postgresql/src/backend/access/nbtree/nbtree.c

699 lines
17 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* btree.c--
* Implementation of Lehman and Yao's btree management algorithm for
* Postgres.
*
* Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
1998-09-01 05:29:17 +02:00
* $Header: /cvsroot/pgsql/src/backend/access/nbtree/nbtree.c,v 1.31 1998/09/01 03:21:16 momjian Exp $
*
* NOTES
* This file contains only the public interface routines.
*
*-------------------------------------------------------------------------
*/
1996-11-05 11:35:38 +01:00
#include <postgres.h>
#include <access/genam.h>
#include <storage/bufpage.h>
#include <storage/bufmgr.h>
#include <access/nbtree.h>
#include <executor/executor.h>
#include <access/heapam.h>
#include <catalog/index.h>
#include <miscadmin.h>
#ifndef HAVE_MEMMOVE
#include <regex/utils.h>
1996-11-05 11:35:38 +01:00
#else
#include <string.h>
1996-11-05 11:35:38 +01:00
#endif
#ifdef BTREE_BUILD_STATS
#include <tcop/tcopprot.h>
#include <utils/trace.h>
#define ShowExecutorStats pg_options[TRACE_EXECUTORSTATS]
#endif
bool BuildingBtree = false; /* see comment in btbuild() */
bool FastBuild = true; /* use sort/build instead of insertion
* build */
1998-07-30 07:05:05 +02:00
static void _bt_restscan(IndexScanDesc scan);
/*
* btbuild() -- build a new btree index.
*
* We use a global variable to record the fact that we're creating
* a new index. This is used to avoid high-concurrency locking,
* since the index won't be visible until this transaction commits
* and since building is guaranteed to be single-threaded.
*/
void
btbuild(Relation heap,
Relation index,
int natts,
1997-09-08 22:59:27 +02:00
AttrNumber *attnum,
IndexStrategy istrat,
uint16 pcount,
Datum *params,
FuncIndexInfo *finfo,
PredInfo *predInfo)
{
HeapScanDesc hscan;
HeapTuple htup;
IndexTuple itup;
TupleDesc htupdesc,
itupdesc;
Datum *attdata;
bool *nulls;
InsertIndexResult res = 0;
int nhtups,
nitups;
int i;
BTItem btitem;
#ifndef OMIT_PARTIAL_INDEX
ExprContext *econtext = (ExprContext *) NULL;
TupleTable tupleTable = (TupleTable) NULL;
TupleTableSlot *slot = (TupleTableSlot *) NULL;
What looks like some *major* improvements to btree indexing... Patches from: aoki@CS.Berkeley.EDU (Paul M. Aoki) i gave jolly my btree bulkload code a long, long time ago but never gave him a bunch of my bugfixes. here's a diff against the 6.0 baseline. for some reason, this code has slowed down somewhat relative to the insertion-build code on very small tables. don't know why -- it used to be within about 10%. anyway, here are some (highly unscientific!) timings on a dec 3000/300 for synthetic tables with 10k, 100k and 1000k tuples (basically, 1mb, 10mb and 100mb heaps). 'c' means clustered (pre-sorted) inputs and 'u' means unclustered (randomly ordered) inputs. the 10k table basically fits in the buffer pool, but the 100k and 1000k tables don't. as you can see, insertion build is fine if you've sorted your heaps on your index key or if your heap fits in core, but is absolutely horrible on unordered data (yes, that's 7.5 hours to index 100mb of data...) because of the zillions of random i/os. if it doesn't work for you for whatever reason, you can always turn it back off by flipping the FastBuild flag in nbtree.c. i don't have time to maintain it. good luck! baseline code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 8.6 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 9.1 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.2 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 652.4 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.1 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 26772.9 bulkloading code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 11.3 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 10.4 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.5 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 63.5 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.9 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 701.0
1997-02-12 06:04:52 +01:00
#endif
Oid hrelid,
irelid;
Node *pred,
*oldPred;
void *spool = (void *) NULL;
bool isunique;
bool usefast;
/* note that this is a new btree */
BuildingBtree = true;
pred = predInfo->pred;
oldPred = predInfo->oldPred;
What looks like some *major* improvements to btree indexing... Patches from: aoki@CS.Berkeley.EDU (Paul M. Aoki) i gave jolly my btree bulkload code a long, long time ago but never gave him a bunch of my bugfixes. here's a diff against the 6.0 baseline. for some reason, this code has slowed down somewhat relative to the insertion-build code on very small tables. don't know why -- it used to be within about 10%. anyway, here are some (highly unscientific!) timings on a dec 3000/300 for synthetic tables with 10k, 100k and 1000k tuples (basically, 1mb, 10mb and 100mb heaps). 'c' means clustered (pre-sorted) inputs and 'u' means unclustered (randomly ordered) inputs. the 10k table basically fits in the buffer pool, but the 100k and 1000k tables don't. as you can see, insertion build is fine if you've sorted your heaps on your index key or if your heap fits in core, but is absolutely horrible on unordered data (yes, that's 7.5 hours to index 100mb of data...) because of the zillions of random i/os. if it doesn't work for you for whatever reason, you can always turn it back off by flipping the FastBuild flag in nbtree.c. i don't have time to maintain it. good luck! baseline code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 8.6 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 9.1 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.2 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 652.4 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.1 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 26772.9 bulkloading code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 11.3 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 10.4 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.5 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 63.5 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.9 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 701.0
1997-02-12 06:04:52 +01:00
/*
* bootstrap processing does something strange, so don't use
* sort/build for initial catalog indices. at some point i need to
* look harder at this. (there is some kind of incremental processing
* going on there.) -- pma 08/29/95
What looks like some *major* improvements to btree indexing... Patches from: aoki@CS.Berkeley.EDU (Paul M. Aoki) i gave jolly my btree bulkload code a long, long time ago but never gave him a bunch of my bugfixes. here's a diff against the 6.0 baseline. for some reason, this code has slowed down somewhat relative to the insertion-build code on very small tables. don't know why -- it used to be within about 10%. anyway, here are some (highly unscientific!) timings on a dec 3000/300 for synthetic tables with 10k, 100k and 1000k tuples (basically, 1mb, 10mb and 100mb heaps). 'c' means clustered (pre-sorted) inputs and 'u' means unclustered (randomly ordered) inputs. the 10k table basically fits in the buffer pool, but the 100k and 1000k tables don't. as you can see, insertion build is fine if you've sorted your heaps on your index key or if your heap fits in core, but is absolutely horrible on unordered data (yes, that's 7.5 hours to index 100mb of data...) because of the zillions of random i/os. if it doesn't work for you for whatever reason, you can always turn it back off by flipping the FastBuild flag in nbtree.c. i don't have time to maintain it. good luck! baseline code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 8.6 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 9.1 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.2 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 652.4 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.1 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 26772.9 bulkloading code: time psql -c 'create index c10 on k10 using btree (c int4_ops)' bttest real 11.3 time psql -c 'create index u10 on k10 using btree (b int4_ops)' bttest real 10.4 time psql -c 'create index c100 on k100 using btree (c int4_ops)' bttest real 59.5 time psql -c 'create index u100 on k100 using btree (b int4_ops)' bttest real 63.5 time psql -c 'create index c1000 on k1000 using btree (c int4_ops)' bttest real 636.9 time psql -c 'create index u1000 on k1000 using btree (b int4_ops)' bttest real 701.0
1997-02-12 06:04:52 +01:00
*/
usefast = (FastBuild && IsNormalProcessingMode());
#ifdef BTREE_BUILD_STATS
if (ShowExecutorStats)
ResetUsage();
#endif
/* see if index is unique */
isunique = IndexIsUniqueNoCache(RelationGetRelid(index));
/* initialize the btree index metadata page (if this is a new index) */
if (oldPred == NULL)
_bt_metapinit(index);
/* get tuple descriptors for heap and index relations */
1998-09-01 05:29:17 +02:00
htupdesc = RelationGetDescr(heap);
itupdesc = RelationGetDescr(index);
/* get space for data items that'll appear in the index tuple */
attdata = (Datum *) palloc(natts * sizeof(Datum));
nulls = (bool *) palloc(natts * sizeof(bool));
/*
* If this is a predicate (partial) index, we will need to evaluate
* the predicate using ExecQual, which requires the current tuple to
* be in a slot of a TupleTable. In addition, ExecQual must have an
* ExprContext referring to that slot. Here, we initialize dummy
* TupleTable and ExprContext objects for this purpose. --Nels, Feb
* '92
*/
#ifndef OMIT_PARTIAL_INDEX
if (pred != NULL || oldPred != NULL)
{
tupleTable = ExecCreateTupleTable(1);
slot = ExecAllocTableSlot(tupleTable);
econtext = makeNode(ExprContext);
FillDummyExprContext(econtext, slot, htupdesc, InvalidBuffer);
/*
* we never want to use sort/build if we are extending an existing
* partial index -- it works by inserting the newly-qualifying
* tuples into the existing index. (sort/build would overwrite the
* existing index with one consisting of the newly-qualifying
* tuples.)
*/
usefast = false;
}
#endif /* OMIT_PARTIAL_INDEX */
/* start a heap scan */
/* build the index */
nhtups = nitups = 0;
if (usefast)
{
spool = _bt_spoolinit(index, 7, isunique);
res = (InsertIndexResult) NULL;
}
hscan = heap_beginscan(heap, 0, SnapshotNow, 0, (ScanKey) NULL);
while (HeapTupleIsValid(htup = heap_getnext(hscan, 0)))
{
nhtups++;
/*
* If oldPred != NULL, this is an EXTEND INDEX command, so skip
* this tuple if it was already in the existing partial index
*/
if (oldPred != NULL)
{
#ifndef OMIT_PARTIAL_INDEX
/* SetSlotContents(slot, htup); */
slot->val = htup;
if (ExecQual((List *) oldPred, econtext) == true)
{
nitups++;
continue;
}
#endif /* OMIT_PARTIAL_INDEX */
}
/*
* Skip this tuple if it doesn't satisfy the partial-index
* predicate
*/
if (pred != NULL)
{
#ifndef OMIT_PARTIAL_INDEX
/* SetSlotContents(slot, htup); */
slot->val = htup;
if (ExecQual((List *) pred, econtext) == false)
continue;
#endif /* OMIT_PARTIAL_INDEX */
}
nitups++;
/*
* For the current heap tuple, extract all the attributes we use
* in this index, and note which are null.
*/
for (i = 1; i <= natts; i++)
{
int attoff;
bool attnull;
/*
* Offsets are from the start of the tuple, and are
* zero-based; indices are one-based. The next call returns i
* - 1. That's data hiding for you.
*/
attoff = AttrNumberGetAttrOffset(i);
attdata[attoff] = GetIndexValue(htup,
htupdesc,
attoff,
attnum,
finfo,
&attnull);
nulls[attoff] = (attnull ? 'n' : ' ');
}
/* form an index tuple and point it at the heap tuple */
itup = index_formtuple(itupdesc, attdata, nulls);
/*
* If the single index key is null, we don't insert it into the
* index. Btrees support scans on <, <=, =, >=, and >. Relational
* algebra says that A op B (where op is one of the operators
* above) returns null if either A or B is null. This means that
* no qualification used in an index scan could ever return true
* on a null attribute. It also means that indices can't be used
* by ISNULL or NOTNULL scans, but that's an artifact of the
* strategy map architecture chosen in 1986, not of the way nulls
* are handled here.
*/
/*
* New comments: NULLs handling. While we can't do NULL
* comparison, we can follow simple rule for ordering items on
* btree pages - NULLs greater NOT_NULLs and NULL = NULL is TRUE.
* Sure, it's just rule for placing/finding items and no more -
* keytest'll return FALSE for a = 5 for items having 'a' isNULL.
* Look at _bt_skeycmp, _bt_compare and _bt_itemcmp for how it
* works. - vadim 03/23/97
*
* if (itup->t_info & INDEX_NULL_MASK) { pfree(itup); continue; }
*/
itup->t_tid = htup->t_ctid;
btitem = _bt_formitem(itup);
/*
* if we are doing bottom-up btree build, we insert the index into
* a spool page for subsequent processing. otherwise, we insert
* into the btree.
*/
if (usefast)
_bt_spool(index, btitem, spool);
else
res = _bt_doinsert(index, btitem, isunique, heap);
pfree(btitem);
pfree(itup);
if (res)
pfree(res);
}
/* okay, all heap tuples are indexed */
heap_endscan(hscan);
if (pred != NULL || oldPred != NULL)
{
#ifndef OMIT_PARTIAL_INDEX
ExecDestroyTupleTable(tupleTable, true);
pfree(econtext);
#endif /* OMIT_PARTIAL_INDEX */
}
/*
* if we are doing bottom-up btree build, we now have a bunch of
* sorted runs in the spool pages. finish the build by (1) merging
* the runs, (2) inserting the sorted tuples into btree pages and (3)
* building the upper levels.
*/
if (usefast)
{
_bt_spool(index, (BTItem) NULL, spool); /* flush the spool */
_bt_leafbuild(index, spool);
_bt_spooldestroy(spool);
}
#ifdef BTREE_BUILD_STATS
if (ShowExecutorStats)
{
fprintf(stderr, "! BtreeBuild Stats:\n");
ShowUsage();
ResetUsage();
}
#endif
/*
* Since we just counted the tuples in the heap, we update its stats
* in pg_class to guarantee that the planner takes advantage of the
* index we just created. Finally, only update statistics during
* normal index definitions, not for indices on system catalogs
* created during bootstrap processing. We must close the relations
* before updatings statistics to guarantee that the relcache entries
* are flushed when we increment the command counter in UpdateStats().
*/
if (IsNormalProcessingMode())
{
hrelid = RelationGetRelid(heap);
irelid = RelationGetRelid(index);
heap_close(heap);
index_close(index);
UpdateStats(hrelid, nhtups, true);
UpdateStats(irelid, nitups, false);
if (oldPred != NULL)
{
if (nitups == nhtups)
pred = NULL;
UpdateIndexPredicate(irelid, oldPred, pred);
}
}
pfree(nulls);
pfree(attdata);
/* all done */
BuildingBtree = false;
}
/*
* btinsert() -- insert an index tuple into a btree.
*
* Descend the tree recursively, find the appropriate location for our
* new tuple, put it there, set its unique OID as appropriate, and
* return an InsertIndexResult to the caller.
*/
InsertIndexResult
btinsert(Relation rel, Datum *datum, char *nulls, ItemPointer ht_ctid, Relation heapRel)
{
BTItem btitem;
IndexTuple itup;
InsertIndexResult res;
/* generate an index tuple */
1998-09-01 05:29:17 +02:00
itup = index_formtuple(RelationGetDescr(rel), datum, nulls);
itup->t_tid = *ht_ctid;
/*
* See comments in btbuild.
*
1998-09-01 05:29:17 +02:00
* if (itup->t_info & INDEX_NULL_MASK)
return (InsertIndexResult) NULL;
*/
btitem = _bt_formitem(itup);
res = _bt_doinsert(rel, btitem,
IndexIsUnique(RelationGetRelid(rel)), heapRel);
pfree(btitem);
pfree(itup);
1998-07-30 07:05:05 +02:00
#if 0
/* adjust any active scans that will be affected by this insertion */
_bt_adjscans(rel, &(res->pointerData), BT_INSERT);
1998-07-30 07:05:05 +02:00
#endif
1998-09-01 05:29:17 +02:00
return res;
}
/*
* btgettuple() -- Get the next tuple in the scan.
*/
char *
btgettuple(IndexScanDesc scan, ScanDirection dir)
{
RetrieveIndexResult res;
/*
* If we've already initialized this scan, we can just advance it in
* the appropriate direction. If we haven't done so yet, we call a
* routine to get the first item in the scan.
*/
if (ItemPointerIsValid(&(scan->currentItemData)))
1998-07-30 07:05:05 +02:00
{
/*
* Now we don't adjust scans on insertion (comments in
* nbtscan.c:_bt_scandel()) and I hope that we will unlock
* current index page before leaving index in LLL: this
* means that current index tuple could be moved right
* before we get here and we have to restore our scan
* position. We save heap TID pointed by current index
* tuple and use it. This will work untill we start
* to re-use (move heap tuples) without vacuum...
* - vadim 07/29/98
*/
_bt_restscan(scan);
res = _bt_next(scan, dir);
1998-07-30 07:05:05 +02:00
}
else
res = _bt_first(scan, dir);
1998-07-30 07:05:05 +02:00
/* Save heap TID to use it in _bt_restscan */
if (res)
((BTScanOpaque)scan->opaque)->curHeapIptr = res->heap_iptr;
1998-09-01 05:29:17 +02:00
return (char *) res;
}
/*
* btbeginscan() -- start a scan on a btree index
*/
char *
btbeginscan(Relation rel, bool fromEnd, uint16 keysz, ScanKey scankey)
{
IndexScanDesc scan;
/* get the scan */
scan = RelationGetIndexScan(rel, fromEnd, keysz, scankey);
/* register scan in case we change pages it's using */
_bt_regscan(scan);
1998-09-01 05:29:17 +02:00
return (char *) scan;
}
/*
* btrescan() -- rescan an index relation
*/
void
btrescan(IndexScanDesc scan, bool fromEnd, ScanKey scankey)
{
ItemPointer iptr;
BTScanOpaque so;
so = (BTScanOpaque) scan->opaque;
/* we hold a read lock on the current page in the scan */
if (ItemPointerIsValid(iptr = &(scan->currentItemData)))
{
_bt_relbuf(scan->relation, so->btso_curbuf, BT_READ);
so->btso_curbuf = InvalidBuffer;
ItemPointerSetInvalid(iptr);
}
/* and we hold a read lock on the last marked item in the scan */
if (ItemPointerIsValid(iptr = &(scan->currentMarkData)))
{
_bt_relbuf(scan->relation, so->btso_mrkbuf, BT_READ);
so->btso_mrkbuf = InvalidBuffer;
ItemPointerSetInvalid(iptr);
}
if (so == NULL) /* if called from btbeginscan */
{
so = (BTScanOpaque) palloc(sizeof(BTScanOpaqueData));
so->btso_curbuf = so->btso_mrkbuf = InvalidBuffer;
so->keyData = (ScanKey) NULL;
if (scan->numberOfKeys > 0)
so->keyData = (ScanKey) palloc(scan->numberOfKeys * sizeof(ScanKeyData));
scan->opaque = so;
scan->flags = 0x0;
}
/*
* Reset the scan keys. Note that keys ordering stuff moved to
* _bt_first. - vadim 05/05/97
*/
so->numberOfKeys = scan->numberOfKeys;
if (scan->numberOfKeys > 0)
{
memmove(scan->keyData,
scankey,
scan->numberOfKeys * sizeof(ScanKeyData));
memmove(so->keyData,
scankey,
so->numberOfKeys * sizeof(ScanKeyData));
}
}
void
btmovescan(IndexScanDesc scan, Datum v)
{
ItemPointer iptr;
BTScanOpaque so;
so = (BTScanOpaque) scan->opaque;
/* release any locks we still hold */
if (ItemPointerIsValid(iptr = &(scan->currentItemData)))
{
_bt_relbuf(scan->relation, so->btso_curbuf, BT_READ);
so->btso_curbuf = InvalidBuffer;
ItemPointerSetInvalid(iptr);
}
/* scan->keyData[0].sk_argument = v; */
so->keyData[0].sk_argument = v;
}
/*
* btendscan() -- close down a scan
*/
void
btendscan(IndexScanDesc scan)
{
ItemPointer iptr;
BTScanOpaque so;
so = (BTScanOpaque) scan->opaque;
/* release any locks we still hold */
if (ItemPointerIsValid(iptr = &(scan->currentItemData)))
{
if (BufferIsValid(so->btso_curbuf))
_bt_relbuf(scan->relation, so->btso_curbuf, BT_READ);
so->btso_curbuf = InvalidBuffer;
ItemPointerSetInvalid(iptr);
}
if (ItemPointerIsValid(iptr = &(scan->currentMarkData)))
{
if (BufferIsValid(so->btso_mrkbuf))
_bt_relbuf(scan->relation, so->btso_mrkbuf, BT_READ);
so->btso_mrkbuf = InvalidBuffer;
ItemPointerSetInvalid(iptr);
}
if (so->keyData != (ScanKey) NULL)
pfree(so->keyData);
pfree(so);
_bt_dropscan(scan);
}
/*
* btmarkpos() -- save current scan position
*/
void
btmarkpos(IndexScanDesc scan)
{
ItemPointer iptr;
BTScanOpaque so;
so = (BTScanOpaque) scan->opaque;
/* release lock on old marked data, if any */
if (ItemPointerIsValid(iptr = &(scan->currentMarkData)))
{
_bt_relbuf(scan->relation, so->btso_mrkbuf, BT_READ);
so->btso_mrkbuf = InvalidBuffer;
ItemPointerSetInvalid(iptr);
}
/* bump lock on currentItemData and copy to currentMarkData */
if (ItemPointerIsValid(&(scan->currentItemData)))
{
so->btso_mrkbuf = _bt_getbuf(scan->relation,
BufferGetBlockNumber(so->btso_curbuf),
BT_READ);
scan->currentMarkData = scan->currentItemData;
1998-07-30 07:05:05 +02:00
so->mrkHeapIptr = so->curHeapIptr;
}
}
/*
* btrestrpos() -- restore scan to last saved position
*/
void
btrestrpos(IndexScanDesc scan)
{
ItemPointer iptr;
BTScanOpaque so;
so = (BTScanOpaque) scan->opaque;
/* release lock on current data, if any */
if (ItemPointerIsValid(iptr = &(scan->currentItemData)))
{
_bt_relbuf(scan->relation, so->btso_curbuf, BT_READ);
so->btso_curbuf = InvalidBuffer;
ItemPointerSetInvalid(iptr);
}
/* bump lock on currentMarkData and copy to currentItemData */
if (ItemPointerIsValid(&(scan->currentMarkData)))
{
so->btso_curbuf = _bt_getbuf(scan->relation,
BufferGetBlockNumber(so->btso_mrkbuf),
BT_READ);
scan->currentItemData = scan->currentMarkData;
1998-07-30 07:05:05 +02:00
so->curHeapIptr = so->mrkHeapIptr;
}
}
/* stubs */
void
btdelete(Relation rel, ItemPointer tid)
{
/* adjust any active scans that will be affected by this deletion */
_bt_adjscans(rel, tid, BT_DELETE);
/* delete the data from the page */
_bt_pagedel(rel, tid);
}
1998-07-30 07:05:05 +02:00
/*
* Reasons are in btgettuple... We have to find index item that
* points to heap tuple returned by previous call to btgettuple().
*/
static void
_bt_restscan(IndexScanDesc scan)
{
Relation rel = scan->relation;
BTScanOpaque so = (BTScanOpaque) scan->opaque;
Buffer buf = so->btso_curbuf;
Page page = BufferGetPage(buf);
ItemPointer current = &(scan->currentItemData);
OffsetNumber offnum = ItemPointerGetOffsetNumber(current),
maxoff = PageGetMaxOffsetNumber(page);
BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page);
ItemPointerData target = so->curHeapIptr;
BTItem item;
BlockNumber blkno;
if (maxoff >= offnum)
{
/*
* if the item is where we left it or has just moved right
* on this page, we're done
*/
for ( ;
offnum <= maxoff;
offnum = OffsetNumberNext(offnum))
{
item = (BTItem) PageGetItem(page, PageGetItemId(page, offnum));
if (item->bti_itup.t_tid.ip_blkid.bi_hi == \
target.ip_blkid.bi_hi && \
item->bti_itup.t_tid.ip_blkid.bi_lo == \
target.ip_blkid.bi_lo && \
item->bti_itup.t_tid.ip_posid == target.ip_posid)
{
current->ip_posid = offnum;
return;
}
}
}
/*
* By here, the item we're looking for moved right at least one page
*/
for (;;)
{
if (P_RIGHTMOST(opaque))
elog(FATAL, "_bt_restscan: my bits moved right off the end of the world!");
blkno = opaque->btpo_next;
_bt_relbuf(rel, buf, BT_READ);
buf = _bt_getbuf(rel, blkno, BT_READ);
page = BufferGetPage(buf);
maxoff = PageGetMaxOffsetNumber(page);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
/* see if it's on this page */
for (offnum = P_RIGHTMOST(opaque) ? P_HIKEY : P_FIRSTKEY ;
offnum <= maxoff;
offnum = OffsetNumberNext(offnum))
{
item = (BTItem) PageGetItem(page, PageGetItemId(page, offnum));
if (item->bti_itup.t_tid.ip_blkid.bi_hi == \
target.ip_blkid.bi_hi && \
item->bti_itup.t_tid.ip_blkid.bi_lo == \
target.ip_blkid.bi_lo && \
item->bti_itup.t_tid.ip_posid == target.ip_posid)
{
ItemPointerSet(current, blkno, offnum);
so->btso_curbuf = buf;
return;
}
}
}
}