postgresql/src/backend/optimizer/path/indxpath.c

1440 lines
38 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* indxpath.c
* Routines to determine which indices are usable for scanning a
* given relation
*
* Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
1999-07-16 05:14:30 +02:00
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/indxpath.c,v 1.60 1999/07/16 03:13:00 momjian Exp $
*
*-------------------------------------------------------------------------
*/
#include <math.h>
#include "postgres.h"
#include "access/heapam.h"
#include "access/nbtree.h"
#include "catalog/catname.h"
#include "catalog/pg_amop.h"
#include "executor/executor.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/restrictinfo.h"
#include "optimizer/cost.h"
#include "optimizer/keys.h"
#include "optimizer/ordering.h"
#include "optimizer/paths.h"
#include "optimizer/plancat.h"
#include "optimizer/pathnode.h"
1999-07-16 05:14:30 +02:00
#include "parser/parsetree.h"
#include "parser/parse_expr.h"
#include "parser/parse_oper.h"
#include "parser/parse_coerce.h"
#include "utils/lsyscache.h"
1999-05-26 00:43:53 +02:00
static void match_index_orclauses(RelOptInfo *rel, RelOptInfo *index, int indexkey,
int xclass, List *restrictinfo_list);
static bool match_index_to_operand(int indexkey, Expr *operand,
1999-05-26 00:43:53 +02:00
RelOptInfo *rel, RelOptInfo *index);
static List *match_index_orclause(RelOptInfo *rel, RelOptInfo *index, int indexkey,
int xclass, List *or_clauses, List *other_matching_indices);
1999-05-26 00:43:53 +02:00
static List *group_clauses_by_indexkey(RelOptInfo *rel, RelOptInfo *index,
1999-05-25 18:15:34 +02:00
int *indexkeys, Oid *classes, List *restrictinfo_list);
1999-05-26 00:43:53 +02:00
static List *group_clauses_by_ikey_for_joins(RelOptInfo *rel, RelOptInfo *index,
int *indexkeys, Oid *classes, List *join_cinfo_list, List *restr_cinfo_list);
1999-05-26 00:43:53 +02:00
static RestrictInfo *match_clause_to_indexkey(RelOptInfo *rel, RelOptInfo *index, int indexkey,
int xclass, RestrictInfo *restrictInfo, bool join);
static bool pred_test(List *predicate_list, List *restrictinfo_list,
List *joininfo_list);
static bool one_pred_test(Expr *predicate, List *restrictinfo_list);
static bool one_pred_clause_expr_test(Expr *predicate, Node *clause);
static bool one_pred_clause_test(Expr *predicate, Node *clause);
static bool clause_pred_clause_test(Expr *predicate, Node *clause);
1999-05-26 00:43:53 +02:00
static List *indexable_joinclauses(RelOptInfo *rel, RelOptInfo *index,
List *joininfo_list, List *restrictinfo_list);
1999-05-26 00:43:53 +02:00
static List *index_innerjoin(Query *root, RelOptInfo *rel,
List *clausegroup_list, RelOptInfo *index);
static List *create_index_path_group(Query *root, RelOptInfo *rel, RelOptInfo *index,
1999-05-25 18:15:34 +02:00
List *clausegroup_list, bool join);
static List *add_index_paths(List *indexpaths, List *new_indexpaths);
1999-05-26 00:43:53 +02:00
static bool function_index_operand(Expr *funcOpnd, RelOptInfo *rel, RelOptInfo *index);
/* find_index_paths()
* Finds all possible index paths by determining which indices in the
* list 'indices' are usable.
*
* To be usable, an index must match against either a set of
* restriction clauses or join clauses.
*
* Note that the current implementation requires that there exist
* matching clauses for every key in the index (i.e., no partial
* matches are allowed).
*
* If an index can't be used with restriction clauses, but its keys
* match those of the result sort order (according to information stored
* within 'sortkeys'), then the index is also considered.
*
* 'rel' is the relation entry to which these index paths correspond
* 'indices' is a list of possible index paths
* 'restrictinfo_list' is a list of restriction restrictinfo nodes for 'rel'
* 'joininfo_list' is a list of joininfo nodes for 'rel'
* 'sortkeys' is a node describing the result sort order (from
* (find_sortkeys))
*
* Returns a list of index nodes.
*
*/
List *
1999-02-15 06:28:10 +01:00
create_index_paths(Query *root,
1999-05-26 00:43:53 +02:00
RelOptInfo *rel,
1999-05-25 18:15:34 +02:00
List *indices,
List *restrictinfo_list,
List *joininfo_list)
{
List *scanclausegroups = NIL;
List *scanpaths = NIL;
RelOptInfo *index = (RelOptInfo *) NULL;
List *joinclausegroups = NIL;
List *joinpaths = NIL;
List *retval = NIL;
1998-08-02 00:12:13 +02:00
List *ilist;
1998-08-02 00:12:13 +02:00
foreach(ilist, indices)
{
1998-08-02 00:12:13 +02:00
index = (RelOptInfo *) lfirst(ilist);
/*
* If this is a partial index, return if it fails the predicate
* test
*/
1998-08-02 00:12:13 +02:00
if (index->indpred != NIL)
if (!pred_test(index->indpred, restrictinfo_list, joininfo_list))
1998-08-02 00:12:13 +02:00
continue;
1998-08-02 00:12:13 +02:00
/*
* 1. Try matching the index against subclauses of an 'or' clause.
1999-05-25 18:15:34 +02:00
* The fields of the restrictinfo nodes are marked with lists of
* the matching indices. No path are actually created. We
* currently only look to match the first key. We don't find
* multi-key index cases where an AND matches the first key, and
* the OR matches the second key.
1998-08-02 00:12:13 +02:00
*/
match_index_orclauses(rel,
index,
index->indexkeys[0],
index->classlist[0],
restrictinfo_list);
1998-08-02 00:12:13 +02:00
/*
* 2. If the keys of this index match any of the available
* restriction clauses, then create pathnodes corresponding to
* each group of usable clauses.
1998-08-02 00:12:13 +02:00
*/
1999-05-25 18:15:34 +02:00
scanclausegroups = group_clauses_by_indexkey(rel,
1998-08-02 00:12:13 +02:00
index,
index->indexkeys,
index->classlist,
restrictinfo_list);
1998-08-02 00:12:13 +02:00
scanpaths = NIL;
if (scanclausegroups != NIL)
1999-02-15 06:50:02 +01:00
scanpaths = create_index_path_group(root,
1999-05-25 18:15:34 +02:00
rel,
index,
scanclausegroups,
false);
1998-08-02 00:12:13 +02:00
/*
* 3. If this index can be used with any join clause, then create
* pathnodes for each group of usable clauses. An index can be
* used with a join clause if its ordering is useful for a
* mergejoin, or if the index can possibly be used for scanning
* the inner relation of a nestloop join.
1998-08-02 00:12:13 +02:00
*/
joinclausegroups = indexable_joinclauses(rel, index, joininfo_list, restrictinfo_list);
1998-08-02 00:12:13 +02:00
joinpaths = NIL;
1998-08-02 00:12:13 +02:00
if (joinclausegroups != NIL)
{
1999-02-15 06:50:02 +01:00
joinpaths = create_index_path_group(root, rel,
1999-05-25 18:15:34 +02:00
index,
joinclausegroups,
true);
rel->innerjoin = nconc(rel->innerjoin,
index_innerjoin(root, rel,
1999-05-25 18:15:34 +02:00
joinclausegroups, index));
1998-08-02 00:12:13 +02:00
}
1998-08-02 00:12:13 +02:00
/*
* Some sanity checks to make sure that the indexpath is valid.
*/
if (joinpaths != NULL)
retval = add_index_paths(joinpaths, retval);
if (scanpaths != NULL)
retval = add_index_paths(scanpaths, retval);
}
return retval;
}
/****************************************************************************
* ---- ROUTINES TO MATCH 'OR' CLAUSES ----
****************************************************************************/
/*
* match_index_orclauses
* Attempt to match an index against subclauses within 'or' clauses.
* If the index does match, then the clause is marked with information
* about the index.
*
* Essentially, this adds 'index' to the list of indices in the
* RestrictInfo field of each of the clauses which it matches.
*
* 'rel' is the node of the relation on which the index is defined.
* 'index' is the index node.
* 'indexkey' is the (single) key of the index
* 'class' is the class of the operator corresponding to 'indexkey'.
* 'restrictinfo_list' is the list of available restriction clauses.
*
* Returns nothing.
*
*/
static void
1999-05-26 00:43:53 +02:00
match_index_orclauses(RelOptInfo *rel,
RelOptInfo *index,
int indexkey,
int xclass,
List *restrictinfo_list)
{
RestrictInfo *restrictinfo = (RestrictInfo *) NULL;
List *i = NIL;
foreach(i, restrictinfo_list)
{
restrictinfo = (RestrictInfo *) lfirst(i);
if (valid_or_clause(restrictinfo))
{
/*
* Mark the 'or' clause with a list of indices which match
* each of its subclauses. The list is generated by adding
* 'index' to the existing list where appropriate.
*/
restrictinfo->indexids = match_index_orclause(rel, index, indexkey,
1999-05-25 18:15:34 +02:00
xclass,
restrictinfo->clause->args,
restrictinfo->indexids);
}
}
}
/* match_index_to_operand()
* Generalize test for a match between an existing index's key
* and the operand on the rhs of a restriction clause. Now check
* for functional indices as well.
*/
static bool
match_index_to_operand(int indexkey,
Expr *operand,
1999-05-26 00:43:53 +02:00
RelOptInfo *rel,
RelOptInfo *index)
{
bool result;
/*
* Normal index.
*/
if (index->indproc == InvalidOid)
{
result = match_indexkey_operand(indexkey, (Var *) operand, rel);
return result;
}
/*
* functional index check
*/
result = function_index_operand(operand, rel, index);
return result;
}
/*
* match_index_orclause
* Attempts to match an index against the subclauses of an 'or' clause.
*
* A match means that:
* (1) the operator within the subclause can be used with one
* of the index's operator classes, and
* (2) there is a usable key that matches the variable within a
1998-08-02 00:12:13 +02:00
* searchable clause.
*
* 'or_clauses' are the remaining subclauses within the 'or' clause
* 'other_matching_indices' is the list of information on other indices
* that have already been matched to subclauses within this
* particular 'or' clause (i.e., a list previously generated by
* this routine)
*
* Returns a list of the form ((a b c) (d e f) nil (g h) ...) where
* a,b,c are nodes of indices that match the first subclause in
* 'or-clauses', d,e,f match the second subclause, no indices
* match the third, g,h match the fourth, etc.
*/
static List *
1999-05-26 00:43:53 +02:00
match_index_orclause(RelOptInfo *rel,
RelOptInfo *index,
int indexkey,
int xclass,
List *or_clauses,
List *other_matching_indices)
{
Node *clause = NULL;
1998-08-03 07:49:24 +02:00
List *matching_indices = other_matching_indices;
List *index_list = NIL;
List *clist;
1998-08-03 07:49:24 +02:00
/* first time through, we create index list */
if (!other_matching_indices)
{
foreach(clist, or_clauses)
matching_indices = lcons(NIL, matching_indices);
}
else
matching_indices = other_matching_indices;
1998-08-03 07:49:24 +02:00
index_list = matching_indices;
1998-08-02 00:12:13 +02:00
foreach(clist, or_clauses)
{
clause = lfirst(clist);
if (is_opclause(clause))
{
1999-05-25 18:15:34 +02:00
Expr *left = (Expr *) get_leftop((Expr *) clause);
Expr *right = (Expr *) get_rightop((Expr *) clause);
if (left && right &&
op_class(((Oper *) ((Expr *) clause)->oper)->opno,
xclass, index->relam) &&
((IsA(right, Const) &&
match_index_to_operand(indexkey, left, rel, index)) ||
(IsA(left, Const) &&
match_index_to_operand(indexkey, right, rel, index))))
lfirst(matching_indices) = lcons(index,
1999-05-25 18:15:34 +02:00
lfirst(matching_indices));
}
1998-08-02 00:12:13 +02:00
1998-08-03 07:49:24 +02:00
matching_indices = lnext(matching_indices);
}
return index_list;
}
/****************************************************************************
* ---- ROUTINES TO CHECK RESTRICTIONS ----
****************************************************************************/
/*
* DoneMatchingIndexKeys() - MACRO
*
* Determine whether we should continue matching index keys in a clause.
* Depends on if there are more to match or if this is a functional index.
* In the latter case we stop after the first match since the there can
* be only key (i.e. the function's return value) and the attributes in
* keys list represent the arguments to the function. -mer 3 Oct. 1991
*/
#define DoneMatchingIndexKeys(indexkeys, index) \
(indexkeys[0] == 0 || \
(index->indproc != InvalidOid))
/*
* group_clauses_by_indexkey
* Determines whether there are clauses which will match each and every
* one of the remaining keys of an index.
*
* 'rel' is the node of the relation corresponding to the index.
* 'indexkeys' are the remaining index keys to be matched.
* 'classes' are the classes of the index operators on those keys.
* 'clauses' is either:
* (1) the list of available restriction clauses on a single
* relation, or
* (2) a list of join clauses between 'rel' and a fixed set of
* relations,
* depending on the value of 'join'.
*
* NOTE: it works now for restriction clauses only. - vadim 03/18/97
*
* Returns all possible groups of clauses that will match (given that
* one or more clauses can match any of the remaining keys).
* E.g., if you have clauses A, B, and C, ((A B) (A C)) might be
* returned for an index with 2 keys.
*
*/
static List *
1999-05-26 00:43:53 +02:00
group_clauses_by_indexkey(RelOptInfo *rel,
RelOptInfo *index,
int *indexkeys,
Oid *classes,
List *restrictinfo_list)
{
List *curCinfo = NIL;
RestrictInfo *matched_clause = (RestrictInfo *) NULL;
List *clausegroup = NIL;
int curIndxKey;
Oid curClass;
if (restrictinfo_list == NIL || indexkeys[0] == 0)
return NIL;
do
{
List *tempgroup = NIL;
curIndxKey = indexkeys[0];
curClass = classes[0];
foreach(curCinfo, restrictinfo_list)
{
RestrictInfo *temp = (RestrictInfo *) lfirst(curCinfo);
matched_clause = match_clause_to_indexkey(rel,
index,
curIndxKey,
curClass,
temp,
false);
if (!matched_clause)
continue;
tempgroup = lappend(tempgroup, matched_clause);
}
if (tempgroup == NIL)
break;
clausegroup = nconc(clausegroup, tempgroup);
indexkeys++;
classes++;
} while (!DoneMatchingIndexKeys(indexkeys, index));
/* clausegroup holds all matched clauses ordered by indexkeys */
if (clausegroup != NIL)
1998-09-01 05:29:17 +02:00
return lcons(clausegroup, NIL);
return NIL;
}
/*
* group_clauses_by_ikey_for_joins
* special edition of group_clauses_by_indexkey - will
* match join & restriction clauses. See comment in indexable_joinclauses.
* - vadim 03/18/97
*
*/
static List *
1999-05-26 00:43:53 +02:00
group_clauses_by_ikey_for_joins(RelOptInfo *rel,
RelOptInfo *index,
int *indexkeys,
Oid *classes,
List *join_cinfo_list,
List *restr_cinfo_list)
{
List *curCinfo = NIL;
RestrictInfo *matched_clause = (RestrictInfo *) NULL;
List *clausegroup = NIL;
int curIndxKey;
Oid curClass;
bool jfound = false;
if (join_cinfo_list == NIL || indexkeys[0] == 0)
return NIL;
do
{
List *tempgroup = NIL;
curIndxKey = indexkeys[0];
curClass = classes[0];
foreach(curCinfo, join_cinfo_list)
{
RestrictInfo *temp = (RestrictInfo *) lfirst(curCinfo);
matched_clause = match_clause_to_indexkey(rel,
index,
curIndxKey,
curClass,
temp,
true);
if (!matched_clause)
continue;
tempgroup = lappend(tempgroup, matched_clause);
jfound = true;
}
foreach(curCinfo, restr_cinfo_list)
{
RestrictInfo *temp = (RestrictInfo *) lfirst(curCinfo);
matched_clause = match_clause_to_indexkey(rel,
index,
curIndxKey,
curClass,
temp,
false);
if (!matched_clause)
continue;
tempgroup = lappend(tempgroup, matched_clause);
}
if (tempgroup == NIL)
break;
clausegroup = nconc(clausegroup, tempgroup);
indexkeys++;
classes++;
} while (!DoneMatchingIndexKeys(indexkeys, index));
/* clausegroup holds all matched clauses ordered by indexkeys */
if (clausegroup != NIL)
{
/*
* if no one join clause was matched then there ain't clauses for
* joins at all.
*/
if (!jfound)
{
freeList(clausegroup);
return NIL;
}
1998-09-01 05:29:17 +02:00
return lcons(clausegroup, NIL);
}
return NIL;
}
/*
* IndexScanableClause () MACRO
*
* Generalize condition on which we match a clause with an index.
* Now we can match with functional indices.
*/
#define IndexScanableOperand(opnd, indkeys, rel, index) \
((index->indproc == InvalidOid) ? \
match_indexkey_operand(indkeys, opnd, rel) : \
function_index_operand((Expr*)opnd,rel,index))
/*
* There was
* equal_indexkey_var(indkeys,opnd) : \
* above, and now
* match_indexkey_operand(indkeys, opnd, rel) : \
* - vadim 01/22/97
*/
/* match_clause_to_indexkey()
* Finds the first of a relation's available restriction clauses that
* matches a key of an index.
*
* To match, the clause must:
* (1) be in the form (op var const) if the clause is a single-
* relation clause, and
* (2) contain an operator which is in the same class as the index
* operator for this key.
*
* If the clause being matched is a join clause, then 'join' is t.
*
* Returns a single restrictinfo node corresponding to the matching
* clause.
*
* NOTE: returns nil if clause is an or_clause.
*
*/
static RestrictInfo *
1999-05-26 00:43:53 +02:00
match_clause_to_indexkey(RelOptInfo *rel,
RelOptInfo *index,
int indexkey,
int xclass,
1999-05-26 00:43:53 +02:00
RestrictInfo *restrictInfo,
bool join)
{
1999-02-05 20:59:31 +01:00
Expr *clause = restrictInfo->clause;
Var *leftop,
*rightop;
Oid join_op = InvalidOid;
Oid restrict_op = InvalidOid;
bool isIndexable = false;
if (or_clause((Node *) clause) ||
not_clause((Node *) clause) || single_node((Node *) clause))
return (RestrictInfo *) NULL;
leftop = get_leftop(clause);
rightop = get_rightop(clause);
/*
* If this is not a join clause, check for clauses of the form:
* (operator var/func constant) and (operator constant var/func)
*/
if (!join)
{
1999-05-25 18:15:34 +02:00
/*
* Check for standard s-argable clause
*/
if ((rightop && IsA(rightop, Const)) ||
(rightop && IsA(rightop, Param)))
{
restrict_op = ((Oper *) ((Expr *) clause)->oper)->opno;
1998-08-10 06:49:39 +02:00
isIndexable = (op_class(restrict_op, xclass, index->relam) &&
IndexScanableOperand(leftop,
indexkey,
rel,
index));
#ifndef IGNORE_BINARY_COMPATIBLE_INDICES
/*
* Didn't find an index? Then maybe we can find another
* binary-compatible index instead... thomas 1998-08-14
*/
if (!isIndexable)
{
Oid ltype;
Oid rtype;
ltype = exprType((Node *) leftop);
rtype = exprType((Node *) rightop);
/*
* make sure we have two different binary-compatible
* types...
*/
if ((ltype != rtype)
&& IS_BINARY_COMPATIBLE(ltype, rtype))
{
char *opname;
Operator newop;
opname = get_opname(restrict_op);
if (opname != NULL)
newop = oper(opname, ltype, ltype, TRUE);
else
newop = NULL;
/* actually have a different operator to try? */
if (HeapTupleIsValid(newop) && (oprid(newop) != restrict_op))
{
restrict_op = oprid(newop);
isIndexable = (op_class(restrict_op, xclass, index->relam) &&
1999-05-25 18:15:34 +02:00
IndexScanableOperand(leftop,
indexkey,
rel,
index));
if (isIndexable)
((Oper *) ((Expr *) clause)->oper)->opno = restrict_op;
}
}
}
#endif
}
/*
* Must try to commute the clause to standard s-arg format.
*/
else if ((leftop && IsA(leftop, Const)) ||
(leftop && IsA(leftop, Param)))
{
restrict_op = get_commutator(((Oper *) ((Expr *) clause)->oper)->opno);
isIndexable = ((restrict_op != InvalidOid) &&
op_class(restrict_op, xclass, index->relam) &&
IndexScanableOperand(rightop,
indexkey, rel, index));
#ifndef IGNORE_BINARY_COMPATIBLE_INDICES
if (!isIndexable)
{
Oid ltype;
Oid rtype;
ltype = exprType((Node *) leftop);
rtype = exprType((Node *) rightop);
if ((ltype != rtype)
&& IS_BINARY_COMPATIBLE(ltype, rtype))
{
char *opname;
Operator newop;
restrict_op = ((Oper *) ((Expr *) clause)->oper)->opno;
opname = get_opname(restrict_op);
if (opname != NULL)
newop = oper(opname, rtype, rtype, TRUE);
else
newop = NULL;
if (HeapTupleIsValid(newop) && (oprid(newop) != restrict_op))
{
restrict_op = get_commutator(oprid(newop));
isIndexable = ((restrict_op != InvalidOid) &&
op_class(restrict_op, xclass, index->relam) &&
IndexScanableOperand(rightop,
indexkey,
rel,
index));
if (isIndexable)
((Oper *) ((Expr *) clause)->oper)->opno = oprid(newop);
}
}
}
#endif
if (isIndexable)
{
/*
* In place list modification. (op const var/func) -> (op
* var/func const)
*/
CommuteClause((Node *) clause);
}
}
}
/*
* Check for an indexable scan on one of the join relations. clause is
* of the form (operator var/func var/func)
*/
else
{
if (rightop
&& match_index_to_operand(indexkey, (Expr *) rightop, rel, index))
{
join_op = get_commutator(((Oper *) ((Expr *) clause)->oper)->opno);
}
else if (leftop
&& match_index_to_operand(indexkey,
(Expr *) leftop, rel, index))
join_op = ((Oper *) ((Expr *) clause)->oper)->opno;
if (join_op && op_class(join_op, xclass, index->relam) &&
is_joinable((Node *) clause))
{
isIndexable = true;
/*
* If we're using the operand's commutator we must commute the
* clause.
*/
if (join_op != ((Oper *) ((Expr *) clause)->oper)->opno)
CommuteClause((Node *) clause);
}
}
if (isIndexable)
1999-02-05 20:59:31 +01:00
return restrictInfo;
1998-09-01 05:29:17 +02:00
return NULL;
}
/****************************************************************************
* ---- ROUTINES TO DO PARTIAL INDEX PREDICATE TESTS ----
****************************************************************************/
/*
* pred_test
* Does the "predicate inclusion test" for partial indexes.
*
* Recursively checks whether the clauses in restrictinfo_list imply
* that the given predicate is true.
*
* This routine (together with the routines it calls) iterates over
* ANDs in the predicate first, then reduces the qualification
* clauses down to their constituent terms, and iterates over ORs
* in the predicate last. This order is important to make the test
* succeed whenever possible (assuming the predicate has been
* successfully cnfify()-ed). --Nels, Jan '93
*/
static bool
pred_test(List *predicate_list, List *restrictinfo_list, List *joininfo_list)
{
List *pred,
*items,
*item;
/*
* Note: if Postgres tried to optimize queries by forming equivalence
* classes over equi-joined attributes (i.e., if it recognized that a
* qualification such as "where a.b=c.d and a.b=5" could make use of
* an index on c.d), then we could use that equivalence class info
* here with joininfo_list to do more complete tests for the usability
* of a partial index. For now, the test only uses restriction
* clauses (those in restrictinfo_list). --Nels, Dec '92
*/
if (predicate_list == NULL)
return true; /* no predicate: the index is usable */
if (restrictinfo_list == NULL)
return false; /* no restriction clauses: the test must
* fail */
foreach(pred, predicate_list)
{
/*
* if any clause is not implied, the whole predicate is not
* implied
*/
if (and_clause(lfirst(pred)))
{
items = ((Expr *) lfirst(pred))->args;
foreach(item, items)
{
if (!one_pred_test(lfirst(item), restrictinfo_list))
return false;
}
}
else if (!one_pred_test(lfirst(pred), restrictinfo_list))
return false;
}
return true;
}
/*
* one_pred_test
* Does the "predicate inclusion test" for one conjunct of a predicate
* expression.
*/
static bool
one_pred_test(Expr *predicate, List *restrictinfo_list)
{
RestrictInfo *restrictinfo;
List *item;
Assert(predicate != NULL);
foreach(item, restrictinfo_list)
{
restrictinfo = (RestrictInfo *) lfirst(item);
/* if any clause implies the predicate, return true */
if (one_pred_clause_expr_test(predicate, (Node *) restrictinfo->clause))
return true;
}
return false;
}
/*
* one_pred_clause_expr_test
* Does the "predicate inclusion test" for a general restriction-clause
* expression.
*/
static bool
one_pred_clause_expr_test(Expr *predicate, Node *clause)
{
List *items,
*item;
if (is_opclause(clause))
return one_pred_clause_test(predicate, clause);
else if (or_clause(clause))
{
items = ((Expr *) clause)->args;
foreach(item, items)
{
/* if any OR item doesn't imply the predicate, clause doesn't */
if (!one_pred_clause_expr_test(predicate, lfirst(item)))
return false;
}
return true;
}
else if (and_clause(clause))
{
items = ((Expr *) clause)->args;
foreach(item, items)
{
/*
* if any AND item implies the predicate, the whole clause
* does
*/
if (one_pred_clause_expr_test(predicate, lfirst(item)))
return true;
}
return false;
}
else
{
/* unknown clause type never implies the predicate */
return false;
}
}
/*
* one_pred_clause_test
* Does the "predicate inclusion test" for one conjunct of a predicate
* expression for a simple restriction clause.
*/
static bool
one_pred_clause_test(Expr *predicate, Node *clause)
{
List *items,
*item;
if (is_opclause((Node *) predicate))
return clause_pred_clause_test(predicate, clause);
else if (or_clause((Node *) predicate))
{
items = predicate->args;
foreach(item, items)
{
/* if any item is implied, the whole predicate is implied */
if (one_pred_clause_test(lfirst(item), clause))
return true;
}
return false;
}
else if (and_clause((Node *) predicate))
{
items = predicate->args;
foreach(item, items)
{
/*
* if any item is not implied, the whole predicate is not
* implied
*/
if (!one_pred_clause_test(lfirst(item), clause))
return false;
}
return true;
}
else
{
elog(DEBUG, "Unsupported predicate type, index will not be used");
return false;
}
}
/*
* Define an "operator implication table" for btree operators ("strategies").
* The "strategy numbers" are: (1) < (2) <= (3) = (4) >= (5) >
*
* The interpretation of:
*
* test_op = BT_implic_table[given_op-1][target_op-1]
*
* where test_op, given_op and target_op are strategy numbers (from 1 to 5)
* of btree operators, is as follows:
*
* If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you
* want to determine whether "ATTR target_op CONST2" must also be true, then
* you can use "CONST1 test_op CONST2" as a test. If this test returns true,
* then the target expression must be true; if the test returns false, then
* the target expression may be false.
*
* An entry where test_op==0 means the implication cannot be determined, i.e.,
* this test should always be considered false.
*/
StrategyNumber BT_implic_table[BTMaxStrategyNumber][BTMaxStrategyNumber] = {
{2, 2, 0, 0, 0},
{1, 2, 0, 0, 0},
{1, 2, 3, 4, 5},
{0, 0, 0, 4, 5},
{0, 0, 0, 4, 4}
};
/*
* clause_pred_clause_test
* Use operator class info to check whether clause implies predicate.
*
* Does the "predicate inclusion test" for a "simple clause" predicate
* for a single "simple clause" restriction. Currently, this only handles
* (binary boolean) operators that are in some btree operator class.
* Eventually, rtree operators could also be handled by defining an
* appropriate "RT_implic_table" array.
*/
static bool
clause_pred_clause_test(Expr *predicate, Node *clause)
{
Var *pred_var,
*clause_var;
Const *pred_const,
*clause_const;
Oid pred_op,
clause_op,
test_op;
Oid opclass_id;
StrategyNumber pred_strategy,
clause_strategy,
test_strategy;
Oper *test_oper;
Expr *test_expr;
bool test_result,
isNull;
Relation relation;
HeapScanDesc scan;
HeapTuple tuple;
ScanKeyData entry[3];
Form_pg_amop aform;
pred_var = (Var *) get_leftop(predicate);
pred_const = (Const *) get_rightop(predicate);
clause_var = (Var *) get_leftop((Expr *) clause);
clause_const = (Const *) get_rightop((Expr *) clause);
/* Check the basic form; for now, only allow the simplest case */
if (!is_opclause(clause) ||
!IsA(clause_var, Var) ||
clause_const == NULL ||
!IsA(clause_const, Const) ||
!IsA(predicate->oper, Oper) ||
!IsA(pred_var, Var) ||
!IsA(pred_const, Const))
return false;
/*
* The implication can't be determined unless the predicate and the
* clause refer to the same attribute.
*/
if (clause_var->varattno != pred_var->varattno)
return false;
/* Get the operators for the two clauses we're comparing */
pred_op = ((Oper *) ((Expr *) predicate)->oper)->opno;
clause_op = ((Oper *) ((Expr *) clause)->oper)->opno;
/*
* 1. Find a "btree" strategy number for the pred_op
*/
ScanKeyEntryInitialize(&entry[0], 0,
Anum_pg_amop_amopid,
F_OIDEQ,
1998-08-11 21:32:39 +02:00
ObjectIdGetDatum(BTREE_AM_OID));
ScanKeyEntryInitialize(&entry[1], 0,
Anum_pg_amop_amopopr,
F_OIDEQ,
ObjectIdGetDatum(pred_op));
relation = heap_openr(AccessMethodOperatorRelationName);
/*
* The following assumes that any given operator will only be in a
* single btree operator class. This is true at least for all the
* pre-defined operator classes. If it isn't true, then whichever
* operator class happens to be returned first for the given operator
* will be used to find the associated strategy numbers for the test.
* --Nels, Jan '93
*/
1998-07-27 21:38:40 +02:00
scan = heap_beginscan(relation, false, SnapshotNow, 2, entry);
tuple = heap_getnext(scan, 0);
if (!HeapTupleIsValid(tuple))
{
elog(DEBUG, "clause_pred_clause_test: unknown pred_op");
return false;
}
aform = (Form_pg_amop) GETSTRUCT(tuple);
/* Get the predicate operator's strategy number (1 to 5) */
pred_strategy = (StrategyNumber) aform->amopstrategy;
/* Remember which operator class this strategy number came from */
opclass_id = aform->amopclaid;
heap_endscan(scan);
/*
* 2. From the same opclass, find a strategy num for the clause_op
*/
ScanKeyEntryInitialize(&entry[1], 0,
Anum_pg_amop_amopclaid,
F_OIDEQ,
ObjectIdGetDatum(opclass_id));
ScanKeyEntryInitialize(&entry[2], 0,
Anum_pg_amop_amopopr,
F_OIDEQ,
ObjectIdGetDatum(clause_op));
1998-07-27 21:38:40 +02:00
scan = heap_beginscan(relation, false, SnapshotNow, 3, entry);
tuple = heap_getnext(scan, 0);
if (!HeapTupleIsValid(tuple))
{
elog(DEBUG, "clause_pred_clause_test: unknown clause_op");
return false;
}
aform = (Form_pg_amop) GETSTRUCT(tuple);
/* Get the restriction clause operator's strategy number (1 to 5) */
clause_strategy = (StrategyNumber) aform->amopstrategy;
heap_endscan(scan);
/*
* 3. Look up the "test" strategy number in the implication table
*/
test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1];
if (test_strategy == 0)
return false; /* the implication cannot be determined */
/*
* 4. From the same opclass, find the operator for the test strategy
*/
ScanKeyEntryInitialize(&entry[2], 0,
Anum_pg_amop_amopstrategy,
F_INT2EQ,
Int16GetDatum(test_strategy));
1998-07-27 21:38:40 +02:00
scan = heap_beginscan(relation, false, SnapshotNow, 3, entry);
tuple = heap_getnext(scan, 0);
if (!HeapTupleIsValid(tuple))
{
elog(DEBUG, "clause_pred_clause_test: unknown test_op");
return false;
}
aform = (Form_pg_amop) GETSTRUCT(tuple);
/* Get the test operator */
test_op = aform->amopopr;
heap_endscan(scan);
/*
* 5. Evaluate the test
*/
test_oper = makeOper(test_op, /* opno */
InvalidOid, /* opid */
BOOLOID, /* opresulttype */
0, /* opsize */
NULL); /* op_fcache */
replace_opid(test_oper);
test_expr = make_opclause(test_oper,
copyObject(clause_const),
copyObject(pred_const));
#ifndef OMIT_PARTIAL_INDEX
test_result = ExecEvalExpr((Node *) test_expr, NULL, &isNull, NULL);
#endif /* OMIT_PARTIAL_INDEX */
if (isNull)
{
elog(DEBUG, "clause_pred_clause_test: null test result");
return false;
}
return test_result;
}
/****************************************************************************
* ---- ROUTINES TO CHECK JOIN CLAUSES ----
****************************************************************************/
/*
* indexable_joinclauses
* Finds all groups of join clauses from among 'joininfo_list' that can
* be used in conjunction with 'index'.
*
* The first clause in the group is marked as having the other relation
* in the join clause as its outer join relation.
*
* Returns a list of these clause groups.
*
* Added: restrictinfo_list - list of restriction RestrictInfos. It's to
* support multi-column indices in joins and for cases
* when a key is in both join & restriction clauses. - vadim 03/18/97
*
*/
static List *
1999-05-26 00:43:53 +02:00
indexable_joinclauses(RelOptInfo *rel, RelOptInfo *index,
List *joininfo_list, List *restrictinfo_list)
{
JoinInfo *joininfo = (JoinInfo *) NULL;
List *cg_list = NIL;
List *i = NIL;
List *clausegroups = NIL;
foreach(i, joininfo_list)
{
1998-09-01 05:29:17 +02:00
joininfo = (JoinInfo *) lfirst(i);
if (joininfo->jinfo_restrictinfo == NIL)
continue;
clausegroups = group_clauses_by_ikey_for_joins(rel,
1999-05-25 18:15:34 +02:00
index,
index->indexkeys,
index->classlist,
joininfo->jinfo_restrictinfo,
1999-05-25 18:15:34 +02:00
restrictinfo_list);
if (clausegroups != NIL)
{
List *clauses = lfirst(clausegroups);
1999-02-18 01:49:48 +01:00
((RestrictInfo *) lfirst(clauses))->restrictinfojoinid = joininfo->unjoined_relids;
}
cg_list = nconc(cg_list, clausegroups);
}
1998-09-01 05:29:17 +02:00
return cg_list;
}
/****************************************************************************
* ---- PATH CREATION UTILITIES ----
****************************************************************************/
/*
* extract_restrict_clauses -
* the list of clause info contains join clauses and restriction clauses.
* This routine returns the restriction clauses only.
*/
1996-11-08 07:02:30 +01:00
#ifdef NOT_USED
static List *
extract_restrict_clauses(List *clausegroup)
{
List *restrict_cls = NIL;
List *l;
foreach(l, clausegroup)
{
RestrictInfo *cinfo = lfirst(l);
if (!is_joinable((Node *) cinfo->clause))
restrict_cls = lappend(restrict_cls, cinfo);
}
return restrict_cls;
}
1996-11-08 07:02:30 +01:00
#endif
/*
* index_innerjoin
* Creates index path nodes corresponding to paths to be used as inner
* relations in nestloop joins.
*
* 'clausegroup-list' is a list of list of restrictinfo nodes which can use
* 'index' on their inner relation.
*
* Returns a list of index pathnodes.
*
*/
static List *
1999-05-26 00:43:53 +02:00
index_innerjoin(Query *root, RelOptInfo *rel, List *clausegroup_list,
RelOptInfo *index)
{
List *clausegroup = NIL;
List *cg_list = NIL;
List *i = NIL;
IndexPath *pathnode = (IndexPath *) NULL;
Cost temp_selec;
float temp_pages;
foreach(i, clausegroup_list)
{
List *attnos,
*values,
*flags;
clausegroup = lfirst(i);
pathnode = makeNode(IndexPath);
get_joinvars(lfirsti(rel->relids), clausegroup,
&attnos, &values, &flags);
index_selectivity(lfirsti(index->relids),
index->classlist,
get_opnos(clausegroup),
getrelid(lfirsti(rel->relids),
root->rtable),
attnos,
values,
flags,
length(clausegroup),
&temp_pages,
&temp_selec);
1998-09-21 17:41:28 +02:00
pathnode->path.pathtype = T_IndexScan;
pathnode->path.parent = rel;
1999-02-11 15:59:09 +01:00
pathnode->path.pathorder = makeNode(PathOrder);
1999-05-25 18:15:34 +02:00
pathnode->path.pathorder->ordtype = SORTOP_ORDER;
pathnode->path.pathorder->ord.sortop = index->ordering;
pathnode->path.pathkeys = NIL;
1998-09-21 17:41:28 +02:00
pathnode->indexid = index->relids;
pathnode->indexkeys = index->indexkeys;
pathnode->indexqual = clausegroup;
1999-02-05 20:59:31 +01:00
pathnode->path.joinid = ((RestrictInfo *) lfirst(clausegroup))->restrictinfojoinid;
pathnode->path.path_cost = cost_index((Oid) lfirsti(index->relids),
1999-05-25 18:15:34 +02:00
(int) temp_pages,
temp_selec,
rel->pages,
rel->tuples,
index->pages,
index->tuples,
true);
/*
* copy restrictinfo list into path for expensive function
* processing -- JMH, 7/7/92
*/
pathnode->path.loc_restrictinfo = set_difference(copyObject((Node *) rel->restrictinfo),
1999-05-25 18:15:34 +02:00
clausegroup);
1999-05-25 18:15:34 +02:00
#ifdef NOT_USED /* fix xfunc */
/* add in cost for expensive functions! -- JMH, 7/7/92 */
if (XfuncMode != XFUNC_OFF)
((Path *) pathnode)->path_cost += xfunc_get_path_cost((Path *) pathnode);
#endif
cg_list = lappend(cg_list, pathnode);
}
1998-09-01 05:29:17 +02:00
return cg_list;
}
/*
1999-02-15 06:50:02 +01:00
* create_index_path_group
* Creates a list of index path nodes for each group of clauses
* (restriction or join) that can be used in conjunction with an index.
*
* 'rel' is the relation for which 'index' is defined
* 'clausegroup-list' is the list of clause groups (lists of restrictinfo
* nodes) grouped by mergejoinorder
* 'join' is a flag indicating whether or not the clauses are join
* clauses
*
* Returns a list of new index path nodes.
*
*/
static List *
1999-02-15 06:50:02 +01:00
create_index_path_group(Query *root,
1999-05-26 00:43:53 +02:00
RelOptInfo *rel,
RelOptInfo *index,
1999-05-25 18:15:34 +02:00
List *clausegroup_list,
bool join)
{
List *clausegroup = NIL;
List *ip_list = NIL;
List *i = NIL;
List *j = NIL;
IndexPath *temp_path;
foreach(i, clausegroup_list)
{
RestrictInfo *restrictinfo;
bool temp = true;
clausegroup = lfirst(i);
foreach(j, clausegroup)
{
restrictinfo = (RestrictInfo *) lfirst(j);
if (!(is_joinable((Node *) restrictinfo->clause) &&
equal_path_merge_ordering(index->ordering,
1999-05-25 18:15:34 +02:00
restrictinfo->mergejoinorder)))
temp = false;
}
if (!join || temp)
{ /* restriction, ordering scan */
temp_path = create_index_path(root, rel, index, clausegroup, join);
ip_list = lappend(ip_list, temp_path);
}
}
1998-09-01 05:29:17 +02:00
return ip_list;
}
static List *
add_index_paths(List *indexpaths, List *new_indexpaths)
{
1999-02-22 06:26:58 +01:00
return nconc(indexpaths, new_indexpaths);
}
static bool
1999-05-26 00:43:53 +02:00
function_index_operand(Expr *funcOpnd, RelOptInfo *rel, RelOptInfo *index)
{
Oid heapRelid = (Oid) lfirsti(rel->relids);
Func *function;
List *funcargs;
int *indexKeys = index->indexkeys;
List *arg;
int i;
/*
* sanity check, make sure we know what we're dealing with here.
*/
if (funcOpnd == NULL ||
nodeTag(funcOpnd) != T_Expr || funcOpnd->opType != FUNC_EXPR ||
funcOpnd->oper == NULL || indexKeys == NULL)
return false;
function = (Func *) funcOpnd->oper;
funcargs = funcOpnd->args;
if (function->funcid != index->indproc)
return false;
/*
* Check that the arguments correspond to the same arguments used to
* create the functional index. To do this we must check that 1.
* refer to the right relatiion. 2. the args have the right attr.
* numbers in the right order.
*
*
* Check all args refer to the correct relation (i.e. the one with the
* functional index defined on it (rel). To do this we can simply
* compare range table entry numbers, they must be the same.
*/
foreach(arg, funcargs)
{
if (heapRelid != ((Var *) lfirst(arg))->varno)
return false;
}
/*
* check attr numbers and order.
*/
i = 0;
foreach(arg, funcargs)
{
if (indexKeys[i] == 0)
1998-09-01 05:29:17 +02:00
return false;
if (((Var *) lfirst(arg))->varattno != indexKeys[i])
1998-09-01 05:29:17 +02:00
return false;
i++;
}
return true;
}