postgresql/src/include/optimizer/planner.h

68 lines
2.1 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* planner.h
* prototypes for planner.c.
*
*
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
2010-09-20 22:08:53 +02:00
* src/include/optimizer/planner.h
*
*-------------------------------------------------------------------------
*/
#ifndef PLANNER_H
#define PLANNER_H
1997-11-26 02:14:33 +01:00
#include "nodes/plannodes.h"
#include "nodes/relation.h"
/* Hook for plugins to get control in planner() */
2007-11-15 22:14:46 +01:00
typedef PlannedStmt *(*planner_hook_type) (Query *parse,
2017-06-21 20:39:04 +02:00
int cursorOptions,
ParamListInfo boundParams);
extern PGDLLIMPORT planner_hook_type planner_hook;
/* Hook for plugins to get control when grouping_planner() plans upper rels */
typedef void (*create_upper_paths_hook_type) (PlannerInfo *root,
2017-06-21 20:39:04 +02:00
UpperRelationKind stage,
RelOptInfo *input_rel,
RelOptInfo *output_rel,
void *extra);
extern PGDLLIMPORT create_upper_paths_hook_type create_upper_paths_hook;
extern PlannedStmt *planner(Query *parse, int cursorOptions,
2004-08-29 07:07:03 +02:00
ParamListInfo boundParams);
extern PlannedStmt *standard_planner(Query *parse, int cursorOptions,
2007-11-15 22:14:46 +01:00
ParamListInfo boundParams);
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
extern PlannerInfo *subquery_planner(PlannerGlobal *glob, Query *parse,
PlannerInfo *parent_root,
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
bool hasRecursion, double tuple_fraction);
extern bool is_dummy_plan(Plan *plan);
Allow foreign tables to participate in inheritance. Foreign tables can now be inheritance children, or parents. Much of the system was already ready for this, but we had to fix a few things of course, mostly in the area of planner and executor handling of row locks. As side effects of this, allow foreign tables to have NOT VALID CHECK constraints (and hence to accept ALTER ... VALIDATE CONSTRAINT), and to accept ALTER SET STORAGE and ALTER SET WITH/WITHOUT OIDS. Continuing to disallow these things would've required bizarre and inconsistent special cases in inheritance behavior. Since foreign tables don't enforce CHECK constraints anyway, a NOT VALID one is a complete no-op, but that doesn't mean we shouldn't allow it. And it's possible that some FDWs might have use for SET STORAGE or SET WITH OIDS, though doubtless they will be no-ops for most. An additional change in support of this is that when a ModifyTable node has multiple target tables, they will all now be explicitly identified in EXPLAIN output, for example: Update on pt1 (cost=0.00..321.05 rows=3541 width=46) Update on pt1 Foreign Update on ft1 Foreign Update on ft2 Update on child3 -> Seq Scan on pt1 (cost=0.00..0.00 rows=1 width=46) -> Foreign Scan on ft1 (cost=100.00..148.03 rows=1170 width=46) -> Foreign Scan on ft2 (cost=100.00..148.03 rows=1170 width=46) -> Seq Scan on child3 (cost=0.00..25.00 rows=1200 width=46) This was done mainly to provide an unambiguous place to attach "Remote SQL" fields, but it is useful for inherited updates even when no foreign tables are involved. Shigeru Hanada and Etsuro Fujita, reviewed by Ashutosh Bapat and Kyotaro Horiguchi, some additional hacking by me
2015-03-22 18:53:11 +01:00
extern RowMarkType select_rowmark_type(RangeTblEntry *rte,
LockClauseStrength strength);
extern bool limit_needed(Query *parse);
extern void mark_partial_aggref(Aggref *agg, AggSplit aggsplit);
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
extern Path *get_cheapest_fractional_path(RelOptInfo *rel,
double tuple_fraction);
extern Expr *expression_planner(Expr *expr);
Drop no-op CoerceToDomain nodes from expressions at planning time. If a domain has no constraints, then CoerceToDomain doesn't really do anything and can be simplified to a RelabelType. This not only eliminates cycles at execution, but allows the planner to optimize better (for instance, match the coerced expression to an index on the underlying column). However, we do have to support invalidating the plan later if a constraint gets added to the domain. That's comparable to the case of a change to a SQL function that had been inlined into a plan, so all the necessary logic already exists for plans depending on functions. We need only duplicate or share that logic for domains. ALTER DOMAIN ADD/DROP CONSTRAINT need to be taught to send out sinval messages for the domain's pg_type entry, since those operations don't update that row. (ALTER DOMAIN SET/DROP NOT NULL do update that row, so no code change is needed for them.) Testing this revealed what's really a pre-existing bug in plpgsql: it caches the SQL-expression-tree expansion of type coercions and had no provision for invalidating entries in that cache. Up to now that was only a problem if such an expression had inlined a SQL function that got changed, which is unlikely though not impossible. But failing to track changes of domain constraints breaks an existing regression test case and would likely cause practical problems too. We could fix that locally in plpgsql, but what seems like a better idea is to build some generic infrastructure in plancache.c to store standalone expressions and track invalidation events for them. (It's tempting to wonder whether plpgsql's "simple expression" stuff could use this code with lower overhead than its current use of the heavyweight plancache APIs. But I've left that idea for later.) Other stuff fixed in passing: * Allow estimate_expression_value() to drop CoerceToDomain unconditionally, effectively assuming that the coercion will succeed. This will improve planner selectivity estimates for cases involving estimatable expressions that are coerced to domains. We could have done this independently of everything else here, but there wasn't previously any need for eval_const_expressions_mutator to know about CoerceToDomain at all. * Use a dlist for plancache.c's list of cached plans, rather than a manually threaded singly-linked list. That eliminates a potential performance problem in DropCachedPlan. * Fix a couple of inconsistencies in typecmds.c about whether operations on domains drop RowExclusiveLock on pg_type. Our common practice is that DDL operations do drop catalog locks, so standardize on that choice. Discussion: https://postgr.es/m/19958.1544122124@sss.pgh.pa.us
2018-12-13 19:24:43 +01:00
extern Expr *expression_planner_with_deps(Expr *expr,
List **relationOids,
List **invalItems);
extern Expr *preprocess_phv_expression(PlannerInfo *root, Expr *expr);
extern bool plan_cluster_use_sort(Oid tableOid, Oid indexOid);
extern int plan_create_index_workers(Oid tableOid, Oid indexOid);
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
#endif /* PLANNER_H */