postgresql/src/backend/storage/large_object/inv_api.c

1170 lines
31 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* inv_api.c--
* routines for manipulating inversion fs large objects. This file
* contains the user-level large object application interface routines.
*
* Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/storage/large_object/inv_api.c,v 1.13 1997/08/19 21:33:10 momjian Exp $
*
*-------------------------------------------------------------------------
*/
1997-07-28 02:57:08 +02:00
#include <sys/types.h>
#include <stdio.h> /* for sprintf() */
1996-11-08 07:02:30 +01:00
#include <string.h>
#include <sys/file.h>
1997-01-18 17:14:04 +01:00
#include <sys/stat.h>
1996-11-08 07:02:30 +01:00
#include "postgres.h"
#include "miscadmin.h"
#include "libpq/libpq-fs.h"
#include "access/genam.h"
#include "access/heapam.h"
#include "access/relscan.h"
#include "access/tupdesc.h"
#include "access/xact.h"
#include "access/nbtree.h"
#include "access/tupdesc.h"
#include "catalog/index.h" /* for index_create() */
#include "catalog/catalog.h" /* for newoid() */
#include "catalog/pg_am.h" /* for BTREE_AM_OID */
#include "catalog/pg_opclass.h" /* for INT4_OPS_OID */
#include "catalog/pg_proc.h" /* for INT4GE_PROC_OID */
#include "storage/itemptr.h"
#include "storage/bufpage.h"
#include "storage/bufmgr.h"
1996-11-08 07:02:30 +01:00
#include "storage/smgr.h"
#include "utils/rel.h"
1996-11-08 07:02:30 +01:00
#include "utils/relcache.h"
#include "utils/palloc.h"
#include "storage/large_object.h"
1996-11-08 07:02:30 +01:00
#include "storage/lmgr.h"
#include "utils/syscache.h"
#include "utils/builtins.h" /* for namestrcpy() */
#include "catalog/heap.h"
#include "nodes/pg_list.h"
/*
* Warning, Will Robinson... In order to pack data into an inversion
* file as densely as possible, we violate the class abstraction here.
* When we're appending a new tuple to the end of the table, we check
* the last page to see how much data we can put on it. If it's more
* than IMINBLK, we write enough to fill the page. This limits external
* fragmentation. In no case can we write more than IMAXBLK, since
* the 8K postgres page size less overhead leaves only this much space
* for data.
*/
#define IFREESPC(p) (PageGetFreeSpace(p) - sizeof(HeapTupleData) - sizeof(struct varlena) - sizeof(int32))
#define IMAXBLK 8092
#define IMINBLK 512
/* non-export function prototypes */
static HeapTuple inv_newtuple(LargeObjectDesc *obj_desc, Buffer buffer,
Page page, char *dbuf, int nwrite);
static HeapTuple inv_fetchtup(LargeObjectDesc *obj_desc, Buffer *bufP);
static int inv_wrnew(LargeObjectDesc *obj_desc, char *buf, int nbytes);
static int inv_wrold(LargeObjectDesc *obj_desc, char *dbuf, int nbytes,
HeapTuple htup, Buffer buffer);
static void inv_indextup(LargeObjectDesc *obj_desc, HeapTuple htup);
static int _inv_getsize(Relation hreln, TupleDesc hdesc, Relation ireln);
/*
* inv_create -- create a new large object.
*
* Arguments:
* flags -- storage manager to use, archive mode, etc.
*
* Returns:
* large object descriptor, appropriately filled in.
*/
LargeObjectDesc *
inv_create(int flags)
{
int file_oid;
LargeObjectDesc *retval;
Relation r;
Relation indr;
int smgr;
char archchar;
TupleDesc tupdesc;
AttrNumber attNums[1];
Oid classObjectId[1];
char objname[NAMEDATALEN];
char indname[NAMEDATALEN];
/* parse flags */
smgr = flags & INV_SMGRMASK;
if (flags & INV_ARCHIVE)
archchar = 'h';
else
archchar = 'n';
/* add one here since the pg_class tuple created
will have the next oid and we want to have the relation name
to correspond to the tuple OID */
file_oid = newoid()+1;
/* come up with some table names */
sprintf(objname, "xinv%d", file_oid);
sprintf(indname, "xinx%d", file_oid);
if (SearchSysCacheTuple(RELNAME, PointerGetDatum(objname),
0,0,0) != NULL) {
elog(WARN,
"internal error: %s already exists -- cannot create large obj",
objname);
}
if (SearchSysCacheTuple(RELNAME, PointerGetDatum(indname),
0,0,0) != NULL) {
elog(WARN,
"internal error: %s already exists -- cannot create large obj",
indname);
}
/* this is pretty painful... want a tuple descriptor */
tupdesc = CreateTemplateTupleDesc(2);
TupleDescInitEntry(tupdesc, (AttrNumber) 1,
"olastbye",
"int4",
0, false);
TupleDescInitEntry(tupdesc, (AttrNumber) 2,
"odata",
"bytea",
0, false);
/*
* First create the table to hold the inversion large object. It
* will be located on whatever storage manager the user requested.
*/
heap_create(objname,
objname,
(int) archchar, smgr,
tupdesc);
/* make the relation visible in this transaction */
CommandCounterIncrement();
r = heap_openr(objname);
if (!RelationIsValid(r)) {
elog(WARN, "cannot create large object on %s under inversion",
smgrout(smgr));
}
/*
* Now create a btree index on the relation's olastbyte attribute to
* make seeks go faster. The hardwired constants are embarassing
* to me, and are symptomatic of the pressure under which this code
* was written.
*
* ok, mao, let's put in some symbolic constants - jolly
*/
attNums[0] = 1;
classObjectId[0] = INT4_OPS_OID;
index_create(objname, indname, NULL, NULL, BTREE_AM_OID,
1, &attNums[0], &classObjectId[0],
0, (Datum) NULL, NULL, FALSE, FALSE);
/* make the index visible in this transaction */
CommandCounterIncrement();
indr = index_openr(indname);
if (!RelationIsValid(indr)) {
elog(WARN, "cannot create index for large obj on %s under inversion",
smgrout(smgr));
}
retval = (LargeObjectDesc *) palloc(sizeof(LargeObjectDesc));
retval->heap_r = r;
retval->index_r = indr;
retval->iscan = (IndexScanDesc) NULL;
retval->hdesc = RelationGetTupleDescriptor(r);
retval->idesc = RelationGetTupleDescriptor(indr);
retval->offset = retval->lowbyte =
retval->highbyte = 0;
ItemPointerSetInvalid(&(retval->htid));
if (flags & INV_WRITE) {
RelationSetLockForWrite(r);
retval->flags = IFS_WRLOCK|IFS_RDLOCK;
} else if (flags & INV_READ) {
RelationSetLockForRead(r);
retval->flags = IFS_RDLOCK;
}
retval->flags |= IFS_ATEOF;
return(retval);
}
LargeObjectDesc *
inv_open(Oid lobjId, int flags)
{
LargeObjectDesc *retval;
Relation r;
char *indname;
Relation indrel;
r = heap_open(lobjId);
if (!RelationIsValid(r))
return ((LargeObjectDesc *) NULL);
indname = pstrdup((r->rd_rel->relname).data);
/*
* hack hack hack... we know that the fourth character of the relation
* name is a 'v', and that the fourth character of the index name is an
* 'x', and that they're otherwise identical.
*/
indname[3] = 'x';
indrel = index_openr(indname);
if (!RelationIsValid(indrel))
return ((LargeObjectDesc *) NULL);
retval = (LargeObjectDesc *) palloc(sizeof(LargeObjectDesc));
retval->heap_r = r;
retval->index_r = indrel;
retval->iscan = (IndexScanDesc) NULL;
retval->hdesc = RelationGetTupleDescriptor(r);
retval->idesc = RelationGetTupleDescriptor(indrel);
retval->offset = retval->lowbyte = retval->highbyte = 0;
ItemPointerSetInvalid(&(retval->htid));
if (flags & INV_WRITE) {
RelationSetLockForWrite(r);
retval->flags = IFS_WRLOCK|IFS_RDLOCK;
} else if (flags & INV_READ) {
RelationSetLockForRead(r);
retval->flags = IFS_RDLOCK;
}
return(retval);
}
/*
* Closes an existing large object descriptor.
*/
void
inv_close(LargeObjectDesc *obj_desc)
{
Assert(PointerIsValid(obj_desc));
if (obj_desc->iscan != (IndexScanDesc) NULL)
index_endscan(obj_desc->iscan);
heap_close(obj_desc->heap_r);
index_close(obj_desc->index_r);
pfree(obj_desc);
}
/*
* Destroys an existing large object, and frees its associated pointers.
*
* returns -1 if failed
*/
int
inv_destroy(Oid lobjId)
{
Relation r;
r = (Relation) RelationIdGetRelation(lobjId);
if (!RelationIsValid(r) || r->rd_rel->relkind == RELKIND_INDEX)
return -1;
heap_destroy(r->rd_rel->relname.data);
return 1;
}
/*
* inv_stat() -- do a stat on an inversion file.
*
* For the time being, this is an insanely expensive operation. In
* order to find the size of the file, we seek to the last block in
* it and compute the size from that. We scan pg_class to determine
* the file's owner and create time. We don't maintain mod time or
* access time, yet.
*
* These fields aren't stored in a table anywhere because they're
* updated so frequently, and postgres only appends tuples at the
* end of relations. Once clustering works, we should fix this.
*/
#ifdef NOT_USED
int
inv_stat(LargeObjectDesc *obj_desc, struct pgstat *stbuf)
{
Assert(PointerIsValid(obj_desc));
Assert(stbuf != NULL);
/* need read lock for stat */
if (!(obj_desc->flags & IFS_RDLOCK)) {
RelationSetLockForRead(obj_desc->heap_r);
obj_desc->flags |= IFS_RDLOCK;
}
stbuf->st_ino = obj_desc->heap_r->rd_id;
#if 1
stbuf->st_mode = (S_IFREG | 0666); /* IFREG|rw-rw-rw- */
#else
stbuf->st_mode = 100666; /* IFREG|rw-rw-rw- */
#endif
stbuf->st_size = _inv_getsize(obj_desc->heap_r,
obj_desc->hdesc,
obj_desc->index_r);
stbuf->st_uid = obj_desc->heap_r->rd_rel->relowner;
/* we have no good way of computing access times right now */
stbuf->st_atime_s = stbuf->st_mtime_s = stbuf->st_ctime_s = 0;
return (0);
}
#endif
int
inv_seek(LargeObjectDesc *obj_desc, int offset, int whence)
{
int oldOffset;
Datum d;
ScanKeyData skey;
Assert(PointerIsValid(obj_desc));
if (whence == SEEK_CUR) {
offset += obj_desc->offset; /* calculate absolute position */
return (inv_seek(obj_desc, offset, SEEK_SET));
}
/*
* if you seek past the end (offset > 0) I have
* no clue what happens :-( B.L. 9/1/93
*/
if (whence == SEEK_END) {
/* need read lock for getsize */
if (!(obj_desc->flags & IFS_RDLOCK)) {
RelationSetLockForRead(obj_desc->heap_r);
obj_desc->flags |= IFS_RDLOCK;
}
offset += _inv_getsize(obj_desc->heap_r,
obj_desc->hdesc,
obj_desc->index_r );
return (inv_seek(obj_desc, offset, SEEK_SET));
}
/*
* Whenever we do a seek, we turn off the EOF flag bit to force
* ourselves to check for real on the next read.
*/
obj_desc->flags &= ~IFS_ATEOF;
oldOffset = obj_desc->offset;
obj_desc->offset = offset;
/* try to avoid doing any work, if we can manage it */
if (offset >= obj_desc->lowbyte
&& offset <= obj_desc->highbyte
&& oldOffset <= obj_desc->highbyte
&& obj_desc->iscan != (IndexScanDesc) NULL)
return (offset);
/*
* To do a seek on an inversion file, we start an index scan that
* will bring us to the right place. Each tuple in an inversion file
* stores the offset of the last byte that appears on it, and we have
* an index on this.
*/
/* right now, just assume that the operation is SEEK_SET */
if (obj_desc->iscan != (IndexScanDesc) NULL) {
d = Int32GetDatum(offset);
btmovescan(obj_desc->iscan, d);
} else {
ScanKeyEntryInitialize(&skey, 0x0, 1, INT4GE_PROC_OID,
Int32GetDatum(offset));
obj_desc->iscan = index_beginscan(obj_desc->index_r,
(bool) 0, (uint16) 1,
&skey);
}
return (offset);
}
int
inv_tell(LargeObjectDesc *obj_desc)
{
Assert(PointerIsValid(obj_desc));
return (obj_desc->offset);
}
int
inv_read(LargeObjectDesc *obj_desc, char *buf, int nbytes)
{
HeapTuple htup;
Buffer b;
int nread;
int off;
int ncopy;
Datum d;
struct varlena *fsblock;
bool isNull;
Assert(PointerIsValid(obj_desc));
Assert(buf != NULL);
/* if we're already at EOF, we don't need to do any work here */
if (obj_desc->flags & IFS_ATEOF)
return (0);
/* make sure we obey two-phase locking */
if (!(obj_desc->flags & IFS_RDLOCK)) {
RelationSetLockForRead(obj_desc->heap_r);
obj_desc->flags |= IFS_RDLOCK;
}
nread = 0;
/* fetch a block at a time */
while (nread < nbytes) {
/* fetch an inversion file system block */
htup = inv_fetchtup(obj_desc, &b);
if (!HeapTupleIsValid(htup)) {
obj_desc->flags |= IFS_ATEOF;
break;
}
/* copy the data from this block into the buffer */
d = (Datum) heap_getattr(htup, b, 2, obj_desc->hdesc, &isNull);
fsblock = (struct varlena *) DatumGetPointer(d);
off = obj_desc->offset - obj_desc->lowbyte;
ncopy = obj_desc->highbyte - obj_desc->offset + 1;
if (ncopy > (nbytes - nread))
ncopy = (nbytes - nread);
memmove(buf, &(fsblock->vl_dat[off]), ncopy);
/* be a good citizen */
ReleaseBuffer(b);
/* move pointers past the amount we just read */
buf += ncopy;
nread += ncopy;
obj_desc->offset += ncopy;
}
/* that's it */
return (nread);
}
int
inv_write(LargeObjectDesc *obj_desc, char *buf, int nbytes)
{
HeapTuple htup;
Buffer b;
int nwritten;
int tuplen;
Assert(PointerIsValid(obj_desc));
Assert(buf != NULL);
/*
* Make sure we obey two-phase locking. A write lock entitles you
* to read the relation, as well.
*/
if (!(obj_desc->flags & IFS_WRLOCK)) {
RelationSetLockForRead(obj_desc->heap_r);
obj_desc->flags |= (IFS_WRLOCK|IFS_RDLOCK);
}
nwritten = 0;
/* write a block at a time */
while (nwritten < nbytes) {
/*
* Fetch the current inversion file system block. If the
* class storing the inversion file is empty, we don't want
* to do an index lookup, since index lookups choke on empty
* files (should be fixed someday).
*/
if ((obj_desc->flags & IFS_ATEOF)
|| obj_desc->heap_r->rd_nblocks == 0)
htup = (HeapTuple) NULL;
else
htup = inv_fetchtup(obj_desc, &b);
/* either append or replace a block, as required */
if (!HeapTupleIsValid(htup)) {
tuplen = inv_wrnew(obj_desc, buf, nbytes - nwritten);
} else {
if (obj_desc->offset > obj_desc->highbyte)
tuplen = inv_wrnew(obj_desc, buf, nbytes - nwritten);
else
tuplen = inv_wrold(obj_desc, buf, nbytes - nwritten, htup, b);
}
/* move pointers past the amount we just wrote */
buf += tuplen;
nwritten += tuplen;
obj_desc->offset += tuplen;
}
/* that's it */
return (nwritten);
}
/*
* inv_fetchtup -- Fetch an inversion file system block.
*
* This routine finds the file system block containing the offset
* recorded in the obj_desc structure. Later, we need to think about
* the effects of non-functional updates (can you rewrite the same
* block twice in a single transaction?), but for now, we won't bother.
*
* Parameters:
* obj_desc -- the object descriptor.
* bufP -- pointer to a buffer in the buffer cache; caller
* must free this.
*
* Returns:
* A heap tuple containing the desired block, or NULL if no
* such tuple exists.
*/
static HeapTuple
inv_fetchtup(LargeObjectDesc *obj_desc, Buffer *bufP)
{
HeapTuple htup;
RetrieveIndexResult res;
Datum d;
int firstbyte, lastbyte;
struct varlena *fsblock;
bool isNull;
/*
* If we've exhausted the current block, we need to get the next one.
* When we support time travel and non-functional updates, we will
* need to loop over the blocks, rather than just have an 'if', in
* order to find the one we're really interested in.
*/
if (obj_desc->offset > obj_desc->highbyte
|| obj_desc->offset < obj_desc->lowbyte
|| !ItemPointerIsValid(&(obj_desc->htid))) {
/* initialize scan key if not done */
if (obj_desc->iscan==(IndexScanDesc)NULL) {
ScanKeyData skey;
ScanKeyEntryInitialize(&skey, 0x0, 1, INT4GE_PROC_OID,
Int32GetDatum(0));
obj_desc->iscan =
index_beginscan(obj_desc->index_r,
(bool) 0, (uint16) 1,
&skey);
}
do {
res = index_getnext(obj_desc->iscan, ForwardScanDirection);
if (res == (RetrieveIndexResult) NULL) {
ItemPointerSetInvalid(&(obj_desc->htid));
return ((HeapTuple) NULL);
}
/*
* For time travel, we need to use the actual time qual here,
* rather that NowTimeQual. We currently have no way to pass
* a time qual in.
*/
htup = heap_fetch(obj_desc->heap_r, NowTimeQual,
&(res->heap_iptr), bufP);
} while (htup == (HeapTuple) NULL);
/* remember this tid -- we may need it for later reads/writes */
ItemPointerCopy(&(res->heap_iptr), &(obj_desc->htid));
} else {
htup = heap_fetch(obj_desc->heap_r, NowTimeQual,
&(obj_desc->htid), bufP);
}
/*
* By here, we have the heap tuple we're interested in. We cache
* the upper and lower bounds for this block in the object descriptor
* and return the tuple.
*/
d = (Datum)heap_getattr(htup, *bufP, 1, obj_desc->hdesc, &isNull);
lastbyte = (int32) DatumGetInt32(d);
d = (Datum)heap_getattr(htup, *bufP, 2, obj_desc->hdesc, &isNull);
fsblock = (struct varlena *) DatumGetPointer(d);
/* order of + and - is important -- these are unsigned quantites near 0 */
firstbyte = (lastbyte + 1 + sizeof(fsblock->vl_len)) - fsblock->vl_len;
obj_desc->lowbyte = firstbyte;
obj_desc->highbyte = lastbyte;
/* done */
return (htup);
}
/*
* inv_wrnew() -- append a new filesystem block tuple to the inversion
* file.
*
* In response to an inv_write, we append one or more file system
* blocks to the class containing the large object. We violate the
* class abstraction here in order to pack things as densely as we
* are able. We examine the last page in the relation, and write
* just enough to fill it, assuming that it has above a certain
* threshold of space available. If the space available is less than
* the threshold, we allocate a new page by writing a big tuple.
*
* By the time we get here, we know all the parameters passed in
* are valid, and that we hold the appropriate lock on the heap
* relation.
*
* Parameters:
* obj_desc: large object descriptor for which to append block.
* buf: buffer containing data to write.
* nbytes: amount to write
*
* Returns:
* number of bytes actually written to the new tuple.
*/
static int
inv_wrnew(LargeObjectDesc *obj_desc, char *buf, int nbytes)
{
Relation hr;
HeapTuple ntup;
Buffer buffer;
Page page;
int nblocks;
int nwritten;
hr = obj_desc->heap_r;
/*
* Get the last block in the relation. If there's no data in the
* relation at all, then we just get a new block. Otherwise, we
* check the last block to see whether it has room to accept some
* or all of the data that the user wants to write. If it doesn't,
* then we allocate a new block.
*/
nblocks = RelationGetNumberOfBlocks(hr);
if (nblocks > 0)
buffer = ReadBuffer(hr, nblocks - 1);
else
buffer = ReadBuffer(hr, P_NEW);
page = BufferGetPage(buffer);
/*
* If the last page is too small to hold all the data, and it's too
* small to hold IMINBLK, then we allocate a new page. If it will
* hold at least IMINBLK, but less than all the data requested, then
* we write IMINBLK here. The caller is responsible for noticing that
* less than the requested number of bytes were written, and calling
* this routine again.
*/
nwritten = IFREESPC(page);
if (nwritten < nbytes) {
if (nwritten < IMINBLK) {
ReleaseBuffer(buffer);
buffer = ReadBuffer(hr, P_NEW);
page = BufferGetPage(buffer);
PageInit(page, BufferGetPageSize(buffer), 0);
if (nbytes > IMAXBLK)
nwritten = IMAXBLK;
else
nwritten = nbytes;
}
} else {
nwritten = nbytes;
}
/*
* Insert a new file system block tuple, index it, and write it out.
*/
ntup = inv_newtuple(obj_desc, buffer, page, buf, nwritten);
inv_indextup(obj_desc, ntup);
/* new tuple is inserted */
WriteBuffer(buffer);
return (nwritten);
}
static int
inv_wrold(LargeObjectDesc *obj_desc,
char *dbuf,
int nbytes,
HeapTuple htup,
Buffer buffer)
{
Relation hr;
HeapTuple ntup;
Buffer newbuf;
Page page;
Page newpage;
int tupbytes;
Datum d;
struct varlena *fsblock;
int nwritten, nblocks, freespc;
bool isNull;
int keep_offset;
/*
* Since we're using a no-overwrite storage manager, the way we
* overwrite blocks is to mark the old block invalid and append
* a new block. First mark the old block invalid. This violates
* the tuple abstraction.
*/
TransactionIdStore(GetCurrentTransactionId(), &(htup->t_xmax));
htup->t_cmax = GetCurrentCommandId();
/*
* If we're overwriting the entire block, we're lucky. All we need
* to do is to insert a new block.
*/
if (obj_desc->offset == obj_desc->lowbyte
&& obj_desc->lowbyte + nbytes >= obj_desc->highbyte) {
WriteBuffer(buffer);
return (inv_wrnew(obj_desc, dbuf, nbytes));
}
/*
* By here, we need to overwrite part of the data in the current
* tuple. In order to reduce the degree to which we fragment blocks,
* we guarantee that no block will be broken up due to an overwrite.
* This means that we need to allocate a tuple on a new page, if
* there's not room for the replacement on this one.
*/
newbuf = buffer;
page = BufferGetPage(buffer);
newpage = BufferGetPage(newbuf);
hr = obj_desc->heap_r;
freespc = IFREESPC(page);
d = (Datum)heap_getattr(htup, buffer, 2, obj_desc->hdesc, &isNull);
fsblock = (struct varlena *) DatumGetPointer(d);
tupbytes = fsblock->vl_len - sizeof(fsblock->vl_len);
if (freespc < tupbytes) {
/*
* First see if there's enough space on the last page of the
* table to put this tuple.
*/
nblocks = RelationGetNumberOfBlocks(hr);
if (nblocks > 0)
newbuf = ReadBuffer(hr, nblocks - 1);
else
newbuf = ReadBuffer(hr, P_NEW);
newpage = BufferGetPage(newbuf);
freespc = IFREESPC(newpage);
/*
* If there's no room on the last page, allocate a new last
* page for the table, and put it there.
*/
if (freespc < tupbytes) {
ReleaseBuffer(newbuf);
newbuf = ReadBuffer(hr, P_NEW);
newpage = BufferGetPage(newbuf);
PageInit(newpage, BufferGetPageSize(newbuf), 0);
}
}
nwritten = nbytes;
if (nwritten > obj_desc->highbyte - obj_desc->offset + 1)
nwritten = obj_desc->highbyte - obj_desc->offset + 1;
memmove(VARDATA(fsblock)+ (obj_desc->offset - obj_desc->lowbyte),
dbuf,nwritten);
/* we are rewriting the entire old block, therefore
we reset offset to the lowbyte of the original block
before jumping into inv_newtuple() */
keep_offset = obj_desc->offset;
obj_desc->offset = obj_desc->lowbyte;
ntup = inv_newtuple(obj_desc, newbuf, newpage, VARDATA(fsblock),
tupbytes);
/* after we are done, we restore to the true offset */
obj_desc->offset = keep_offset;
/*
* By here, we have a page (newpage) that's guaranteed to have
* enough space on it to put the new tuple. Call inv_newtuple
* to do the work. Passing NULL as a buffer to inv_newtuple()
* keeps it from copying any data into the new tuple. When it
* returns, the tuple is ready to receive data from the old
* tuple and the user's data buffer.
*/
/*
ntup = inv_newtuple(obj_desc, newbuf, newpage, (char *) NULL, tupbytes);
dptr = ((char *) ntup) + ntup->t_hoff - sizeof(ntup->t_bits) + sizeof(int4)
+ sizeof(fsblock->vl_len);
if (obj_desc->offset > obj_desc->lowbyte) {
memmove(dptr,
&(fsblock->vl_dat[0]),
obj_desc->offset - obj_desc->lowbyte);
dptr += obj_desc->offset - obj_desc->lowbyte;
}
nwritten = nbytes;
if (nwritten > obj_desc->highbyte - obj_desc->offset + 1)
nwritten = obj_desc->highbyte - obj_desc->offset + 1;
memmove(dptr, dbuf, nwritten);
dptr += nwritten;
if (obj_desc->offset + nwritten < obj_desc->highbyte + 1) {
*/
/*
loc = (obj_desc->highbyte - obj_desc->offset)
+ nwritten;
sz = obj_desc->highbyte - (obj_desc->lowbyte + loc);
what's going on here?? - jolly
*/
/*
sz = (obj_desc->highbyte + 1) - (obj_desc->offset + nwritten);
memmove(&(fsblock->vl_dat[0]), dptr, sz);
}
*/
/* index the new tuple */
inv_indextup(obj_desc, ntup);
/* move the scandesc forward so we don't reread the newly inserted
tuple on the next index scan */
if (obj_desc->iscan)
index_getnext(obj_desc->iscan, ForwardScanDirection);
/*
* Okay, by here, a tuple for the new block is correctly placed,
* indexed, and filled. Write the changed pages out.
*/
WriteBuffer(buffer);
if (newbuf != buffer)
WriteBuffer(newbuf);
/* done */
return (nwritten);
}
static HeapTuple
inv_newtuple(LargeObjectDesc *obj_desc,
Buffer buffer,
Page page,
char *dbuf,
int nwrite)
{
HeapTuple ntup;
PageHeader ph;
int tupsize;
int hoff;
Offset lower;
Offset upper;
ItemId itemId;
OffsetNumber off;
OffsetNumber limit;
char *attptr;
/* compute tuple size -- no nulls */
hoff = sizeof(HeapTupleData) - sizeof(ntup->t_bits);
/* add in olastbyte, varlena.vl_len, varlena.vl_dat */
tupsize = hoff + (2 * sizeof(int32)) + nwrite;
tupsize = LONGALIGN(tupsize);
/*
* Allocate the tuple on the page, violating the page abstraction.
* This code was swiped from PageAddItem().
*/
ph = (PageHeader) page;
limit = OffsetNumberNext(PageGetMaxOffsetNumber(page));
/* look for "recyclable" (unused & deallocated) ItemId */
for (off = FirstOffsetNumber; off < limit; off = OffsetNumberNext(off)) {
itemId = &ph->pd_linp[off - 1];
if ((((*itemId).lp_flags & LP_USED) == 0) &&
((*itemId).lp_len == 0))
break;
}
if (off > limit)
lower = (Offset) (((char *) (&ph->pd_linp[off])) - ((char *) page));
else if (off == limit)
lower = ph->pd_lower + sizeof (ItemIdData);
else
lower = ph->pd_lower;
upper = ph->pd_upper - tupsize;
itemId = &ph->pd_linp[off - 1];
(*itemId).lp_off = upper;
(*itemId).lp_len = tupsize;
(*itemId).lp_flags = LP_USED;
ph->pd_lower = lower;
ph->pd_upper = upper;
ntup = (HeapTuple) ((char *) page + upper);
/*
* Tuple is now allocated on the page. Next, fill in the tuple
* header. This block of code violates the tuple abstraction.
*/
ntup->t_len = tupsize;
ItemPointerSet(&(ntup->t_ctid), BufferGetBlockNumber(buffer), off);
ItemPointerSetInvalid(&(ntup->t_chain));
LastOidProcessed = ntup->t_oid = newoid();
TransactionIdStore(GetCurrentTransactionId(), &(ntup->t_xmin));
ntup->t_cmin = GetCurrentCommandId();
StoreInvalidTransactionId(&(ntup->t_xmax));
ntup->t_cmax = 0;
ntup->t_tmin = INVALID_ABSTIME;
ntup->t_tmax = CURRENT_ABSTIME;
ntup->t_natts = 2;
ntup->t_hoff = hoff;
ntup->t_vtype = 0;
ntup->t_infomask = 0x0;
/* if a NULL is passed in, avoid the calculations below */
if (dbuf == NULL)
return ntup;
/*
* Finally, copy the user's data buffer into the tuple. This violates
* the tuple and class abstractions.
*/
attptr = ((char *) ntup) + hoff;
*((int32 *) attptr) = obj_desc->offset + nwrite - 1;
attptr += sizeof(int32);
/*
** mer fixed disk layout of varlenas to get rid of the need for this.
**
** *((int32 *) attptr) = nwrite + sizeof(int32);
** attptr += sizeof(int32);
*/
*((int32 *) attptr) = nwrite + sizeof(int32);
attptr += sizeof(int32);
/*
* If a data buffer was passed in, then copy the data from the buffer
* to the tuple. Some callers (eg, inv_wrold()) may not pass in a
* buffer, since they have to copy part of the old tuple data and
* part of the user's new data into the new tuple.
*/
if (dbuf != (char *) NULL)
memmove(attptr, dbuf, nwrite);
/* keep track of boundary of current tuple */
obj_desc->lowbyte = obj_desc->offset;
obj_desc->highbyte = obj_desc->offset + nwrite - 1;
/* new tuple is filled -- return it */
return (ntup);
}
static void
inv_indextup(LargeObjectDesc *obj_desc, HeapTuple htup)
{
InsertIndexResult res;
Datum v[1];
char n[1];
n[0] = ' ';
v[0] = Int32GetDatum(obj_desc->highbyte);
res = index_insert(obj_desc->index_r, &v[0], &n[0],
&(htup->t_ctid), obj_desc->heap_r);
if (res)
pfree(res);
}
/*
static void
DumpPage(Page page, int blkno)
{
ItemId lp;
HeapTuple tup;
int flags, i, nline;
ItemPointerData pointerData;
printf("\t[subblock=%d]:lower=%d:upper=%d:special=%d\n", 0,
((PageHeader)page)->pd_lower, ((PageHeader)page)->pd_upper,
((PageHeader)page)->pd_special);
printf("\t:MaxOffsetNumber=%d\n",
(int16) PageGetMaxOffsetNumber(page));
nline = (int16) PageGetMaxOffsetNumber(page);
{
int i;
char *cp;
i = PageGetSpecialSize(page);
cp = PageGetSpecialPointer(page);
printf("\t:SpecialData=");
while (i > 0) {
printf(" 0x%02x", *cp);
cp += 1;
i -= 1;
}
printf("\n");
}
for (i = 0; i < nline; i++) {
lp = ((PageHeader)page)->pd_linp + i;
flags = (*lp).lp_flags;
ItemPointerSet(&pointerData, blkno, 1 + i);
printf("%s:off=%d:flags=0x%x:len=%d",
ItemPointerFormExternal(&pointerData), (*lp).lp_off,
flags, (*lp).lp_len);
if (flags & LP_USED) {
HeapTupleData htdata;
printf(":USED");
memmove((char *) &htdata,
(char *) &((char *)page)[(*lp).lp_off],
sizeof(htdata));
tup = &htdata;
printf("\n\t:ctid=%s:oid=%d",
ItemPointerFormExternal(&tup->t_ctid),
tup->t_oid);
printf(":natts=%d:thoff=%d:vtype=`%c' (0x%02x):",
tup->t_natts,
tup->t_hoff, tup->t_vtype, tup->t_vtype);
printf("\n\t:tmin=%d:cmin=%u:",
tup->t_tmin, tup->t_cmin);
printf("xmin=%u:", tup->t_xmin);
printf("\n\t:tmax=%d:cmax=%u:",
tup->t_tmax, tup->t_cmax);
printf("xmax=%u:", tup->t_xmax);
printf("\n\t:chain=%s:\n",
ItemPointerFormExternal(&tup->t_chain));
} else
putchar('\n');
}
}
static char*
ItemPointerFormExternal(ItemPointer pointer)
{
static char itemPointerString[32];
if (!ItemPointerIsValid(pointer)) {
memmove(itemPointerString, "<-,-,->", sizeof "<-,-,->");
} else {
sprintf(itemPointerString, "<%u,%u>",
ItemPointerGetBlockNumber(pointer),
ItemPointerGetOffsetNumber(pointer));
}
return (itemPointerString);
}
*/
static int
_inv_getsize(Relation hreln, TupleDesc hdesc, Relation ireln)
{
IndexScanDesc iscan;
RetrieveIndexResult res;
Buffer buf;
HeapTuple htup;
Datum d;
long size;
bool isNull;
/* scan backwards from end */
iscan = index_beginscan(ireln, (bool) 1, 0, (ScanKey) NULL);
buf = InvalidBuffer;
do {
res = index_getnext(iscan, BackwardScanDirection);
/*
* If there are no more index tuples, then the relation is empty,
* so the file's size is zero.
*/
if (res == (RetrieveIndexResult) NULL) {
index_endscan(iscan);
return (0);
}
/*
* For time travel, we need to use the actual time qual here,
* rather that NowTimeQual. We currently have no way to pass
* a time qual in.
*/
if (buf != InvalidBuffer)
ReleaseBuffer(buf);
htup = heap_fetch(hreln, NowTimeQual, &(res->heap_iptr), &buf);
} while (!HeapTupleIsValid(htup));
/* don't need the index scan anymore */
index_endscan(iscan);
/* get olastbyte attribute */
d = (Datum) heap_getattr(htup, buf, 1, hdesc, &isNull);
size = DatumGetInt32(d) + 1;
/* wei hates it if you forget to do this */
ReleaseBuffer(buf);
return (size);
}