postgresql/src/include/access/brin_internal.h

110 lines
3.3 KiB
C
Raw Normal View History

BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/*
* brin_internal.h
* internal declarations for BRIN indexes
*
2017-01-03 19:48:53 +01:00
* Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/include/access/brin_internal.h
*/
#ifndef BRIN_INTERNAL_H
#define BRIN_INTERNAL_H
#include "access/amapi.h"
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
#include "storage/bufpage.h"
#include "utils/typcache.h"
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/*
* A BrinDesc is a struct designed to enable decoding a BRIN tuple from the
* on-disk format to an in-memory tuple and vice-versa.
*/
/* struct returned by "OpcInfo" amproc */
typedef struct BrinOpcInfo
{
/* Number of columns stored in an index column of this opclass */
uint16 oi_nstored;
/* Opaque pointer for the opclass' private use */
void *oi_opaque;
/* Type cache entries of the stored columns */
TypeCacheEntry *oi_typcache[FLEXIBLE_ARRAY_MEMBER];
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
} BrinOpcInfo;
/* the size of a BrinOpcInfo for the given number of columns */
#define SizeofBrinOpcInfo(ncols) \
(offsetof(BrinOpcInfo, oi_typcache) + sizeof(TypeCacheEntry *) * ncols)
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
typedef struct BrinDesc
{
/* Containing memory context */
MemoryContext bd_context;
/* the index relation itself */
Relation bd_index;
/* tuple descriptor of the index relation */
TupleDesc bd_tupdesc;
/* cached copy for on-disk tuples; generated at first use */
TupleDesc bd_disktdesc;
/* total number of Datum entries that are stored on-disk for all columns */
int bd_totalstored;
/* per-column info; bd_tupdesc->natts entries long */
BrinOpcInfo *bd_info[FLEXIBLE_ARRAY_MEMBER];
} BrinDesc;
/*
* Globally-known function support numbers for BRIN indexes. Individual
* opclasses can define more function support numbers, which must fall into
* BRIN_FIRST_OPTIONAL_PROCNUM .. BRIN_LAST_OPTIONAL_PROCNUM.
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
*/
#define BRIN_PROCNUM_OPCINFO 1
#define BRIN_PROCNUM_ADDVALUE 2
#define BRIN_PROCNUM_CONSISTENT 3
#define BRIN_PROCNUM_UNION 4
#define BRIN_MANDATORY_NPROCS 4
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/* procedure numbers up to 10 are reserved for BRIN future expansion */
#define BRIN_FIRST_OPTIONAL_PROCNUM 11
#define BRIN_LAST_OPTIONAL_PROCNUM 15
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
#undef BRIN_DEBUG
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
#ifdef BRIN_DEBUG
#define BRIN_elog(args) elog args
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
#else
#define BRIN_elog(args) ((void) 0)
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
#endif
/* brin.c */
extern BrinDesc *brin_build_desc(Relation rel);
extern void brin_free_desc(BrinDesc *bdesc);
extern IndexBuildResult *brinbuild(Relation heap, Relation index,
struct IndexInfo *indexInfo);
extern void brinbuildempty(Relation index);
extern bool brininsert(Relation idxRel, Datum *values, bool *nulls,
ItemPointer heaptid, Relation heapRel,
IndexUniqueCheck checkUnique);
extern IndexScanDesc brinbeginscan(Relation r, int nkeys, int norderbys);
extern int64 bringetbitmap(IndexScanDesc scan, TIDBitmap *tbm);
extern void brinrescan(IndexScanDesc scan, ScanKey scankey, int nscankeys,
ScanKey orderbys, int norderbys);
extern void brinendscan(IndexScanDesc scan);
extern IndexBulkDeleteResult *brinbulkdelete(IndexVacuumInfo *info,
IndexBulkDeleteResult *stats,
IndexBulkDeleteCallback callback,
void *callback_state);
extern IndexBulkDeleteResult *brinvacuumcleanup(IndexVacuumInfo *info,
IndexBulkDeleteResult *stats);
extern bytea *brinoptions(Datum reloptions, bool validate);
/* brin_validate.c */
extern bool brinvalidate(Oid opclassoid);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
#endif /* BRIN_INTERNAL_H */