postgresql/src/common/hashfn.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

693 lines
17 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* hashfn.c
* Generic hashing functions, and hash functions for use in dynahash.c
* hashtables
*
*
* Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/common/hashfn.c
*
* NOTES
* It is expected that every bit of a hash function's 32-bit result is
* as random as every other; failure to ensure this is likely to lead
* to poor performance of hash tables. In most cases a hash
* function should use hash_bytes() or its variant hash_bytes_uint32(),
* or the wrappers hash_any() and hash_uint32 defined in hashfn.h.
*
*-------------------------------------------------------------------------
*/
1996-11-03 07:54:38 +01:00
#include "postgres.h"
#include "common/hashfn.h"
#include "port/pg_bitutils.h"
/*
* This hash function was written by Bob Jenkins
* (bob_jenkins@burtleburtle.net), and superficially adapted
* for PostgreSQL by Neil Conway. For more information on this
* hash function, see http://burtleburtle.net/bob/hash/doobs.html,
* or Bob's article in Dr. Dobb's Journal, Sept. 1997.
*
* In the current code, we have adopted Bob's 2006 update of his hash
* function to fetch the data a word at a time when it is suitably aligned.
* This makes for a useful speedup, at the cost of having to maintain
* four code paths (aligned vs unaligned, and little-endian vs big-endian).
* It also uses two separate mixing functions mix() and final(), instead
* of a slower multi-purpose function.
*/
/* Get a bit mask of the bits set in non-uint32 aligned addresses */
#define UINT32_ALIGN_MASK (sizeof(uint32) - 1)
#define rot(x,k) pg_rotate_left32(x, k)
/*----------
* mix -- mix 3 32-bit values reversibly.
*
* This is reversible, so any information in (a,b,c) before mix() is
* still in (a,b,c) after mix().
*
* If four pairs of (a,b,c) inputs are run through mix(), or through
* mix() in reverse, there are at least 32 bits of the output that
* are sometimes the same for one pair and different for another pair.
* This was tested for:
* * pairs that differed by one bit, by two bits, in any combination
* of top bits of (a,b,c), or in any combination of bottom bits of
* (a,b,c).
* * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
* the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
* is commonly produced by subtraction) look like a single 1-bit
* difference.
* * the base values were pseudorandom, all zero but one bit set, or
* all zero plus a counter that starts at zero.
*
* This does not achieve avalanche. There are input bits of (a,b,c)
* that fail to affect some output bits of (a,b,c), especially of a. The
* most thoroughly mixed value is c, but it doesn't really even achieve
* avalanche in c.
*
* This allows some parallelism. Read-after-writes are good at doubling
* the number of bits affected, so the goal of mixing pulls in the opposite
* direction from the goal of parallelism. I did what I could. Rotates
* seem to cost as much as shifts on every machine I could lay my hands on,
* and rotates are much kinder to the top and bottom bits, so I used rotates.
*----------
*/
#define mix(a,b,c) \
{ \
a -= c; a ^= rot(c, 4); c += b; \
b -= a; b ^= rot(a, 6); a += c; \
c -= b; c ^= rot(b, 8); b += a; \
a -= c; a ^= rot(c,16); c += b; \
b -= a; b ^= rot(a,19); a += c; \
c -= b; c ^= rot(b, 4); b += a; \
}
/*----------
* final -- final mixing of 3 32-bit values (a,b,c) into c
*
* Pairs of (a,b,c) values differing in only a few bits will usually
* produce values of c that look totally different. This was tested for
* * pairs that differed by one bit, by two bits, in any combination
* of top bits of (a,b,c), or in any combination of bottom bits of
* (a,b,c).
* * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
* the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
* is commonly produced by subtraction) look like a single 1-bit
* difference.
* * the base values were pseudorandom, all zero but one bit set, or
* all zero plus a counter that starts at zero.
*
* The use of separate functions for mix() and final() allow for a
* substantial performance increase since final() does not need to
* do well in reverse, but is does need to affect all output bits.
* mix(), on the other hand, does not need to affect all output
* bits (affecting 32 bits is enough). The original hash function had
* a single mixing operation that had to satisfy both sets of requirements
* and was slower as a result.
*----------
*/
#define final(a,b,c) \
{ \
c ^= b; c -= rot(b,14); \
a ^= c; a -= rot(c,11); \
b ^= a; b -= rot(a,25); \
c ^= b; c -= rot(b,16); \
a ^= c; a -= rot(c, 4); \
b ^= a; b -= rot(a,14); \
c ^= b; c -= rot(b,24); \
}
/*
* hash_bytes() -- hash a variable-length key into a 32-bit value
* k : the key (the unaligned variable-length array of bytes)
* len : the length of the key, counting by bytes
*
* Returns a uint32 value. Every bit of the key affects every bit of
* the return value. Every 1-bit and 2-bit delta achieves avalanche.
* About 6*len+35 instructions. The best hash table sizes are powers
* of 2. There is no need to do mod a prime (mod is sooo slow!).
* If you need less than 32 bits, use a bitmask.
*
* This procedure must never throw elog(ERROR); the ResourceOwner code
* relies on this not to fail.
*
* Note: we could easily change this function to return a 64-bit hash value
* by using the final values of both b and c. b is perhaps a little less
* well mixed than c, however.
*/
uint32
hash_bytes(const unsigned char *k, int keylen)
{
uint32 a,
b,
c,
len;
/* Set up the internal state */
len = keylen;
a = b = c = 0x9e3779b9 + len + 3923095;
/* If the source pointer is word-aligned, we use word-wide fetches */
if (((uintptr_t) k & UINT32_ALIGN_MASK) == 0)
{
/* Code path for aligned source data */
const uint32 *ka = (const uint32 *) k;
/* handle most of the key */
while (len >= 12)
{
a += ka[0];
b += ka[1];
c += ka[2];
mix(a, b, c);
ka += 3;
len -= 12;
}
/* handle the last 11 bytes */
k = (const unsigned char *) ka;
#ifdef WORDS_BIGENDIAN
switch (len)
{
case 11:
c += ((uint32) k[10] << 8);
/* fall through */
case 10:
c += ((uint32) k[9] << 16);
/* fall through */
case 9:
c += ((uint32) k[8] << 24);
/* fall through */
case 8:
/* the lowest byte of c is reserved for the length */
b += ka[1];
a += ka[0];
break;
case 7:
b += ((uint32) k[6] << 8);
/* fall through */
case 6:
b += ((uint32) k[5] << 16);
/* fall through */
case 5:
b += ((uint32) k[4] << 24);
/* fall through */
case 4:
a += ka[0];
break;
case 3:
a += ((uint32) k[2] << 8);
/* fall through */
case 2:
a += ((uint32) k[1] << 16);
/* fall through */
case 1:
a += ((uint32) k[0] << 24);
/* case 0: nothing left to add */
}
#else /* !WORDS_BIGENDIAN */
switch (len)
{
case 11:
c += ((uint32) k[10] << 24);
/* fall through */
case 10:
c += ((uint32) k[9] << 16);
/* fall through */
case 9:
c += ((uint32) k[8] << 8);
/* fall through */
case 8:
/* the lowest byte of c is reserved for the length */
b += ka[1];
a += ka[0];
break;
case 7:
b += ((uint32) k[6] << 16);
/* fall through */
case 6:
b += ((uint32) k[5] << 8);
/* fall through */
case 5:
b += k[4];
/* fall through */
case 4:
a += ka[0];
break;
case 3:
a += ((uint32) k[2] << 16);
/* fall through */
case 2:
a += ((uint32) k[1] << 8);
/* fall through */
case 1:
a += k[0];
/* case 0: nothing left to add */
}
#endif /* WORDS_BIGENDIAN */
}
else
{
/* Code path for non-aligned source data */
/* handle most of the key */
while (len >= 12)
{
#ifdef WORDS_BIGENDIAN
a += (k[3] + ((uint32) k[2] << 8) + ((uint32) k[1] << 16) + ((uint32) k[0] << 24));
b += (k[7] + ((uint32) k[6] << 8) + ((uint32) k[5] << 16) + ((uint32) k[4] << 24));
c += (k[11] + ((uint32) k[10] << 8) + ((uint32) k[9] << 16) + ((uint32) k[8] << 24));
#else /* !WORDS_BIGENDIAN */
a += (k[0] + ((uint32) k[1] << 8) + ((uint32) k[2] << 16) + ((uint32) k[3] << 24));
b += (k[4] + ((uint32) k[5] << 8) + ((uint32) k[6] << 16) + ((uint32) k[7] << 24));
c += (k[8] + ((uint32) k[9] << 8) + ((uint32) k[10] << 16) + ((uint32) k[11] << 24));
#endif /* WORDS_BIGENDIAN */
mix(a, b, c);
k += 12;
len -= 12;
}
/* handle the last 11 bytes */
#ifdef WORDS_BIGENDIAN
switch (len)
{
case 11:
c += ((uint32) k[10] << 8);
/* fall through */
case 10:
c += ((uint32) k[9] << 16);
/* fall through */
case 9:
c += ((uint32) k[8] << 24);
/* fall through */
case 8:
/* the lowest byte of c is reserved for the length */
b += k[7];
/* fall through */
case 7:
b += ((uint32) k[6] << 8);
/* fall through */
case 6:
b += ((uint32) k[5] << 16);
/* fall through */
case 5:
b += ((uint32) k[4] << 24);
/* fall through */
case 4:
a += k[3];
/* fall through */
case 3:
a += ((uint32) k[2] << 8);
/* fall through */
case 2:
a += ((uint32) k[1] << 16);
/* fall through */
case 1:
a += ((uint32) k[0] << 24);
/* case 0: nothing left to add */
}
#else /* !WORDS_BIGENDIAN */
switch (len)
{
case 11:
c += ((uint32) k[10] << 24);
/* fall through */
case 10:
c += ((uint32) k[9] << 16);
/* fall through */
case 9:
c += ((uint32) k[8] << 8);
/* fall through */
case 8:
/* the lowest byte of c is reserved for the length */
b += ((uint32) k[7] << 24);
/* fall through */
case 7:
b += ((uint32) k[6] << 16);
/* fall through */
case 6:
b += ((uint32) k[5] << 8);
/* fall through */
case 5:
b += k[4];
/* fall through */
case 4:
a += ((uint32) k[3] << 24);
/* fall through */
case 3:
a += ((uint32) k[2] << 16);
/* fall through */
case 2:
a += ((uint32) k[1] << 8);
/* fall through */
case 1:
a += k[0];
/* case 0: nothing left to add */
}
#endif /* WORDS_BIGENDIAN */
}
final(a, b, c);
/* report the result */
return c;
}
/*
* hash_bytes_extended() -- hash into a 64-bit value, using an optional seed
* k : the key (the unaligned variable-length array of bytes)
* len : the length of the key, counting by bytes
* seed : a 64-bit seed (0 means no seed)
*
* Returns a uint64 value. Otherwise similar to hash_bytes.
*/
uint64
hash_bytes_extended(const unsigned char *k, int keylen, uint64 seed)
{
uint32 a,
b,
c,
len;
/* Set up the internal state */
len = keylen;
a = b = c = 0x9e3779b9 + len + 3923095;
/* If the seed is non-zero, use it to perturb the internal state. */
if (seed != 0)
{
/*
* In essence, the seed is treated as part of the data being hashed,
* but for simplicity, we pretend that it's padded with four bytes of
* zeroes so that the seed constitutes a 12-byte chunk.
*/
a += (uint32) (seed >> 32);
b += (uint32) seed;
mix(a, b, c);
}
/* If the source pointer is word-aligned, we use word-wide fetches */
if (((uintptr_t) k & UINT32_ALIGN_MASK) == 0)
{
/* Code path for aligned source data */
const uint32 *ka = (const uint32 *) k;
/* handle most of the key */
while (len >= 12)
{
a += ka[0];
b += ka[1];
c += ka[2];
mix(a, b, c);
ka += 3;
len -= 12;
}
/* handle the last 11 bytes */
k = (const unsigned char *) ka;
#ifdef WORDS_BIGENDIAN
switch (len)
{
case 11:
c += ((uint32) k[10] << 8);
/* fall through */
case 10:
c += ((uint32) k[9] << 16);
/* fall through */
case 9:
c += ((uint32) k[8] << 24);
/* fall through */
case 8:
/* the lowest byte of c is reserved for the length */
b += ka[1];
a += ka[0];
break;
case 7:
b += ((uint32) k[6] << 8);
/* fall through */
case 6:
b += ((uint32) k[5] << 16);
/* fall through */
case 5:
b += ((uint32) k[4] << 24);
/* fall through */
case 4:
a += ka[0];
break;
case 3:
a += ((uint32) k[2] << 8);
/* fall through */
case 2:
a += ((uint32) k[1] << 16);
/* fall through */
case 1:
a += ((uint32) k[0] << 24);
/* case 0: nothing left to add */
}
#else /* !WORDS_BIGENDIAN */
switch (len)
{
case 11:
c += ((uint32) k[10] << 24);
/* fall through */
case 10:
c += ((uint32) k[9] << 16);
/* fall through */
case 9:
c += ((uint32) k[8] << 8);
/* fall through */
case 8:
/* the lowest byte of c is reserved for the length */
b += ka[1];
a += ka[0];
break;
case 7:
b += ((uint32) k[6] << 16);
/* fall through */
case 6:
b += ((uint32) k[5] << 8);
/* fall through */
case 5:
b += k[4];
/* fall through */
case 4:
a += ka[0];
break;
case 3:
a += ((uint32) k[2] << 16);
/* fall through */
case 2:
a += ((uint32) k[1] << 8);
/* fall through */
case 1:
a += k[0];
/* case 0: nothing left to add */
}
#endif /* WORDS_BIGENDIAN */
}
else
{
/* Code path for non-aligned source data */
/* handle most of the key */
while (len >= 12)
{
#ifdef WORDS_BIGENDIAN
a += (k[3] + ((uint32) k[2] << 8) + ((uint32) k[1] << 16) + ((uint32) k[0] << 24));
b += (k[7] + ((uint32) k[6] << 8) + ((uint32) k[5] << 16) + ((uint32) k[4] << 24));
c += (k[11] + ((uint32) k[10] << 8) + ((uint32) k[9] << 16) + ((uint32) k[8] << 24));
#else /* !WORDS_BIGENDIAN */
a += (k[0] + ((uint32) k[1] << 8) + ((uint32) k[2] << 16) + ((uint32) k[3] << 24));
b += (k[4] + ((uint32) k[5] << 8) + ((uint32) k[6] << 16) + ((uint32) k[7] << 24));
c += (k[8] + ((uint32) k[9] << 8) + ((uint32) k[10] << 16) + ((uint32) k[11] << 24));
#endif /* WORDS_BIGENDIAN */
mix(a, b, c);
k += 12;
len -= 12;
}
/* handle the last 11 bytes */
#ifdef WORDS_BIGENDIAN
switch (len)
{
case 11:
c += ((uint32) k[10] << 8);
/* fall through */
case 10:
c += ((uint32) k[9] << 16);
/* fall through */
case 9:
c += ((uint32) k[8] << 24);
/* fall through */
case 8:
/* the lowest byte of c is reserved for the length */
b += k[7];
/* fall through */
case 7:
b += ((uint32) k[6] << 8);
/* fall through */
case 6:
b += ((uint32) k[5] << 16);
/* fall through */
case 5:
b += ((uint32) k[4] << 24);
/* fall through */
case 4:
a += k[3];
/* fall through */
case 3:
a += ((uint32) k[2] << 8);
/* fall through */
case 2:
a += ((uint32) k[1] << 16);
/* fall through */
case 1:
a += ((uint32) k[0] << 24);
/* case 0: nothing left to add */
}
#else /* !WORDS_BIGENDIAN */
switch (len)
{
case 11:
c += ((uint32) k[10] << 24);
/* fall through */
case 10:
c += ((uint32) k[9] << 16);
/* fall through */
case 9:
c += ((uint32) k[8] << 8);
/* fall through */
case 8:
/* the lowest byte of c is reserved for the length */
b += ((uint32) k[7] << 24);
/* fall through */
case 7:
b += ((uint32) k[6] << 16);
/* fall through */
case 6:
b += ((uint32) k[5] << 8);
/* fall through */
case 5:
b += k[4];
/* fall through */
case 4:
a += ((uint32) k[3] << 24);
/* fall through */
case 3:
a += ((uint32) k[2] << 16);
/* fall through */
case 2:
a += ((uint32) k[1] << 8);
/* fall through */
case 1:
a += k[0];
/* case 0: nothing left to add */
}
#endif /* WORDS_BIGENDIAN */
}
final(a, b, c);
/* report the result */
return ((uint64) b << 32) | c;
}
/*
* hash_bytes_uint32() -- hash a 32-bit value to a 32-bit value
*
* This has the same result as
* hash_bytes(&k, sizeof(uint32))
* but is faster and doesn't force the caller to store k into memory.
*/
uint32
hash_bytes_uint32(uint32 k)
{
uint32 a,
b,
c;
a = b = c = 0x9e3779b9 + (uint32) sizeof(uint32) + 3923095;
a += k;
final(a, b, c);
/* report the result */
return c;
}
/*
* hash_bytes_uint32_extended() -- hash 32-bit value to 64-bit value, with seed
*
* Like hash_bytes_uint32, this is a convenience function.
*/
uint64
hash_bytes_uint32_extended(uint32 k, uint64 seed)
{
uint32 a,
b,
c;
a = b = c = 0x9e3779b9 + (uint32) sizeof(uint32) + 3923095;
if (seed != 0)
{
a += (uint32) (seed >> 32);
b += (uint32) seed;
mix(a, b, c);
}
a += k;
final(a, b, c);
/* report the result */
return ((uint64) b << 32) | c;
}
/*
* string_hash: hash function for keys that are NUL-terminated strings.
*
* NOTE: this is the default hash function if none is specified.
*/
uint32
string_hash(const void *key, Size keysize)
{
/*
* If the string exceeds keysize-1 bytes, we want to hash only that many,
* because when it is copied into the hash table it will be truncated at
* that length.
*/
Size s_len = strlen((const char *) key);
s_len = Min(s_len, keysize - 1);
return hash_bytes((const unsigned char *) key, (int) s_len);
}
/*
* tag_hash: hash function for fixed-size tag values
*/
uint32
tag_hash(const void *key, Size keysize)
{
return hash_bytes((const unsigned char *) key, (int) keysize);
}
/*
Improve hash_create's API for selecting simple-binary-key hash functions. Previously, if you wanted anything besides C-string hash keys, you had to specify a custom hashing function to hash_create(). Nearly all such callers were specifying tag_hash or oid_hash; which is tedious, and rather error-prone, since a caller could easily miss the opportunity to optimize by using hash_uint32 when appropriate. Replace this with a design whereby callers using simple binary-data keys just specify HASH_BLOBS and don't need to mess with specific support functions. hash_create() itself will take care of optimizing when the key size is four bytes. This nets out saving a few hundred bytes of code space, and offers a measurable performance improvement in tidbitmap.c (which was not exploiting the opportunity to use hash_uint32 for its 4-byte keys). There might be some wins elsewhere too, I didn't analyze closely. In future we could look into offering a similar optimized hashing function for 8-byte keys. Under this design that could be done in a centralized and machine-independent fashion, whereas getting it right for keys of platform-dependent sizes would've been notationally painful before. For the moment, the old way still works fine, so as not to break source code compatibility for loadable modules. Eventually we might want to remove tag_hash and friends from the exported API altogether, since there's no real need for them to be explicitly referenced from outside dynahash.c. Teodor Sigaev and Tom Lane
2014-12-18 19:36:29 +01:00
* uint32_hash: hash function for keys that are uint32 or int32
*
* (tag_hash works for this case too, but is slower)
*/
uint32
Improve hash_create's API for selecting simple-binary-key hash functions. Previously, if you wanted anything besides C-string hash keys, you had to specify a custom hashing function to hash_create(). Nearly all such callers were specifying tag_hash or oid_hash; which is tedious, and rather error-prone, since a caller could easily miss the opportunity to optimize by using hash_uint32 when appropriate. Replace this with a design whereby callers using simple binary-data keys just specify HASH_BLOBS and don't need to mess with specific support functions. hash_create() itself will take care of optimizing when the key size is four bytes. This nets out saving a few hundred bytes of code space, and offers a measurable performance improvement in tidbitmap.c (which was not exploiting the opportunity to use hash_uint32 for its 4-byte keys). There might be some wins elsewhere too, I didn't analyze closely. In future we could look into offering a similar optimized hashing function for 8-byte keys. Under this design that could be done in a centralized and machine-independent fashion, whereas getting it right for keys of platform-dependent sizes would've been notationally painful before. For the moment, the old way still works fine, so as not to break source code compatibility for loadable modules. Eventually we might want to remove tag_hash and friends from the exported API altogether, since there's no real need for them to be explicitly referenced from outside dynahash.c. Teodor Sigaev and Tom Lane
2014-12-18 19:36:29 +01:00
uint32_hash(const void *key, Size keysize)
{
Improve hash_create's API for selecting simple-binary-key hash functions. Previously, if you wanted anything besides C-string hash keys, you had to specify a custom hashing function to hash_create(). Nearly all such callers were specifying tag_hash or oid_hash; which is tedious, and rather error-prone, since a caller could easily miss the opportunity to optimize by using hash_uint32 when appropriate. Replace this with a design whereby callers using simple binary-data keys just specify HASH_BLOBS and don't need to mess with specific support functions. hash_create() itself will take care of optimizing when the key size is four bytes. This nets out saving a few hundred bytes of code space, and offers a measurable performance improvement in tidbitmap.c (which was not exploiting the opportunity to use hash_uint32 for its 4-byte keys). There might be some wins elsewhere too, I didn't analyze closely. In future we could look into offering a similar optimized hashing function for 8-byte keys. Under this design that could be done in a centralized and machine-independent fashion, whereas getting it right for keys of platform-dependent sizes would've been notationally painful before. For the moment, the old way still works fine, so as not to break source code compatibility for loadable modules. Eventually we might want to remove tag_hash and friends from the exported API altogether, since there's no real need for them to be explicitly referenced from outside dynahash.c. Teodor Sigaev and Tom Lane
2014-12-18 19:36:29 +01:00
Assert(keysize == sizeof(uint32));
return hash_bytes_uint32(*((const uint32 *) key));
}