postgresql/src/include/access/gin_private.h

482 lines
16 KiB
C
Raw Normal View History

Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/*--------------------------------------------------------------------------
* gin_private.h
* header file for postgres inverted index access method implementation.
*
* Copyright (c) 2006-2020, PostgreSQL Global Development Group
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
*
* src/include/access/gin_private.h
*--------------------------------------------------------------------------
*/
#ifndef GIN_PRIVATE_H
#define GIN_PRIVATE_H
#include "access/amapi.h"
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
#include "access/gin.h"
#include "access/ginblock.h"
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
#include "access/itup.h"
#include "catalog/pg_am_d.h"
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
#include "fmgr.h"
#include "lib/rbtree.h"
#include "storage/bufmgr.h"
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/*
* Storage type for GIN's reloptions
*/
typedef struct GinOptions
{
int32 vl_len_; /* varlena header (do not touch directly!) */
bool useFastUpdate; /* use fast updates? */
int pendingListCleanupSize; /* maximum size of pending list */
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
} GinOptions;
#define GIN_DEFAULT_USE_FASTUPDATE true
#define GinGetUseFastUpdate(relation) \
(AssertMacro(relation->rd_rel->relkind == RELKIND_INDEX && \
relation->rd_rel->relam == GIN_AM_OID), \
(relation)->rd_options ? \
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
((GinOptions *) (relation)->rd_options)->useFastUpdate : GIN_DEFAULT_USE_FASTUPDATE)
#define GinGetPendingListCleanupSize(relation) \
(AssertMacro(relation->rd_rel->relkind == RELKIND_INDEX && \
relation->rd_rel->relam == GIN_AM_OID), \
(relation)->rd_options && \
((GinOptions *) (relation)->rd_options)->pendingListCleanupSize != -1 ? \
((GinOptions *) (relation)->rd_options)->pendingListCleanupSize : \
gin_pending_list_limit)
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/* Macros for buffer lock/unlock operations */
#define GIN_UNLOCK BUFFER_LOCK_UNLOCK
#define GIN_SHARE BUFFER_LOCK_SHARE
#define GIN_EXCLUSIVE BUFFER_LOCK_EXCLUSIVE
/*
* GinState: working data structure describing the index being worked on
*/
typedef struct GinState
{
Relation index;
bool oneCol; /* true if single-column index */
/*
* origTupdesc is the nominal tuple descriptor of the index, ie, the i'th
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
* attribute shows the key type (not the input data type!) of the i'th
* index column. In a single-column index this describes the actual leaf
* index tuples. In a multi-column index, the actual leaf tuples contain
* a smallint column number followed by a key datum of the appropriate
* type for that column. We set up tupdesc[i] to describe the actual
* rowtype of the index tuples for the i'th column, ie, (int2, keytype).
* Note that in any case, leaf tuples contain more data than is known to
* the TupleDesc; see access/gin/README for details.
*/
TupleDesc origTupdesc;
TupleDesc tupdesc[INDEX_MAX_KEYS];
/*
* Per-index-column opclass support functions
*/
FmgrInfo compareFn[INDEX_MAX_KEYS];
FmgrInfo extractValueFn[INDEX_MAX_KEYS];
FmgrInfo extractQueryFn[INDEX_MAX_KEYS];
FmgrInfo consistentFn[INDEX_MAX_KEYS];
FmgrInfo triConsistentFn[INDEX_MAX_KEYS];
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
FmgrInfo comparePartialFn[INDEX_MAX_KEYS]; /* optional method */
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/* canPartialMatch[i] is true if comparePartialFn[i] is valid */
bool canPartialMatch[INDEX_MAX_KEYS];
/* Collations to pass to the support functions */
Oid supportCollation[INDEX_MAX_KEYS];
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
} GinState;
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/* ginutil.c */
extern bytea *ginoptions(Datum reloptions, bool validate);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
extern void initGinState(GinState *state, Relation index);
extern Buffer GinNewBuffer(Relation index);
extern void GinInitBuffer(Buffer b, uint32 f);
extern void GinInitPage(Page page, uint32 f, Size pageSize);
extern void GinInitMetabuffer(Buffer b);
extern int ginCompareEntries(GinState *ginstate, OffsetNumber attnum,
Datum a, GinNullCategory categorya,
Datum b, GinNullCategory categoryb);
extern int ginCompareAttEntries(GinState *ginstate,
OffsetNumber attnuma, Datum a, GinNullCategory categorya,
OffsetNumber attnumb, Datum b, GinNullCategory categoryb);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
extern Datum *ginExtractEntries(GinState *ginstate, OffsetNumber attnum,
Datum value, bool isNull,
int32 *nentries, GinNullCategory **categories);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
extern OffsetNumber gintuple_get_attrnum(GinState *ginstate, IndexTuple tuple);
extern Datum gintuple_get_key(GinState *ginstate, IndexTuple tuple,
GinNullCategory *category);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/* gininsert.c */
extern IndexBuildResult *ginbuild(Relation heap, Relation index,
struct IndexInfo *indexInfo);
extern void ginbuildempty(Relation index);
extern bool gininsert(Relation index, Datum *values, bool *isnull,
ItemPointer ht_ctid, Relation heapRel,
IndexUniqueCheck checkUnique,
struct IndexInfo *indexInfo);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
extern void ginEntryInsert(GinState *ginstate,
OffsetNumber attnum, Datum key, GinNullCategory category,
ItemPointerData *items, uint32 nitem,
GinStatsData *buildStats);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/* ginbtree.c */
typedef struct GinBtreeStack
{
BlockNumber blkno;
Buffer buffer;
OffsetNumber off;
ItemPointerData iptr;
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/* predictNumber contains predicted number of pages on current level */
uint32 predictNumber;
struct GinBtreeStack *parent;
} GinBtreeStack;
typedef struct GinBtreeData *GinBtree;
Fix memory leak and other bugs in ginPlaceToPage() & subroutines. Commit 36a35c550ac114ca turned the interface between ginPlaceToPage and its subroutines in gindatapage.c and ginentrypage.c into a royal mess: page-update critical sections were started in one place and finished in another place not even in the same file, and the very same subroutine might return having started a critical section or not. Subsequent patches band-aided over some of the problems with this design by making things even messier. One user-visible resulting problem is memory leaks caused by the need for the subroutines to allocate storage that would survive until ginPlaceToPage calls XLogInsert (as reported by Julien Rouhaud). This would not typically be noticeable during retail index updates. It could be visible in a GIN index build, in the form of memory consumption swelling to several times the commanded maintenance_work_mem. Another rather nasty problem is that in the internal-page-splitting code path, we would clear the child page's GIN_INCOMPLETE_SPLIT flag well before entering the critical section that it's supposed to be cleared in; a failure in between would leave the index in a corrupt state. There were also assorted coding-rule violations with little immediate consequence but possible long-term hazards, such as beginning an XLogInsert sequence before entering a critical section, or calling elog(DEBUG) inside a critical section. To fix, redefine the API between ginPlaceToPage() and its subroutines by splitting the subroutines into two parts. The "beginPlaceToPage" subroutine does what can be done outside a critical section, including full computation of the result pages into temporary storage when we're going to split the target page. The "execPlaceToPage" subroutine is called within a critical section established by ginPlaceToPage(), and it handles the actual page update in the non-split code path. The critical section, as well as the XLOG insertion call sequence, are both now always started and finished in ginPlaceToPage(). Also, make ginPlaceToPage() create and work in a short-lived memory context to eliminate the leakage problem. (Since a short-lived memory context had been getting created in the most common code path in the subroutines, this shouldn't cause any noticeable performance penalty; we're just moving the overhead up one call level.) In passing, fix a bunch of comments that had gone unmaintained throughout all this klugery. Report: <571276DD.5050303@dalibo.com>
2016-04-20 20:25:15 +02:00
/* Return codes for GinBtreeData.beginPlaceToPage method */
typedef enum
{
Fix memory leak and other bugs in ginPlaceToPage() & subroutines. Commit 36a35c550ac114ca turned the interface between ginPlaceToPage and its subroutines in gindatapage.c and ginentrypage.c into a royal mess: page-update critical sections were started in one place and finished in another place not even in the same file, and the very same subroutine might return having started a critical section or not. Subsequent patches band-aided over some of the problems with this design by making things even messier. One user-visible resulting problem is memory leaks caused by the need for the subroutines to allocate storage that would survive until ginPlaceToPage calls XLogInsert (as reported by Julien Rouhaud). This would not typically be noticeable during retail index updates. It could be visible in a GIN index build, in the form of memory consumption swelling to several times the commanded maintenance_work_mem. Another rather nasty problem is that in the internal-page-splitting code path, we would clear the child page's GIN_INCOMPLETE_SPLIT flag well before entering the critical section that it's supposed to be cleared in; a failure in between would leave the index in a corrupt state. There were also assorted coding-rule violations with little immediate consequence but possible long-term hazards, such as beginning an XLogInsert sequence before entering a critical section, or calling elog(DEBUG) inside a critical section. To fix, redefine the API between ginPlaceToPage() and its subroutines by splitting the subroutines into two parts. The "beginPlaceToPage" subroutine does what can be done outside a critical section, including full computation of the result pages into temporary storage when we're going to split the target page. The "execPlaceToPage" subroutine is called within a critical section established by ginPlaceToPage(), and it handles the actual page update in the non-split code path. The critical section, as well as the XLOG insertion call sequence, are both now always started and finished in ginPlaceToPage(). Also, make ginPlaceToPage() create and work in a short-lived memory context to eliminate the leakage problem. (Since a short-lived memory context had been getting created in the most common code path in the subroutines, this shouldn't cause any noticeable performance penalty; we're just moving the overhead up one call level.) In passing, fix a bunch of comments that had gone unmaintained throughout all this klugery. Report: <571276DD.5050303@dalibo.com>
2016-04-20 20:25:15 +02:00
GPTP_NO_WORK,
GPTP_INSERT,
GPTP_SPLIT
} GinPlaceToPageRC;
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
typedef struct GinBtreeData
{
/* search methods */
BlockNumber (*findChildPage) (GinBtree, GinBtreeStack *);
BlockNumber (*getLeftMostChild) (GinBtree, Page);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
bool (*isMoveRight) (GinBtree, Page);
bool (*findItem) (GinBtree, GinBtreeStack *);
/* insert methods */
OffsetNumber (*findChildPtr) (GinBtree, Page, BlockNumber, OffsetNumber);
Fix memory leak and other bugs in ginPlaceToPage() & subroutines. Commit 36a35c550ac114ca turned the interface between ginPlaceToPage and its subroutines in gindatapage.c and ginentrypage.c into a royal mess: page-update critical sections were started in one place and finished in another place not even in the same file, and the very same subroutine might return having started a critical section or not. Subsequent patches band-aided over some of the problems with this design by making things even messier. One user-visible resulting problem is memory leaks caused by the need for the subroutines to allocate storage that would survive until ginPlaceToPage calls XLogInsert (as reported by Julien Rouhaud). This would not typically be noticeable during retail index updates. It could be visible in a GIN index build, in the form of memory consumption swelling to several times the commanded maintenance_work_mem. Another rather nasty problem is that in the internal-page-splitting code path, we would clear the child page's GIN_INCOMPLETE_SPLIT flag well before entering the critical section that it's supposed to be cleared in; a failure in between would leave the index in a corrupt state. There were also assorted coding-rule violations with little immediate consequence but possible long-term hazards, such as beginning an XLogInsert sequence before entering a critical section, or calling elog(DEBUG) inside a critical section. To fix, redefine the API between ginPlaceToPage() and its subroutines by splitting the subroutines into two parts. The "beginPlaceToPage" subroutine does what can be done outside a critical section, including full computation of the result pages into temporary storage when we're going to split the target page. The "execPlaceToPage" subroutine is called within a critical section established by ginPlaceToPage(), and it handles the actual page update in the non-split code path. The critical section, as well as the XLOG insertion call sequence, are both now always started and finished in ginPlaceToPage(). Also, make ginPlaceToPage() create and work in a short-lived memory context to eliminate the leakage problem. (Since a short-lived memory context had been getting created in the most common code path in the subroutines, this shouldn't cause any noticeable performance penalty; we're just moving the overhead up one call level.) In passing, fix a bunch of comments that had gone unmaintained throughout all this klugery. Report: <571276DD.5050303@dalibo.com>
2016-04-20 20:25:15 +02:00
GinPlaceToPageRC (*beginPlaceToPage) (GinBtree, Buffer, GinBtreeStack *, void *, BlockNumber, void **, Page *, Page *);
void (*execPlaceToPage) (GinBtree, Buffer, GinBtreeStack *, void *, BlockNumber, void *);
void *(*prepareDownlink) (GinBtree, Buffer);
void (*fillRoot) (GinBtree, Page, BlockNumber, Page, BlockNumber, Page);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
bool isData;
Relation index;
BlockNumber rootBlkno;
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
GinState *ginstate; /* not valid in a data scan */
bool fullScan;
bool isBuild;
/* Search key for Entry tree */
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
OffsetNumber entryAttnum;
Datum entryKey;
GinNullCategory entryCategory;
/* Search key for data tree (posting tree) */
ItemPointerData itemptr;
} GinBtreeData;
/* This represents a tuple to be inserted to entry tree. */
typedef struct
{
IndexTuple entry; /* tuple to insert */
bool isDelete; /* delete old tuple at same offset? */
} GinBtreeEntryInsertData;
/*
* This represents an itempointer, or many itempointers, to be inserted to
* a data (posting tree) leaf page
*/
typedef struct
{
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
ItemPointerData *items;
uint32 nitem;
uint32 curitem;
} GinBtreeDataLeafInsertData;
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/*
* For internal data (posting tree) pages, the insertion payload is a
* PostingItem
*/
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
extern GinBtreeStack *ginFindLeafPage(GinBtree btree, bool searchMode,
bool rootConflictCheck, Snapshot snapshot);
extern Buffer ginStepRight(Buffer buffer, Relation index, int lockmode);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
extern void freeGinBtreeStack(GinBtreeStack *stack);
extern void ginInsertValue(GinBtree btree, GinBtreeStack *stack,
void *insertdata, GinStatsData *buildStats);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/* ginentrypage.c */
extern IndexTuple GinFormTuple(GinState *ginstate,
OffsetNumber attnum, Datum key, GinNullCategory category,
Pointer data, Size dataSize, int nipd, bool errorTooBig);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
extern void ginPrepareEntryScan(GinBtree btree, OffsetNumber attnum,
Datum key, GinNullCategory category,
GinState *ginstate);
extern void ginEntryFillRoot(GinBtree btree, Page root, BlockNumber lblkno, Page lpage, BlockNumber rblkno, Page rpage);
extern ItemPointer ginReadTuple(GinState *ginstate, OffsetNumber attnum,
IndexTuple itup, int *nitems);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/* gindatapage.c */
extern ItemPointer GinDataLeafPageGetItems(Page page, int *nitems, ItemPointerData advancePast);
extern int GinDataLeafPageGetItemsToTbm(Page page, TIDBitmap *tbm);
extern BlockNumber createPostingTree(Relation index,
ItemPointerData *items, uint32 nitems,
GinStatsData *buildStats, Buffer entrybuffer);
extern void GinDataPageAddPostingItem(Page page, PostingItem *data, OffsetNumber offset);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
extern void GinPageDeletePostingItem(Page page, OffsetNumber offset);
extern void ginInsertItemPointers(Relation index, BlockNumber rootBlkno,
ItemPointerData *items, uint32 nitem,
GinStatsData *buildStats);
extern GinBtreeStack *ginScanBeginPostingTree(GinBtree btree, Relation index, BlockNumber rootBlkno, Snapshot snapshot);
extern void ginDataFillRoot(GinBtree btree, Page root, BlockNumber lblkno, Page lpage, BlockNumber rblkno, Page rpage);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/*
* This is declared in ginvacuum.c, but is passed between ginVacuumItemPointers
* and ginVacuumPostingTreeLeaf and as an opaque struct, so we need a forward
* declaration for it.
*/
typedef struct GinVacuumState GinVacuumState;
extern void ginVacuumPostingTreeLeaf(Relation rel, Buffer buf, GinVacuumState *gvs);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/* ginscan.c */
/*
* GinScanKeyData describes a single GIN index qualifier expression.
*
* From each qual expression, we extract one or more specific index search
* conditions, which are represented by GinScanEntryData. It's quite
* possible for identical search conditions to be requested by more than
* one qual expression, in which case we merge such conditions to have just
* one unique GinScanEntry --- this is particularly important for efficiency
* when dealing with full-index-scan entries. So there can be multiple
* GinScanKeyData.scanEntry pointers to the same GinScanEntryData.
*
* In each GinScanKeyData, nentries is the true number of entries, while
* nuserentries is the number that extractQueryFn returned (which is what
* we report to consistentFn). The "user" entries must come first.
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
*/
typedef struct GinScanKeyData *GinScanKey;
typedef struct GinScanEntryData *GinScanEntry;
typedef struct GinScanKeyData
{
/* Real number of entries in scanEntry[] (always > 0) */
uint32 nentries;
/* Number of entries that extractQueryFn and consistentFn know about */
uint32 nuserentries;
/* array of GinScanEntry pointers, one per extracted search condition */
GinScanEntry *scanEntry;
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
2014-02-07 13:58:11 +01:00
/*
* At least one of the entries in requiredEntries must be present for a
* tuple to match the overall qual.
2014-02-07 13:58:11 +01:00
*
* additionalEntries contains entries that are needed by the consistent
* function to decide if an item matches, but are not sufficient to
* satisfy the qual without entries from requiredEntries.
*/
GinScanEntry *requiredEntries;
int nrequired;
GinScanEntry *additionalEntries;
int nadditional;
/* array of check flags, reported to consistentFn */
GinTernaryValue *entryRes;
2014-02-07 13:58:11 +01:00
bool (*boolConsistentFn) (GinScanKey key);
GinTernaryValue (*triConsistentFn) (GinScanKey key);
2014-02-07 13:58:11 +01:00
FmgrInfo *consistentFmgrInfo;
FmgrInfo *triConsistentFmgrInfo;
2014-02-07 13:58:11 +01:00
Oid collation;
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/* other data needed for calling consistentFn */
Datum query;
/* NB: these three arrays have only nuserentries elements! */
Datum *queryValues;
GinNullCategory *queryCategories;
Pointer *extra_data;
StrategyNumber strategy;
int32 searchMode;
OffsetNumber attnum;
/*
2011-04-10 17:42:00 +02:00
* Match status data. curItem is the TID most recently tested (could be a
* lossy-page pointer). curItemMatches is true if it passes the
* consistentFn test; if so, recheckCurItem is the recheck flag.
2011-04-10 17:42:00 +02:00
* isFinished means that all the input entry streams are finished, so this
* key cannot succeed for any later TIDs.
*/
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
ItemPointerData curItem;
bool curItemMatches;
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
bool recheckCurItem;
bool isFinished;
2017-06-21 20:39:04 +02:00
} GinScanKeyData;
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
typedef struct GinScanEntryData
{
/* query key and other information from extractQueryFn */
Datum queryKey;
GinNullCategory queryCategory;
bool isPartialMatch;
Pointer extra_data;
StrategyNumber strategy;
int32 searchMode;
OffsetNumber attnum;
/* Current page in posting tree */
Buffer buffer;
/* current ItemPointer to heap */
ItemPointerData curItem;
/* for a partial-match or full-scan query, we accumulate all TIDs here */
TIDBitmap *matchBitmap;
TBMIterator *matchIterator;
TBMIterateResult *matchResult;
/* used for Posting list and one page in Posting tree */
ItemPointerData *list;
int nlist;
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
OffsetNumber offset;
bool isFinished;
bool reduceResult;
uint32 predictNumberResult;
GinBtreeData btree;
2017-06-21 20:39:04 +02:00
} GinScanEntryData;
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
typedef struct GinScanOpaqueData
{
MemoryContext tempCtx;
GinState ginstate;
GinScanKey keys; /* one per scan qualifier expr */
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
uint32 nkeys;
GinScanEntry *entries; /* one per index search condition */
uint32 totalentries;
uint32 allocentries; /* allocated length of entries[] */
MemoryContext keyCtx; /* used to hold key and entry data */
bool isVoidRes; /* true if query is unsatisfiable */
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
} GinScanOpaqueData;
typedef GinScanOpaqueData *GinScanOpaque;
extern IndexScanDesc ginbeginscan(Relation rel, int nkeys, int norderbys);
extern void ginendscan(IndexScanDesc scan);
extern void ginrescan(IndexScanDesc scan, ScanKey key, int nscankeys,
ScanKey orderbys, int norderbys);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
extern void ginNewScanKey(IndexScanDesc scan);
extern void ginFreeScanKeys(GinScanOpaque so);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/* ginget.c */
extern int64 gingetbitmap(IndexScanDesc scan, TIDBitmap *tbm);
2014-02-07 13:58:11 +01:00
/* ginlogic.c */
extern void ginInitConsistentFunction(GinState *ginstate, GinScanKey key);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/* ginvacuum.c */
extern IndexBulkDeleteResult *ginbulkdelete(IndexVacuumInfo *info,
IndexBulkDeleteResult *stats,
IndexBulkDeleteCallback callback,
void *callback_state);
extern IndexBulkDeleteResult *ginvacuumcleanup(IndexVacuumInfo *info,
IndexBulkDeleteResult *stats);
extern ItemPointer ginVacuumItemPointers(GinVacuumState *gvs,
ItemPointerData *items, int nitem, int *nremaining);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/* ginvalidate.c */
extern bool ginvalidate(Oid opclassoid);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/* ginbulk.c */
typedef struct GinEntryAccumulator
{
RBTNode rbtnode;
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
Datum key;
GinNullCategory category;
OffsetNumber attnum;
bool shouldSort;
ItemPointerData *list;
uint32 maxcount; /* allocated size of list[] */
uint32 count; /* current number of list[] entries */
} GinEntryAccumulator;
typedef struct
{
GinState *ginstate;
Size allocatedMemory;
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
GinEntryAccumulator *entryallocator;
uint32 eas_used;
RBTree *tree;
RBTreeIterator tree_walk;
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
} BuildAccumulator;
extern void ginInitBA(BuildAccumulator *accum);
extern void ginInsertBAEntries(BuildAccumulator *accum,
ItemPointer heapptr, OffsetNumber attnum,
Datum *entries, GinNullCategory *categories,
int32 nentries);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
extern void ginBeginBAScan(BuildAccumulator *accum);
extern ItemPointerData *ginGetBAEntry(BuildAccumulator *accum,
OffsetNumber *attnum, Datum *key, GinNullCategory *category,
uint32 *n);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/* ginfast.c */
typedef struct GinTupleCollector
{
IndexTuple *tuples;
uint32 ntuples;
uint32 lentuples;
uint32 sumsize;
} GinTupleCollector;
extern void ginHeapTupleFastInsert(GinState *ginstate,
GinTupleCollector *collector);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
extern void ginHeapTupleFastCollect(GinState *ginstate,
GinTupleCollector *collector,
OffsetNumber attnum, Datum value, bool isNull,
ItemPointer ht_ctid);
extern void ginInsertCleanup(GinState *ginstate, bool full_clean,
bool fill_fsm, bool forceCleanup, IndexBulkDeleteResult *stats);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/* ginpostinglist.c */
extern GinPostingList *ginCompressPostingList(const ItemPointer ipd, int nipd,
int maxsize, int *nwritten);
extern int ginPostingListDecodeAllSegmentsToTbm(GinPostingList *ptr, int totalsize, TIDBitmap *tbm);
extern ItemPointer ginPostingListDecodeAllSegments(GinPostingList *ptr, int len, int *ndecoded);
extern ItemPointer ginPostingListDecode(GinPostingList *ptr, int *ndecoded);
extern ItemPointer ginMergeItemPointers(ItemPointerData *a, uint32 na,
ItemPointerData *b, uint32 nb,
int *nmerged);
/*
* Merging the results of several gin scans compares item pointers a lot,
* so we want this to be inlined.
*/
static inline int
ginCompareItemPointers(ItemPointer a, ItemPointer b)
{
uint64 ia = (uint64) GinItemPointerGetBlockNumber(a) << 32 | GinItemPointerGetOffsetNumber(a);
uint64 ib = (uint64) GinItemPointerGetBlockNumber(b) << 32 | GinItemPointerGetOffsetNumber(b);
if (ia == ib)
return 0;
else if (ia > ib)
return 1;
else
return -1;
}
extern int ginTraverseLock(Buffer buffer, bool searchMode);
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
#endif /* GIN_PRIVATE_H */