.ps.state;
2016-06-10 00:02:36 +02:00
ParallelHeapScanDesc pscan;
pscan = shm_toc_allocate(pcxt->toc, node->pscan_len);
heap_parallelscan_initialize(pscan,
node->ss.ss_currentRelation,
estate->es_snapshot);
shm_toc_insert(pcxt->toc, node->ss.ps.plan->plan_node_id, pscan);
node->ss.ss_currentScanDesc =
heap_beginscan_parallel(node->ss.ss_currentRelation, pscan);
}
/* ----------------------------------------------------------------
* ExecSeqScanReInitializeDSM
*
* Reset shared state before beginning a fresh scan.
* ----------------------------------------------------------------
*/
void
ExecSeqScanReInitializeDSM(SeqScanState *node,
ParallelContext *pcxt)
{
HeapScanDesc scan = node->ss.ss_currentScanDesc;
heap_parallelscan_reinitialize(scan->rs_parallel);
}
/* ----------------------------------------------------------------
* ExecSeqScanInitializeWorker
*
* Copy relevant information from TOC into planstate.
* ----------------------------------------------------------------
*/
void
ExecSeqScanInitializeWorker(SeqScanState *node,
ParallelWorkerContext *pwcxt)
{
2016-06-10 00:02:36 +02:00
ParallelHeapScanDesc pscan;
pscan = shm_toc_lookup(pwcxt->toc, node->ss.ps.plan->plan_node_id, false);
node->ss.ss_currentScanDesc =
heap_beginscan_parallel(node->ss.ss_currentRelation, pscan);
}