postgresql/src/include/access/hash.h

336 lines
12 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* hash.h--
* header file for postgres hash access method implementation
*
*
* Copyright (c) 1994, Regents of the University of California
*
* $Id: hash.h,v 1.7 1997/08/19 21:37:27 momjian Exp $
*
* NOTES
* modeled after Margo Seltzer's hash implementation for unix.
*
*-------------------------------------------------------------------------
*/
#ifndef HASH_H
#define HASH_H
#include <access/sdir.h>
#include <access/funcindex.h>
#include <storage/bufpage.h>
#include <access/relscan.h>
#include <access/itup.h>
/*
* An overflow page is a spare page allocated for storing data whose
* bucket doesn't have room to store it. We use overflow pages rather
* than just splitting the bucket because there is a linear order in
* the way we split buckets. In other words, if there isn't enough space
* in the bucket itself, put it in an overflow page.
*
* Overflow page addresses are stored in form: (Splitnumber, Page offset).
*
* A splitnumber is the number of the generation where the table doubles
* in size. The ovflpage's offset within the splitnumber; offsets start
* at 1.
*
* We convert the stored bitmap address into a page address with the
* macro OADDR_OF(S, O) where S is the splitnumber and O is the page
* offset.
*/
typedef uint32 Bucket;
typedef bits16 OverflowPageAddress;
typedef uint32 SplitNumber;
typedef uint32 PageOffset;
/* A valid overflow address will always have a page offset >= 1 */
#define InvalidOvflAddress 0
#define SPLITSHIFT 11
#define SPLITMASK 0x7FF
#define SPLITNUM(N) ((SplitNumber)(((uint32)(N)) >> SPLITSHIFT))
#define OPAGENUM(N) ((PageOffset)((N) & SPLITMASK))
#define OADDR_OF(S,O) ((OverflowPageAddress)((uint32)((uint32)(S) << SPLITSHIFT) + (O)))
#define BUCKET_TO_BLKNO(B) \
((Bucket) ((B) + ((B) ? metap->SPARES[_hash_log2((B)+1)-1] : 0)) + 1)
#define OADDR_TO_BLKNO(B) \
((BlockNumber) \
(BUCKET_TO_BLKNO ( (1 << SPLITNUM((B))) -1 ) + OPAGENUM((B))));
/*
* hasho_flag tells us which type of page we're looking at. For
* example, knowing overflow pages from bucket pages is necessary
* information when you're deleting tuples from a page. If all the
* tuples are deleted from an overflow page, the overflow is made
* available to other buckets by calling _hash_freeovflpage(). If all
* the tuples are deleted from a bucket page, no additional action is
* necessary.
*/
#define LH_UNUSED_PAGE (0)
#define LH_OVERFLOW_PAGE (1 << 0)
#define LH_BUCKET_PAGE (1 << 1)
#define LH_BITMAP_PAGE (1 << 2)
#define LH_META_PAGE (1 << 3)
typedef struct HashPageOpaqueData {
bits16 hasho_flag; /* is this page a bucket or ovfl */
Bucket hasho_bucket; /* bucket number this pg belongs to */
OverflowPageAddress hasho_oaddr; /* ovfl address of this ovfl pg */
BlockNumber hasho_nextblkno; /* next ovfl blkno */
BlockNumber hasho_prevblkno; /* previous ovfl (or bucket) blkno */
} HashPageOpaqueData;
typedef HashPageOpaqueData *HashPageOpaque;
/*
* ScanOpaqueData is used to remember which buffers we're currently
* examining in the scan. We keep these buffers locked and pinned and
* recorded in the opaque entry of the scan in order to avoid doing a
* ReadBuffer() for every tuple in the index. This avoids semop() calls,
* which are expensive.
*/
typedef struct HashScanOpaqueData {
Buffer hashso_curbuf;
Buffer hashso_mrkbuf;
} HashScanOpaqueData;
typedef HashScanOpaqueData *HashScanOpaque;
/*
* Definitions for metapage.
*/
#define HASH_METAPAGE 0 /* metapage is always block 0 */
#define HASH_MAGIC 0x6440640
#define HASH_VERSION 0
/*
* NCACHED is used to set the array sizeof spares[] & bitmaps[].
*
* Spares[] is used to hold the number overflow pages currently
* allocated at a certain splitpoint. For example, if spares[3] = 7
* then there are a maximum of 7 ovflpages available at splitpoint 3.
* The value in spares[] will change as ovflpages are added within
* a splitpoint.
*
* Within a splitpoint, one can find which ovflpages are available and
* which are used by looking at a bitmaps that are stored on the ovfl
* pages themselves. There is at least one bitmap for every splitpoint's
* ovflpages. Bitmaps[] contains the ovflpage addresses of the ovflpages
* that hold the ovflpage bitmaps.
*
* The reason that the size is restricted to NCACHED (32) is because
* the bitmaps are 16 bits: upper 5 represent the splitpoint, lower 11
* indicate the page number within the splitpoint. Since there are
* only 5 bits to store the splitpoint, there can only be 32 splitpoints.
* Both spares[] and bitmaps[] use splitpoints as there indices, so there
* can only be 32 of them.
*/
#define NCACHED 32
typedef struct HashMetaPageData {
PageHeaderData hashm_phdr; /* pad for page header
(do not use) */
uint32 hashm_magic; /* magic no. for hash tables */
uint32 hashm_version; /* version ID */
uint32 hashm_nkeys; /* number of keys stored in
the table */
uint16 hashm_ffactor; /* fill factor */
uint16 hashm_bsize; /* bucket size (bytes) -
must be a power of 2 */
uint16 hashm_bshift; /* bucket shift */
uint16 hashm_bmsize; /* bitmap array size (bytes) -
must be a power of 2 */
uint32 hashm_maxbucket; /* ID of maximum bucket
in use */
uint32 hashm_highmask; /* mask to modulo into
entire table */
uint32 hashm_lowmask; /* mask to modulo into lower
half of table */
uint32 hashm_ovflpoint; /* pageno. from which ovflpgs
being allocated */
uint32 hashm_lastfreed; /* last ovflpage freed */
uint32 hashm_nmaps; /* Initial number of bitmaps */
uint32 hashm_spares[NCACHED]; /* spare pages available at
splitpoints */
BlockNumber hashm_mapp[NCACHED]; /* blknumbers of ovfl page
maps */
RegProcedure hashm_procid; /* hash procedure id from
pg_proc */
} HashMetaPageData;
typedef HashMetaPageData *HashMetaPage;
/* Short hands for accessing structure */
#define BSHIFT hashm_bshift
#define OVFL_POINT hashm_ovflpoint
#define LAST_FREED hashm_lastfreed
#define MAX_BUCKET hashm_maxbucket
#define FFACTOR hashm_ffactor
#define HIGH_MASK hashm_highmask
#define LOW_MASK hashm_lowmask
#define NKEYS hashm_nkeys
#define SPARES hashm_spares
extern bool BuildingHash;
typedef struct HashItemData {
IndexTupleData hash_itup;
} HashItemData;
typedef HashItemData *HashItem;
/*
* Constants
*/
#define DEFAULT_FFACTOR 300
#define SPLITMAX 8
#define BYTE_TO_BIT 3 /* 2^3 bits/byte */
#define INT_TO_BYTE 2 /* 2^2 bytes/int */
#define INT_TO_BIT 5 /* 2^5 bits/int */
#define ALL_SET ((uint32) ~0)
/*
* bitmap pages do not contain tuples. they do contain the standard
* page headers and trailers; however, everything in between is a
* giant bit array. the number of bits that fit on a page obviously
* depends on the page size and the header/trailer overhead.
*/
#define BMPGSZ_BYTE(metap) ((metap)->hashm_bmsize)
#define BMPGSZ_BIT(metap) ((metap)->hashm_bmsize << BYTE_TO_BIT)
#define HashPageGetBitmap(pg) \
((uint32 *) (((char *) (pg)) + DOUBLEALIGN(sizeof(PageHeaderData))))
/*
* The number of bits in an ovflpage bitmap which
* tells which ovflpages are empty versus in use (NOT the number of
* bits in an overflow page *address* bitmap).
*/
#define BITS_PER_MAP 32 /* Number of bits in ovflpage bitmap */
/* Given the address of the beginning of a big map, clear/set the nth bit */
#define CLRBIT(A, N) ((A)[(N)/BITS_PER_MAP] &= ~(1<<((N)%BITS_PER_MAP)))
#define SETBIT(A, N) ((A)[(N)/BITS_PER_MAP] |= (1<<((N)%BITS_PER_MAP)))
#define ISSET(A, N) ((A)[(N)/BITS_PER_MAP] & (1<<((N)%BITS_PER_MAP)))
/*
* page locking modes
*/
#define HASH_READ 0
#define HASH_WRITE 1
/*
* In general, the hash code tries to localize its knowledge about page
* layout to a couple of routines. However, we need a special value to
* indicate "no page number" in those places where we expect page numbers.
*/
#define P_NONE 0
/*
* Strategy number. There's only one valid strategy for hashing: equality.
*/
#define HTEqualStrategyNumber 1
#define HTMaxStrategyNumber 1
/*
* When a new operator class is declared, we require that the user supply
* us with an amproc procudure for hashing a key of the new type.
* Since we only have one such proc in amproc, it's number 1.
*/
#define HASHPROC 1
/* public routines */
extern void hashbuild(Relation heap, Relation index, int natts,
AttrNumber *attnum, IndexStrategy istrat, uint16 pcount,
Datum *params, FuncIndexInfo *finfo, PredInfo *predInfo);
extern InsertIndexResult hashinsert(Relation rel, Datum *datum, char *nulls,
ItemPointer ht_ctid, Relation heapRel);
extern char *hashgettuple(IndexScanDesc scan, ScanDirection dir);
extern char *hashbeginscan(Relation rel, bool fromEnd, uint16 keysz,
ScanKey scankey);
extern void hashrescan(IndexScanDesc scan, bool fromEnd, ScanKey scankey);
extern void hashendscan(IndexScanDesc scan);
extern void hashmarkpos(IndexScanDesc scan);
extern void hashrestrpos(IndexScanDesc scan);
extern void hashdelete(Relation rel, ItemPointer tid);
/* hashfunc.c */
extern uint32 hashint2(int16 key);
extern uint32 hashint4(uint32 key);
extern uint32 hashfloat4(float32 keyp);
extern uint32 hashfloat8(float64 keyp);
extern uint32 hashoid(Oid key);
extern uint32 hashchar(char key);
extern uint32 hashchar2(uint16 intkey);
extern uint32 hashchar4(uint32 intkey);
extern uint32 hashchar8(char *key);
extern uint32 hashchar16(char *key);
extern uint32 hashtext(struct varlena *key);
extern uint32 hashname(NameData *n);
/* private routines */
/* hashinsert.c */
extern InsertIndexResult _hash_doinsert(Relation rel, HashItem hitem);
/* hashovfl.c */
extern Buffer _hash_addovflpage(Relation rel, Buffer *metabufp, Buffer buf);
extern Buffer _hash_freeovflpage(Relation rel, Buffer ovflbuf);
extern int32 _hash_initbitmap(Relation rel, HashMetaPage metap, int32 pnum,
int32 nbits, int32 ndx);
extern void _hash_squeezebucket(Relation rel, HashMetaPage metap,
Bucket bucket);
/* hashpage.c */
extern void _hash_metapinit(Relation rel);
extern Buffer _hash_getbuf(Relation rel, BlockNumber blkno, int access);
extern void _hash_relbuf(Relation rel, Buffer buf, int access);
extern void _hash_wrtbuf(Relation rel, Buffer buf);
extern void _hash_wrtnorelbuf(Relation rel, Buffer buf);
extern Page _hash_chgbufaccess(Relation rel, Buffer *bufp, int from_access,
int to_access);
extern void _hash_pageinit(Page page, Size size);
extern void _hash_pagedel(Relation rel, ItemPointer tid);
extern void _hash_expandtable(Relation rel, Buffer metabuf);
/* hashscan.c */
extern void _hash_regscan(IndexScanDesc scan);
extern void _hash_dropscan(IndexScanDesc scan);
extern void _hash_adjscans(Relation rel, ItemPointer tid);
/* hashsearch.c */
extern void _hash_search(Relation rel, int keysz, ScanKey scankey,
Buffer *bufP, HashMetaPage metap);
extern RetrieveIndexResult _hash_next(IndexScanDesc scan, ScanDirection dir);
extern RetrieveIndexResult _hash_first(IndexScanDesc scan, ScanDirection dir);
extern bool _hash_step(IndexScanDesc scan, Buffer *bufP, ScanDirection dir,
Buffer metabuf);
/* hashutil.c */
extern ScanKey _hash_mkscankey(Relation rel, IndexTuple itup,
HashMetaPage metap);
extern void _hash_freeskey(ScanKey skey);
extern bool _hash_checkqual(IndexScanDesc scan, IndexTuple itup);
extern HashItem _hash_formitem(IndexTuple itup);
extern Bucket _hash_call(Relation rel, HashMetaPage metap, Datum key);
extern uint32 _hash_log2(uint32 num);
extern void _hash_checkpage(Page page, int flags);
#endif /* HASH_H */