postgresql/doc/src/sgml/intarray.sgml

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

504 lines
16 KiB
Plaintext
Raw Normal View History

2010-09-20 22:08:53 +02:00
<!-- doc/src/sgml/intarray.sgml -->
<sect1 id="intarray" xreflabel="intarray">
<title>intarray &mdash; manipulate arrays of integers</title>
<indexterm zone="intarray">
<primary>intarray</primary>
</indexterm>
<para>
The <filename>intarray</filename> module provides a number of useful functions
and operators for manipulating null-free arrays of integers.
There is also support for indexed searches using some of the operators.
</para>
<para>
All of these operations will throw an error if a supplied array contains any
NULL elements.
</para>
<para>
Many of these operations are only sensible for one-dimensional arrays.
Although they will accept input arrays of more dimensions, the data is
treated as though it were a linear array in storage order.
</para>
<para>
This module is considered <quote>trusted</quote>, that is, it can be
installed by non-superusers who have <literal>CREATE</literal> privilege
on the current database.
</para>
<sect2 id="intarray-funcs-ops">
<title><filename>intarray</filename> Functions and Operators</title>
<para>
The functions provided by the <filename>intarray</filename> module
are shown in <xref linkend="intarray-func-table"/>, the operators
in <xref linkend="intarray-op-table"/>.
</para>
<table id="intarray-func-table">
<title><filename>intarray</filename> Functions</title>
<tgroup cols="1">
<thead>
<row>
<entry role="func_table_entry"><para role="func_signature">
Function
</para>
<para>
Description
</para>
<para>
Example(s)
</para></entry>
</row>
</thead>
<tbody>
<row>
<entry role="func_table_entry"><para role="func_signature">
<indexterm><primary>icount</primary></indexterm>
<function>icount</function> ( <type>integer[]</type> )
<returnvalue>integer</returnvalue>
</para>
<para>
Returns the number of elements in the array.
</para>
<para>
<literal>icount('{1,2,3}'::integer[])</literal>
<returnvalue>3</returnvalue>
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<indexterm><primary>sort</primary></indexterm>
<function>sort</function> ( <type>integer[]</type>, <parameter>dir</parameter> <type>text</type> )
<returnvalue>integer[]</returnvalue>
</para>
<para>
Sorts the array in either ascending or descending order.
<parameter>dir</parameter> must be <literal>asc</literal>
or <literal>desc</literal>.
</para>
<para>
<literal>sort('{1,3,2}'::integer[], 'desc')</literal>
<returnvalue>{3,2,1}</returnvalue>
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<function>sort</function> ( <type>integer[]</type> )
<returnvalue>integer[]</returnvalue>
</para>
<para role="func_signature">
<indexterm><primary>sort_asc</primary></indexterm>
<function>sort_asc</function> ( <type>integer[]</type> )
<returnvalue>integer[]</returnvalue>
</para>
<para>
Sorts in ascending order.
</para>
<para>
<literal>sort(array[11,77,44])</literal>
<returnvalue>{11,44,77}</returnvalue>
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<indexterm><primary>sort_desc</primary></indexterm>
<function>sort_desc</function> ( <type>integer[]</type> )
<returnvalue>integer[]</returnvalue>
</para>
<para>
Sorts in descending order.
</para>
<para>
<literal>sort_desc(array[11,77,44])</literal>
<returnvalue>{77,44,11}</returnvalue>
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<indexterm><primary>uniq</primary></indexterm>
<function>uniq</function> ( <type>integer[]</type> )
<returnvalue>integer[]</returnvalue>
</para>
<para>
Removes adjacent duplicates.
Often used with <function>sort</function> to remove all duplicates.
</para>
<para>
<literal>uniq('{1,2,2,3,1,1}'::integer[])</literal>
<returnvalue>{1,2,3,1}</returnvalue>
</para>
<para>
<literal>uniq(sort('{1,2,3,2,1}'::integer[]))</literal>
<returnvalue>{1,2,3}</returnvalue>
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<indexterm><primary>idx</primary></indexterm>
<function>idx</function> ( <type>integer[]</type>, <parameter>item</parameter> <type>integer</type> )
<returnvalue>integer</returnvalue>
</para>
<para>
Returns index of the first array element
matching <parameter>item</parameter>, or 0 if no match.
</para>
<para>
<literal>idx(array[11,22,33,22,11], 22)</literal>
<returnvalue>2</returnvalue>
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<indexterm><primary>subarray</primary></indexterm>
<function>subarray</function> ( <type>integer[]</type>, <parameter>start</parameter> <type>integer</type>, <parameter>len</parameter> <type>integer</type> )
<returnvalue>integer[]</returnvalue>
</para>
<para>
Extracts the portion of the array starting at
position <parameter>start</parameter>, with <parameter>len</parameter>
elements.
</para>
<para>
<literal>subarray('{1,2,3,2,1}'::integer[], 2, 3)</literal>
<returnvalue>{2,3,2}</returnvalue>
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<function>subarray</function> ( <type>integer[]</type>, <parameter>start</parameter> <type>integer</type> )
<returnvalue>integer[]</returnvalue>
</para>
<para>
Extracts the portion of the array starting at
position <parameter>start</parameter>.
</para>
<para>
<literal>subarray('{1,2,3,2,1}'::integer[], 2)</literal>
<returnvalue>{2,3,2,1}</returnvalue>
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<indexterm><primary>intset</primary></indexterm>
<function>intset</function> ( <type>integer</type> )
<returnvalue>integer[]</returnvalue>
</para>
<para>
Makes a single-element array.
</para>
<para>
<literal>intset(42)</literal>
<returnvalue>{42}</returnvalue>
</para></entry>
</row>
</tbody>
</tgroup>
</table>
<table id="intarray-op-table">
<title><filename>intarray</filename> Operators</title>
<tgroup cols="1">
<thead>
<row>
<entry role="func_table_entry"><para role="func_signature">
Operator
</para>
<para>
Description
</para></entry>
</row>
</thead>
<tbody>
<row>
<entry role="func_table_entry"><para role="func_signature">
<type>integer[]</type> <literal>&amp;&amp;</literal> <type>integer[]</type>
<returnvalue>boolean</returnvalue>
</para>
<para>
Do arrays overlap (have at least one element in common)?
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<type>integer[]</type> <literal>@&gt;</literal> <type>integer[]</type>
<returnvalue>boolean</returnvalue>
</para>
<para>
Does left array contain right array?
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<type>integer[]</type> <literal>&lt;@</literal> <type>integer[]</type>
<returnvalue>boolean</returnvalue>
</para>
<para>
Is left array contained in right array?
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<type></type> <literal>#</literal> <type>integer[]</type>
<returnvalue>integer</returnvalue>
</para>
<para>
Returns the number of elements in the array.
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<type>integer[]</type> <literal>#</literal> <type>integer</type>
<returnvalue>integer</returnvalue>
</para>
<para>
Returns index of the first array element
matching the right argument, or 0 if no match.
(Same as <function>idx</function> function.)
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<type>integer[]</type> <literal>+</literal> <type>integer</type>
<returnvalue>integer[]</returnvalue>
</para>
<para>
Adds element to end of array.
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<type>integer[]</type> <literal>+</literal> <type>integer[]</type>
<returnvalue>integer[]</returnvalue>
</para>
<para>
Concatenates the arrays.
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<type>integer[]</type> <literal>-</literal> <type>integer</type>
<returnvalue>integer[]</returnvalue>
</para>
<para>
Removes entries matching the right argument from the array.
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<type>integer[]</type> <literal>-</literal> <type>integer[]</type>
<returnvalue>integer[]</returnvalue>
</para>
<para>
Removes elements of the right array from the left array.
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<type>integer[]</type> <literal>|</literal> <type>integer</type>
<returnvalue>integer[]</returnvalue>
</para>
<para>
Computes the union of the arguments.
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<type>integer[]</type> <literal>|</literal> <type>integer[]</type>
<returnvalue>integer[]</returnvalue>
</para>
<para>
Computes the union of the arguments.
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<type>integer[]</type> <literal>&amp;</literal> <type>integer[]</type>
<returnvalue>integer[]</returnvalue>
</para>
<para>
Computes the intersection of the arguments.
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<type>integer[]</type> <literal>@@</literal> <type>query_int</type>
<returnvalue>boolean</returnvalue>
</para>
<para>
Does array satisfy query? (see below)
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<type>query_int</type> <literal>~~</literal> <type>integer[]</type>
<returnvalue>boolean</returnvalue>
</para>
<para>
Does array satisfy query? (commutator of <literal>@@</literal>)
</para></entry>
</row>
</tbody>
</tgroup>
</table>
<para>
The operators <literal>&amp;&amp;</literal>, <literal>@&gt;</literal> and
<literal>&lt;@</literal> are equivalent to <productname>PostgreSQL</productname>'s built-in
operators of the same names, except that they work only on integer arrays
that do not contain nulls, while the built-in operators work for any array
type. This restriction makes them faster than the built-in operators
in many cases.
</para>
<para>
The <literal>@@</literal> and <literal>~~</literal> operators test whether an array
satisfies a <firstterm>query</firstterm>, which is expressed as a value of a
specialized data type <type>query_int</type>. A <firstterm>query</firstterm>
consists of integer values that are checked against the elements of
the array, possibly combined using the operators <literal>&amp;</literal>
(AND), <literal>|</literal> (OR), and <literal>!</literal> (NOT). Parentheses
can be used as needed. For example,
the query <literal>1&amp;(2|3)</literal> matches arrays that contain 1
and also contain either 2 or 3.
</para>
</sect2>
<sect2 id="intarray-index">
<title>Index Support</title>
<para>
<filename>intarray</filename> provides index support for the
<literal>&amp;&amp;</literal>, <literal>@&gt;</literal>,
and <literal>@@</literal> operators, as well as regular array equality.
</para>
<para>
Two parameterized GiST index operator classes are provided:
<literal>gist__int_ops</literal> (used by default) is suitable for
small- to medium-size data sets, while
<literal>gist__intbig_ops</literal> uses a larger signature and is more
suitable for indexing large data sets (i.e., columns containing
a large number of distinct array values).
The implementation uses an RD-tree data structure with
built-in lossy compression.
</para>
Implement operator class parameters PostgreSQL provides set of template index access methods, where opclasses have much freedom in the semantics of indexing. These index AMs are GiST, GIN, SP-GiST and BRIN. There opclasses define representation of keys, operations on them and supported search strategies. So, it's natural that opclasses may be faced some tradeoffs, which require user-side decision. This commit implements opclass parameters allowing users to set some values, which tell opclass how to index the particular dataset. This commit doesn't introduce new storage in system catalog. Instead it uses pg_attribute.attoptions, which is used for table column storage options but unused for index attributes. In order to evade changing signature of each opclass support function, we implement unified way to pass options to opclass support functions. Options are set to fn_expr as the constant bytea expression. It's possible due to the fact that opclass support functions are executed outside of expressions, so fn_expr is unused for them. This commit comes with some examples of opclass options usage. We parametrize signature length in GiST. That applies to multiple opclasses: tsvector_ops, gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and gist_hstore_ops. Also we parametrize maximum number of integer ranges for gist__int_ops. However, the main future usage of this feature is expected to be json, where users would be able to specify which way to index particular json parts. Catversion is bumped. Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru Author: Nikita Glukhov, revised by me Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
2020-03-30 18:17:11 +02:00
<para>
<literal>gist__int_ops</literal> approximates an integer set as an array of
integer ranges. Its optional integer parameter <literal>numranges</literal>
determines the maximum number of ranges in
one index key. The default value of <literal>numranges</literal> is 100.
Implement operator class parameters PostgreSQL provides set of template index access methods, where opclasses have much freedom in the semantics of indexing. These index AMs are GiST, GIN, SP-GiST and BRIN. There opclasses define representation of keys, operations on them and supported search strategies. So, it's natural that opclasses may be faced some tradeoffs, which require user-side decision. This commit implements opclass parameters allowing users to set some values, which tell opclass how to index the particular dataset. This commit doesn't introduce new storage in system catalog. Instead it uses pg_attribute.attoptions, which is used for table column storage options but unused for index attributes. In order to evade changing signature of each opclass support function, we implement unified way to pass options to opclass support functions. Options are set to fn_expr as the constant bytea expression. It's possible due to the fact that opclass support functions are executed outside of expressions, so fn_expr is unused for them. This commit comes with some examples of opclass options usage. We parametrize signature length in GiST. That applies to multiple opclasses: tsvector_ops, gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and gist_hstore_ops. Also we parametrize maximum number of integer ranges for gist__int_ops. However, the main future usage of this feature is expected to be json, where users would be able to specify which way to index particular json parts. Catversion is bumped. Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru Author: Nikita Glukhov, revised by me Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
2020-03-30 18:17:11 +02:00
Valid values are between 1 and 253. Using larger arrays as GiST index
keys leads to a more precise search (scanning a smaller fraction of the index and
fewer heap pages), at the cost of a larger index.
Implement operator class parameters PostgreSQL provides set of template index access methods, where opclasses have much freedom in the semantics of indexing. These index AMs are GiST, GIN, SP-GiST and BRIN. There opclasses define representation of keys, operations on them and supported search strategies. So, it's natural that opclasses may be faced some tradeoffs, which require user-side decision. This commit implements opclass parameters allowing users to set some values, which tell opclass how to index the particular dataset. This commit doesn't introduce new storage in system catalog. Instead it uses pg_attribute.attoptions, which is used for table column storage options but unused for index attributes. In order to evade changing signature of each opclass support function, we implement unified way to pass options to opclass support functions. Options are set to fn_expr as the constant bytea expression. It's possible due to the fact that opclass support functions are executed outside of expressions, so fn_expr is unused for them. This commit comes with some examples of opclass options usage. We parametrize signature length in GiST. That applies to multiple opclasses: tsvector_ops, gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and gist_hstore_ops. Also we parametrize maximum number of integer ranges for gist__int_ops. However, the main future usage of this feature is expected to be json, where users would be able to specify which way to index particular json parts. Catversion is bumped. Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru Author: Nikita Glukhov, revised by me Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
2020-03-30 18:17:11 +02:00
</para>
Implement operator class parameters PostgreSQL provides set of template index access methods, where opclasses have much freedom in the semantics of indexing. These index AMs are GiST, GIN, SP-GiST and BRIN. There opclasses define representation of keys, operations on them and supported search strategies. So, it's natural that opclasses may be faced some tradeoffs, which require user-side decision. This commit implements opclass parameters allowing users to set some values, which tell opclass how to index the particular dataset. This commit doesn't introduce new storage in system catalog. Instead it uses pg_attribute.attoptions, which is used for table column storage options but unused for index attributes. In order to evade changing signature of each opclass support function, we implement unified way to pass options to opclass support functions. Options are set to fn_expr as the constant bytea expression. It's possible due to the fact that opclass support functions are executed outside of expressions, so fn_expr is unused for them. This commit comes with some examples of opclass options usage. We parametrize signature length in GiST. That applies to multiple opclasses: tsvector_ops, gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and gist_hstore_ops. Also we parametrize maximum number of integer ranges for gist__int_ops. However, the main future usage of this feature is expected to be json, where users would be able to specify which way to index particular json parts. Catversion is bumped. Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru Author: Nikita Glukhov, revised by me Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
2020-03-30 18:17:11 +02:00
<para>
<literal>gist__intbig_ops</literal> approximates an integer set as a bitmap
signature. Its optional integer parameter <literal>siglen</literal>
determines the signature length in bytes.
The default signature length is 16 bytes. Valid values of signature length
are between 1 and 2024 bytes. Longer signatures lead to a more precise
search (scanning a smaller fraction of the index and fewer heap pages), at
the cost of a larger index.
Implement operator class parameters PostgreSQL provides set of template index access methods, where opclasses have much freedom in the semantics of indexing. These index AMs are GiST, GIN, SP-GiST and BRIN. There opclasses define representation of keys, operations on them and supported search strategies. So, it's natural that opclasses may be faced some tradeoffs, which require user-side decision. This commit implements opclass parameters allowing users to set some values, which tell opclass how to index the particular dataset. This commit doesn't introduce new storage in system catalog. Instead it uses pg_attribute.attoptions, which is used for table column storage options but unused for index attributes. In order to evade changing signature of each opclass support function, we implement unified way to pass options to opclass support functions. Options are set to fn_expr as the constant bytea expression. It's possible due to the fact that opclass support functions are executed outside of expressions, so fn_expr is unused for them. This commit comes with some examples of opclass options usage. We parametrize signature length in GiST. That applies to multiple opclasses: tsvector_ops, gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and gist_hstore_ops. Also we parametrize maximum number of integer ranges for gist__int_ops. However, the main future usage of this feature is expected to be json, where users would be able to specify which way to index particular json parts. Catversion is bumped. Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru Author: Nikita Glukhov, revised by me Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
2020-03-30 18:17:11 +02:00
</para>
<para>
There is also a non-default GIN operator class
<literal>gin__int_ops</literal>, which supports these operators as well
as <literal>&lt;@</literal>.
</para>
<para>
The choice between GiST and GIN indexing depends on the relative
performance characteristics of GiST and GIN, which are discussed elsewhere.
</para>
</sect2>
<sect2 id="intarray-example">
<title>Example</title>
<programlisting>
-- a message can be in one or more <quote>sections</quote>
CREATE TABLE message (mid INT PRIMARY KEY, sections INT[], ...);
-- create specialized index with signature length of 32 bytes
CREATE INDEX message_rdtree_idx ON message USING GIST (sections gist__intbig_ops (siglen = 32));
-- select messages in section 1 OR 2 - OVERLAP operator
SELECT message.mid FROM message WHERE message.sections &amp;&amp; '{1,2}';
-- select messages in sections 1 AND 2 - CONTAINS operator
SELECT message.mid FROM message WHERE message.sections @&gt; '{1,2}';
-- the same, using QUERY operator
SELECT message.mid FROM message WHERE message.sections @@ '1&amp;2'::query_int;
</programlisting>
</sect2>
<sect2 id="intarray-benchmark">
<title>Benchmark</title>
<para>
The source directory <filename>contrib/intarray/bench</filename> contains a
benchmark test suite, which can be run against an installed
<productname>PostgreSQL</productname> server. (It also requires <filename>DBD::Pg</filename>
to be installed.) To run:
</para>
<programlisting>
cd .../contrib/intarray/bench
createdb TEST
psql -c "CREATE EXTENSION intarray" TEST
./create_test.pl | psql TEST
./bench.pl
</programlisting>
<para>
The <filename>bench.pl</filename> script has numerous options, which
are displayed when it is run without any arguments.
</para>
</sect2>
<sect2 id="intarray-Authors">
<title>Authors</title>
<para>
All work was done by Teodor Sigaev (<email>teodor@sigaev.ru</email>) and
Oleg Bartunov (<email>oleg@sai.msu.su</email>). See
<ulink url="http://www.sai.msu.su/~megera/postgres/gist/"></ulink> for
additional information. Andrey Oktyabrski did a great work on adding new
functions and operations.
</para>
</sect2>
</sect1>