postgresql/src/backend/optimizer/prep/prepqual.c

644 lines
17 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* prepqual.c
* Routines for preprocessing qualification expressions
*
* Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/prep/prepqual.c,v 1.19 1999/09/12 18:08:17 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include <sys/types.h>
#include "postgres.h"
1999-07-16 07:00:38 +02:00
#include "nodes/makefuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/prep.h"
#include "utils/lsyscache.h"
static Expr *flatten_andors(Expr *qual);
static List *pull_ors(List *orlist);
static List *pull_ands(List *andlist);
static Expr *find_nots(Expr *qual);
static Expr *push_nots(Expr *qual);
static Expr *find_ors(Expr *qual);
static Expr *or_normalize(List *orlist);
static Expr *find_ands(Expr *qual);
static Expr *and_normalize(List *andlist);
/*****************************************************************************
*
* CNF/DNF CONVERSION ROUTINES
*
* These routines convert an arbitrary boolean expression into
* conjunctive normal form or disjunctive normal form.
*
* The result of these routines differs from a "true" CNF/DNF in that
* we do not bother to detect common subexpressions; e.g., ("AND" A A)
* does not get simplified to A. Testing for identical subexpressions
* is a waste of time if the query is written intelligently, and it
* takes an unreasonable amount of time if there are many subexpressions
* (since it's roughly O(N^2) in the number of subexpressions).
*
* Because of that restriction, it would be unwise to apply dnfify()
* to the result of cnfify() or vice versa. Instead apply both to
* the original user-written qual expression.
*
*****************************************************************************/
/*
1998-10-04 05:30:56 +02:00
* cnfify
* Convert a qualification to conjunctive normal form by applying
* successive normalizations.
*
* Returns the modified qualification.
*
* If 'removeAndFlag' is true then it removes explicit AND at the top level,
* producing a list of implicitly-ANDed conditions. Otherwise, a regular
* boolean expression is returned. Since most callers pass 'true', we
* prefer to declare the result as List *, not Expr *.
*/
List *
cnfify(Expr *qual, bool removeAndFlag)
{
Expr *newqual;
if (qual == NULL)
return NIL;
/* Flatten AND and OR groups throughout the tree.
* This improvement is always worthwhile.
*/
newqual = flatten_andors(qual);
/* Push down NOTs. We do this only in the top-level boolean
* expression, without examining arguments of operators/functions.
*/
newqual = find_nots(newqual);
/* Normalize into conjunctive normal form. */
newqual = find_ors(newqual);
if (removeAndFlag)
{
newqual = (Expr *) make_ands_implicit(newqual);
}
return (List *) newqual;
}
/*
* dnfify
* Convert a qualification to disjunctive normal form by applying
* successive normalizations.
*
* Returns the modified qualification.
*
* We do not offer a 'removeOrFlag' in this case; the usages are
* different.
*/
Expr *
dnfify(Expr *qual)
{
Expr *newqual;
if (qual == NULL)
return NULL;
/* Flatten AND and OR groups throughout the tree.
* This improvement is always worthwhile.
*/
newqual = flatten_andors(qual);
/* Push down NOTs. We do this only in the top-level boolean
* expression, without examining arguments of operators/functions.
*/
newqual = find_nots(newqual);
/* Normalize into disjunctive normal form. */
newqual = find_ands(newqual);
return newqual;
}
/*--------------------
* The parser regards AND and OR as purely binary operators, so a qual like
* (A = 1) OR (A = 2) OR (A = 3) ...
* will produce a nested parsetree
* (OR (A = 1) (OR (A = 2) (OR (A = 3) ...)))
* In reality, the optimizer and executor regard AND and OR as n-argument
* operators, so this tree can be flattened to
* (OR (A = 1) (A = 2) (A = 3) ...)
* which is the responsibility of the routines below.
*
* flatten_andors() does the basic transformation with no initial assumptions.
* pull_ands() and pull_ors() are used to maintain flatness of the AND/OR
* tree after local transformations that might introduce nested AND/ORs.
*--------------------
*/
/*--------------------
* flatten_andors
* Given a qualification, simplify nested AND/OR clauses into flat
* AND/OR clauses with more arguments.
*
* Returns the rebuilt expr (note original list structure is not touched).
*--------------------
*/
static Expr *
flatten_andors(Expr *qual)
{
if (qual == NULL)
return NULL;
if (and_clause((Node *) qual))
{
List *out_list = NIL;
List *arg;
foreach(arg, qual->args)
{
Expr *subexpr = flatten_andors((Expr *) lfirst(arg));
/*
* Note: we can destructively nconc the subexpression's arglist
* because we know the recursive invocation of flatten_andors
* will have built a new arglist not shared with any other expr.
* Otherwise we'd need a listCopy here.
*/
if (and_clause((Node *) subexpr))
out_list = nconc(out_list, subexpr->args);
else
out_list = lappend(out_list, subexpr);
}
return make_andclause(out_list);
}
else if (or_clause((Node *) qual))
{
List *out_list = NIL;
List *arg;
foreach(arg, qual->args)
{
Expr *subexpr = flatten_andors((Expr *) lfirst(arg));
/*
* Note: we can destructively nconc the subexpression's arglist
* because we know the recursive invocation of flatten_andors
* will have built a new arglist not shared with any other expr.
* Otherwise we'd need a listCopy here.
*/
if (or_clause((Node *) subexpr))
out_list = nconc(out_list, subexpr->args);
else
out_list = lappend(out_list, subexpr);
}
return make_orclause(out_list);
}
else if (not_clause((Node *) qual))
return make_notclause(flatten_andors(get_notclausearg(qual)));
else if (is_opclause((Node *) qual))
{
Expr *left = (Expr *) get_leftop(qual);
Expr *right = (Expr *) get_rightop(qual);
if (right)
return make_clause(qual->opType, qual->oper,
lcons(flatten_andors(left),
lcons(flatten_andors(right),
NIL)));
else
return make_clause(qual->opType, qual->oper,
lcons(flatten_andors(left),
NIL));
}
else
return qual;
}
/*
* pull_ors
* Pull the arguments of an 'or' clause nested within another 'or'
* clause up into the argument list of the parent.
*
* Input is the arglist of an OR clause.
* Returns the rebuilt arglist (note original list structure is not touched).
*/
static List *
pull_ors(List *orlist)
{
List *out_list = NIL;
List *arg;
foreach(arg, orlist)
{
Expr *subexpr = (Expr *) lfirst(arg);
/*
* Note: we can destructively nconc the subexpression's arglist
* because we know the recursive invocation of pull_ors
* will have built a new arglist not shared with any other expr.
* Otherwise we'd need a listCopy here.
*/
if (or_clause((Node *) subexpr))
out_list = nconc(out_list, pull_ors(subexpr->args));
else
out_list = lappend(out_list, subexpr);
}
return out_list;
}
/*
* pull_ands
* Pull the arguments of an 'and' clause nested within another 'and'
* clause up into the argument list of the parent.
*
* Returns the modified list.
*/
static List *
pull_ands(List *andlist)
{
List *out_list = NIL;
List *arg;
foreach(arg, andlist)
{
Expr *subexpr = (Expr *) lfirst(arg);
/*
* Note: we can destructively nconc the subexpression's arglist
* because we know the recursive invocation of pull_ands
* will have built a new arglist not shared with any other expr.
* Otherwise we'd need a listCopy here.
*/
if (and_clause((Node *) subexpr))
out_list = nconc(out_list, pull_ands(subexpr->args));
else
out_list = lappend(out_list, subexpr);
}
return out_list;
}
/*
1998-10-04 05:30:56 +02:00
* find_nots
* Traverse the qualification, looking for 'NOT's to take care of.
* For 'NOT' clauses, apply push_not() to try to push down the 'NOT'.
1998-10-04 05:30:56 +02:00
* For all other clause types, simply recurse.
*
* Returns the modified qualification. AND/OR flatness is preserved.
*/
static Expr *
1998-10-04 05:30:56 +02:00
find_nots(Expr *qual)
{
if (qual == NULL)
1998-09-01 05:29:17 +02:00
return NULL;
#ifdef NOT_USED
/* recursing into operator expressions is probably not worth it. */
if (is_opclause((Node *) qual))
{
1999-05-25 18:15:34 +02:00
Expr *left = (Expr *) get_leftop(qual);
Expr *right = (Expr *) get_rightop(qual);
if (right)
return make_clause(qual->opType, qual->oper,
lcons(find_nots(left),
lcons(find_nots(right),
NIL)));
else
return make_clause(qual->opType, qual->oper,
lcons(find_nots(left),
NIL));
}
#endif
if (and_clause((Node *) qual))
{
List *t_list = NIL;
List *temp;
foreach(temp, qual->args)
1998-10-04 05:30:56 +02:00
t_list = lappend(t_list, find_nots(lfirst(temp)));
return make_andclause(pull_ands(t_list));
}
else if (or_clause((Node *) qual))
{
List *t_list = NIL;
List *temp;
foreach(temp, qual->args)
1998-10-04 05:30:56 +02:00
t_list = lappend(t_list, find_nots(lfirst(temp)));
return make_orclause(pull_ors(t_list));
}
else if (not_clause((Node *) qual))
1998-10-04 05:30:56 +02:00
return push_nots(get_notclausearg(qual));
else
1998-09-01 05:29:17 +02:00
return qual;
}
/*
* push_nots
* Push down a 'NOT' as far as possible.
*
* Input is an expression to be negated (e.g., the argument of a NOT clause).
* Returns a new qual equivalent to the negation of the given qual.
*/
static Expr *
push_nots(Expr *qual)
{
if (qual == NULL)
return make_notclause(qual); /* XXX is this right? Or possible? */
/*
* Negate an operator clause if possible: ("NOT" (< A B)) => (> A B)
* Otherwise, retain the clause as it is (the 'not' can't be pushed
* down any farther).
*/
if (is_opclause((Node *) qual))
{
Oper *oper = (Oper *) ((Expr *) qual)->oper;
Oid negator = get_negator(oper->opno);
if (negator)
{
Oper *op = (Oper *) makeOper(negator,
InvalidOid,
oper->opresulttype,
0, NULL);
return make_opclause(op, get_leftop(qual), get_rightop(qual));
}
else
return make_notclause(qual);
}
else if (and_clause((Node *) qual))
{
/*--------------------
* Apply DeMorgan's Laws:
* ("NOT" ("AND" A B)) => ("OR" ("NOT" A) ("NOT" B))
* ("NOT" ("OR" A B)) => ("AND" ("NOT" A) ("NOT" B))
* i.e., swap AND for OR and negate all the subclauses.
*--------------------
*/
List *t_list = NIL;
List *temp;
foreach(temp, qual->args)
t_list = lappend(t_list, push_nots(lfirst(temp)));
return make_orclause(pull_ors(t_list));
}
else if (or_clause((Node *) qual))
{
List *t_list = NIL;
List *temp;
foreach(temp, qual->args)
t_list = lappend(t_list, push_nots(lfirst(temp)));
return make_andclause(pull_ands(t_list));
}
else if (not_clause((Node *) qual))
{
/*
* Another 'not' cancels this 'not', so eliminate the 'not' and
* stop negating this branch. But search the subexpression for
* more 'not's to simplify.
*/
return find_nots(get_notclausearg(qual));
}
else
{
/*
* We don't know how to negate anything else, place a 'not' at
* this level.
*/
return make_notclause(qual);
}
}
/*
* find_ors
1998-10-04 05:30:56 +02:00
* Given a qualification tree with the 'not's pushed down, convert it
* to a tree in CNF by repeatedly applying the rule:
* ("OR" A ("AND" B C)) => ("AND" ("OR" A B) ("OR" A C))
*
* Note that 'or' clauses will always be turned into 'and' clauses
* if they contain any 'and' subclauses.
*
* Returns the modified qualification. AND/OR flatness is preserved.
*/
1998-10-04 05:30:56 +02:00
static Expr *
find_ors(Expr *qual)
{
1998-10-04 05:30:56 +02:00
if (qual == NULL)
return NULL;
/* We used to recurse into opclauses here, but I see no reason to... */
if (and_clause((Node *) qual))
1998-10-04 05:30:56 +02:00
{
List *andlist = NIL;
List *temp;
1998-10-04 05:30:56 +02:00
foreach(temp, qual->args)
andlist = lappend(andlist, find_ors(lfirst(temp)));
return make_andclause(pull_ands(andlist));
1998-10-04 05:30:56 +02:00
}
else if (or_clause((Node *) qual))
{
List *orlist = NIL;
List *temp;
1998-10-04 05:30:56 +02:00
foreach(temp, qual->args)
orlist = lappend(orlist, find_ors(lfirst(temp)));
return or_normalize(pull_ors(orlist));
1998-10-04 05:30:56 +02:00
}
else if (not_clause((Node *) qual))
return make_notclause(find_ors(get_notclausearg(qual)));
else
1998-10-04 05:30:56 +02:00
return qual;
}
/*
* or_normalize
* Given a list of exprs which are 'or'ed together, try to apply
* the distributive law
* ("OR" A ("AND" B C)) => ("AND" ("OR" A B) ("OR" A C))
* to convert the top-level OR clause to a top-level AND clause.
*
* Returns the resulting expression (could be an AND clause, an OR
* clause, or maybe even a single subexpression).
*/
static Expr *
or_normalize(List *orlist)
{
Expr *distributable = NULL;
int num_subclauses = 1;
List *andclauses = NIL;
List *temp;
if (orlist == NIL)
return NULL; /* probably can't happen */
if (lnext(orlist) == NIL)
return lfirst(orlist); /* single-expression OR (can this happen?) */
1999-05-25 18:15:34 +02:00
/*
* If we have a choice of AND clauses, pick the one with the
* most subclauses. Because we initialized num_subclauses = 1,
* any AND clauses with only one arg will be ignored as useless.
*/
foreach(temp, orlist)
1998-10-04 05:30:56 +02:00
{
Expr *clause = lfirst(temp);
1998-10-04 05:30:56 +02:00
if (and_clause((Node *) clause))
{
int nclauses = length(clause->args);
1998-10-04 05:30:56 +02:00
if (nclauses > num_subclauses)
{
distributable = clause;
num_subclauses = nclauses;
}
}
}
1998-10-04 05:30:56 +02:00
/* if there's no suitable AND clause, we can't transform the OR */
if (! distributable)
return make_orclause(orlist);
1998-10-04 05:30:56 +02:00
/* Caution: lremove destructively modifies the input orlist.
* This should be OK, since or_normalize is only called with
* freshly constructed lists that are not referenced elsewhere.
*/
orlist = lremove(distributable, orlist);
1998-10-04 05:30:56 +02:00
foreach(temp, distributable->args)
{
Expr *andclause = lfirst(temp);
/* pull_ors is needed here in case andclause has a top-level OR.
* Then we recursively apply or_normalize, since there might
* be an AND subclause in the resulting OR-list.
* Note: we rely on pull_ors to build a fresh list,
* and not damage the given orlist.
*/
andclause = or_normalize(pull_ors(lcons(andclause, orlist)));
andclauses = lappend(andclauses, andclause);
1998-10-04 05:30:56 +02:00
}
/* pull_ands is needed in case any sub-or_normalize succeeded */
return make_andclause(pull_ands(andclauses));
}
/*
* find_ands
* Given a qualification tree with the 'not's pushed down, convert it
* to a tree in DNF by repeatedly applying the rule:
* ("AND" A ("OR" B C)) => ("OR" ("AND" A B) ("AND" A C))
*
* Note that 'and' clauses will always be turned into 'or' clauses
* if they contain any 'or' subclauses.
*
* Returns the modified qualification. AND/OR flatness is preserved.
*/
static Expr *
find_ands(Expr *qual)
{
if (qual == NULL)
1998-09-01 05:29:17 +02:00
return NULL;
/* We used to recurse into opclauses here, but I see no reason to... */
if (or_clause((Node *) qual))
{
List *orlist = NIL;
List *temp;
foreach(temp, qual->args)
orlist = lappend(orlist, find_ands(lfirst(temp)));
return make_orclause(pull_ors(orlist));
}
else if (and_clause((Node *) qual))
{
List *andlist = NIL;
List *temp;
foreach(temp, qual->args)
andlist = lappend(andlist, find_ands(lfirst(temp)));
return and_normalize(pull_ands(andlist));
}
else if (not_clause((Node *) qual))
return make_notclause(find_ands(get_notclausearg(qual)));
else
1998-09-01 05:29:17 +02:00
return qual;
}
/*
* and_normalize
* Given a list of exprs which are 'and'ed together, try to apply
* the distributive law
* ("AND" A ("OR" B C)) => ("OR" ("AND" A B) ("AND" A C))
* to convert the top-level AND clause to a top-level OR clause.
1998-10-04 05:30:56 +02:00
*
* Returns the resulting expression (could be an AND clause, an OR
* clause, or maybe even a single subexpression).
1998-10-04 05:30:56 +02:00
*/
static Expr *
and_normalize(List *andlist)
1998-10-04 05:30:56 +02:00
{
Expr *distributable = NULL;
int num_subclauses = 1;
List *orclauses = NIL;
List *temp;
1998-10-04 05:30:56 +02:00
if (andlist == NIL)
return NULL; /* probably can't happen */
if (lnext(andlist) == NIL)
return lfirst(andlist); /* single-expression AND (can this happen?) */
1998-10-04 05:30:56 +02:00
/*
* If we have a choice of OR clauses, pick the one with the
* most subclauses. Because we initialized num_subclauses = 1,
* any OR clauses with only one arg will be ignored as useless.
*/
foreach(temp, andlist)
{
Expr *clause = lfirst(temp);
if (or_clause((Node *) clause))
{
int nclauses = length(clause->args);
if (nclauses > num_subclauses)
{
distributable = clause;
num_subclauses = nclauses;
}
}
}
/* if there's no suitable OR clause, we can't transform the AND */
if (! distributable)
return make_andclause(andlist);
/* Caution: lremove destructively modifies the input andlist.
* This should be OK, since and_normalize is only called with
* freshly constructed lists that are not referenced elsewhere.
*/
andlist = lremove(distributable, andlist);
foreach(temp, distributable->args)
{
Expr *orclause = lfirst(temp);
/* pull_ands is needed here in case orclause has a top-level AND.
* Then we recursively apply and_normalize, since there might
* be an OR subclause in the resulting AND-list.
* Note: we rely on pull_ands to build a fresh list,
* and not damage the given andlist.
*/
orclause = and_normalize(pull_ands(lcons(orclause, andlist)));
orclauses = lappend(orclauses, orclause);
}
/* pull_ors is needed in case any sub-and_normalize succeeded */
return make_orclause(pull_ors(orclauses));
}