postgresql/src/backend/replication/repl_gram.y

336 lines
6.9 KiB
Plaintext
Raw Normal View History

%{
/*-------------------------------------------------------------------------
*
* repl_gram.y - Parser for the replication commands
*
2017-01-03 19:48:53 +01:00
* Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/replication/repl_gram.y
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/xlogdefs.h"
#include "nodes/makefuncs.h"
#include "nodes/replnodes.h"
#include "replication/walsender.h"
#include "replication/walsender_private.h"
/* Result of the parsing is returned here */
Node *replication_parse_result;
/*
* Bison doesn't allocate anything that needs to live across parser calls,
* so we can easily have it use palloc instead of malloc. This prevents
* memory leaks if we error out during parsing. Note this only works with
* bison >= 2.0. However, in bison 1.875 the default is to use alloca()
* if possible, so there's not really much problem anyhow, at least if
* you're building with gcc.
*/
#define YYMALLOC palloc
#define YYFREE pfree
%}
%expect 0
%name-prefix="replication_yy"
%union {
char *str;
bool boolval;
uint32 uintval;
XLogRecPtr recptr;
Node *node;
List *list;
DefElem *defelt;
}
/* Non-keyword tokens */
%token <str> SCONST IDENT
%token <uintval> UCONST
%token <recptr> RECPTR
/* Keyword tokens. */
%token K_BASE_BACKUP
%token K_IDENTIFY_SYSTEM
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
%token K_START_REPLICATION
%token K_CREATE_REPLICATION_SLOT
%token K_DROP_REPLICATION_SLOT
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
%token K_TIMELINE_HISTORY
%token K_LABEL
%token K_PROGRESS
%token K_FAST
%token K_NOWAIT
%token K_MAX_RATE
%token K_WAL
%token K_TABLESPACE_MAP
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
%token K_TIMELINE
%token K_PHYSICAL
%token K_LOGICAL
%token K_SLOT
%token K_RESERVE_WAL
%token K_TEMPORARY
%type <node> command
%type <node> base_backup start_replication start_logical_replication
create_replication_slot drop_replication_slot identify_system
timeline_history
%type <list> base_backup_opt_list
%type <defelt> base_backup_opt
%type <uintval> opt_timeline
%type <list> plugin_options plugin_opt_list
%type <defelt> plugin_opt_elem
%type <node> plugin_opt_arg
%type <str> opt_slot
%type <boolval> opt_reserve_wal opt_temporary
%%
firstcmd: command opt_semicolon
{
replication_parse_result = $1;
}
;
opt_semicolon: ';'
| /* EMPTY */
;
command:
identify_system
| base_backup
| start_replication
| start_logical_replication
| create_replication_slot
| drop_replication_slot
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
| timeline_history
;
/*
* IDENTIFY_SYSTEM
*/
identify_system:
K_IDENTIFY_SYSTEM
{
$$ = (Node *) makeNode(IdentifySystemCmd);
}
;
/*
* BASE_BACKUP [LABEL '<label>'] [PROGRESS] [FAST] [WAL] [NOWAIT]
* [MAX_RATE %d] [TABLESPACE_MAP]
*/
base_backup:
K_BASE_BACKUP base_backup_opt_list
{
BaseBackupCmd *cmd = makeNode(BaseBackupCmd);
cmd->options = $2;
$$ = (Node *) cmd;
}
;
base_backup_opt_list:
base_backup_opt_list base_backup_opt
{ $$ = lappend($1, $2); }
| /* EMPTY */
{ $$ = NIL; }
;
base_backup_opt:
K_LABEL SCONST
{
$$ = makeDefElem("label",
(Node *)makeString($2), -1);
}
| K_PROGRESS
{
$$ = makeDefElem("progress",
(Node *)makeInteger(TRUE), -1);
}
| K_FAST
{
$$ = makeDefElem("fast",
(Node *)makeInteger(TRUE), -1);
}
| K_WAL
{
$$ = makeDefElem("wal",
(Node *)makeInteger(TRUE), -1);
}
| K_NOWAIT
{
$$ = makeDefElem("nowait",
(Node *)makeInteger(TRUE), -1);
}
| K_MAX_RATE UCONST
{
$$ = makeDefElem("max_rate",
(Node *)makeInteger($2), -1);
}
| K_TABLESPACE_MAP
{
$$ = makeDefElem("tablespace_map",
(Node *)makeInteger(TRUE), -1);
}
;
create_replication_slot:
/* CREATE_REPLICATION_SLOT slot TEMPORARY PHYSICAL RESERVE_WAL */
K_CREATE_REPLICATION_SLOT IDENT opt_temporary K_PHYSICAL opt_reserve_wal
{
CreateReplicationSlotCmd *cmd;
cmd = makeNode(CreateReplicationSlotCmd);
cmd->kind = REPLICATION_KIND_PHYSICAL;
cmd->slotname = $2;
cmd->temporary = $3;
cmd->reserve_wal = $5;
$$ = (Node *) cmd;
}
/* CREATE_REPLICATION_SLOT slot TEMPORARY LOGICAL plugin */
| K_CREATE_REPLICATION_SLOT IDENT opt_temporary K_LOGICAL IDENT
{
CreateReplicationSlotCmd *cmd;
cmd = makeNode(CreateReplicationSlotCmd);
cmd->kind = REPLICATION_KIND_LOGICAL;
cmd->slotname = $2;
cmd->temporary = $3;
cmd->plugin = $5;
$$ = (Node *) cmd;
}
;
/* DROP_REPLICATION_SLOT slot */
drop_replication_slot:
K_DROP_REPLICATION_SLOT IDENT
{
DropReplicationSlotCmd *cmd;
cmd = makeNode(DropReplicationSlotCmd);
cmd->slotname = $2;
$$ = (Node *) cmd;
}
;
/*
* START_REPLICATION [SLOT slot] [PHYSICAL] %X/%X [TIMELINE %d]
*/
start_replication:
K_START_REPLICATION opt_slot opt_physical RECPTR opt_timeline
{
StartReplicationCmd *cmd;
cmd = makeNode(StartReplicationCmd);
cmd->kind = REPLICATION_KIND_PHYSICAL;
cmd->slotname = $2;
cmd->startpoint = $4;
cmd->timeline = $5;
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
$$ = (Node *) cmd;
}
;
/* START_REPLICATION SLOT slot LOGICAL %X/%X options */
start_logical_replication:
K_START_REPLICATION K_SLOT IDENT K_LOGICAL RECPTR plugin_options
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
{
StartReplicationCmd *cmd;
cmd = makeNode(StartReplicationCmd);
cmd->kind = REPLICATION_KIND_LOGICAL;
cmd->slotname = $3;
cmd->startpoint = $5;
cmd->options = $6;
$$ = (Node *) cmd;
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
}
;
/*
* TIMELINE_HISTORY %d
*/
timeline_history:
K_TIMELINE_HISTORY UCONST
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
{
TimeLineHistoryCmd *cmd;
if ($2 <= 0)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
(errmsg("invalid timeline %u", $2))));
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
cmd = makeNode(TimeLineHistoryCmd);
cmd->timeline = $2;
$$ = (Node *) cmd;
}
;
opt_physical:
K_PHYSICAL
| /* EMPTY */
;
opt_reserve_wal:
K_RESERVE_WAL { $$ = true; }
| /* EMPTY */ { $$ = false; }
;
opt_temporary:
K_TEMPORARY { $$ = true; }
| /* EMPTY */ { $$ = false; }
;
opt_slot:
K_SLOT IDENT
{ $$ = $2; }
| /* EMPTY */
{ $$ = NULL; }
;
opt_timeline:
K_TIMELINE UCONST
{
if ($2 <= 0)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
(errmsg("invalid timeline %u", $2))));
$$ = $2;
}
| /* EMPTY */ { $$ = 0; }
;
plugin_options:
'(' plugin_opt_list ')' { $$ = $2; }
| /* EMPTY */ { $$ = NIL; }
;
plugin_opt_list:
plugin_opt_elem
{
$$ = list_make1($1);
}
| plugin_opt_list ',' plugin_opt_elem
{
$$ = lappend($1, $3);
}
;
plugin_opt_elem:
IDENT plugin_opt_arg
{
$$ = makeDefElem($1, $2, -1);
}
;
plugin_opt_arg:
SCONST { $$ = (Node *) makeString($1); }
| /* EMPTY */ { $$ = NULL; }
;
%%
#include "repl_scanner.c"