postgresql/doc/src/sgml/ref/create_index.sgml

459 lines
14 KiB
Plaintext
Raw Normal View History

<!--
$Header: /cvsroot/pgsql/doc/src/sgml/ref/create_index.sgml,v 1.28 2002/04/11 23:20:04 momjian Exp $
PostgreSQL documentation
-->
<refentry id="SQL-CREATEINDEX">
<refmeta>
<refentrytitle id="sql-createindex-title">
1998-05-13 07:34:00 +02:00
CREATE INDEX
</refentrytitle>
<refmiscinfo>SQL - Language Statements</refmiscinfo>
</refmeta>
<refnamediv>
<refname>
1998-05-13 07:34:00 +02:00
CREATE INDEX
</refname>
<refpurpose>
define a new index
</refpurpose>
</refnamediv>
<refsynopsisdiv>
<refsynopsisdivinfo>
<date>2001-07-15</date>
</refsynopsisdivinfo>
<synopsis>
CREATE [ UNIQUE ] INDEX <replaceable class="parameter">index_name</replaceable> ON <replaceable class="parameter">table</replaceable>
[ USING <replaceable class="parameter">acc_method</replaceable> ] ( <replaceable class="parameter">column</replaceable> [ <replaceable class="parameter">ops_name</replaceable> ] [, ...] )
[ WHERE <replaceable class="parameter">predicate</replaceable> ]
CREATE [ UNIQUE ] INDEX <replaceable class="parameter">index_name</replaceable> ON <replaceable class="parameter">table</replaceable>
[ USING <replaceable class="parameter">acc_method</replaceable> ] ( <replaceable class="parameter">func_name</replaceable>( <replaceable class="parameter">column</replaceable> [, ... ]) [ <replaceable class="parameter">ops_name</replaceable> ] )
[ WHERE <replaceable class="parameter">predicate</replaceable> ]
</synopsis>
<refsect2 id="R2-SQL-CREATEINDEX-1">
<refsect2info>
<date>1998-09-09</date>
</refsect2info>
<title>
1998-05-13 07:34:00 +02:00
Inputs
</title>
<para>
<variablelist>
<varlistentry>
<term>UNIQUE</term>
<listitem>
<para>
Causes the system to check for
duplicate values in the table when the index is created (if data
already exist) and each time data is added. Attempts to
insert or update data which would result in duplicate entries
will generate an error.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><replaceable class="parameter">index_name</replaceable></term>
<listitem>
<para>
The name of the index to be created.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><replaceable class="parameter">table</replaceable></term>
<listitem>
<para>
The name of the table to be indexed.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><replaceable class="parameter">acc_method</replaceable></term>
<listitem>
<para>
The name of the access method to be used for the index. The
default access method is <literal>BTREE</literal>.
<application>PostgreSQL</application> provides four access
methods for indexes:
<variablelist>
<varlistentry>
2002-03-22 20:20:45 +01:00
<term><literal>BTREE</></term>
<listitem>
<para>
an implementation of Lehman-Yao
2002-01-20 23:19:57 +01:00
high-concurrency B-trees.
</para>
</listitem>
</varlistentry>
<varlistentry>
2002-03-22 20:20:45 +01:00
<term><literal>RTREE</></term>
<listitem>
2002-01-20 23:19:57 +01:00
<para>implements standard R-trees using Guttman's
quadratic split algorithm.
</para>
</listitem>
</varlistentry>
<varlistentry>
2002-03-22 20:20:45 +01:00
<term><literal>HASH</></term>
<listitem>
<para>
an implementation of Litwin's linear hashing.
</para>
</listitem>
</varlistentry>
<varlistentry>
2002-03-22 20:20:45 +01:00
<term><literal>GIST</></term>
<listitem>
<para>
Generalized Index Search Trees.
</para>
</listitem>
</varlistentry>
</variablelist>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><replaceable class="parameter">column</replaceable></term>
<listitem>
<para>
The name of a column of the table.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><replaceable class="parameter">ops_name</replaceable></term>
<listitem>
<para>
An associated operator class. See below for details.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><replaceable class="parameter">func_name</replaceable></term>
<listitem>
<para>
A function, which returns a value that can be indexed.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><replaceable class="parameter">predicate</replaceable></term>
<listitem>
<para>
Defines the constraint expression for a partial index.
</para>
</listitem>
</varlistentry>
</variablelist>
</para>
</refsect2>
<refsect2 id="R2-SQL-CREATEINDEX-2">
<refsect2info>
<date>1998-09-09</date>
</refsect2info>
<title>
1998-05-13 07:34:00 +02:00
Outputs
</title>
<para>
1998-10-14 18:30:17 +02:00
<variablelist>
<varlistentry>
<term><computeroutput>
CREATE
</computeroutput></term>
<listitem>
<para>
The message returned if the index is successfully created.
</para>
</listitem>
</varlistentry>
1998-10-14 18:30:17 +02:00
<varlistentry>
<term><computeroutput>
ERROR: Cannot create index: 'index_name' already exists.
</computeroutput></term>
<listitem>
<para>
This error occurs if it is impossible to create the index.
</para>
</listitem>
</varlistentry>
</variablelist>
</para>
</refsect2>
</refsynopsisdiv>
<refsect1 id="R1-SQL-CREATEINDEX-1">
<refsect1info>
<date>1998-09-09</date>
</refsect1info>
<title>
1998-05-13 07:34:00 +02:00
Description
</title>
<para>
<command>CREATE INDEX</command> constructs an index
<replaceable class="parameter">index_name</replaceable>
on the specified <replaceable class="parameter">table</replaceable>.
<tip>
<para>
Indexes are primarily used to enhance database performance.
But inappropriate use will result in slower performance.
</para>
</tip>
</para>
1998-05-13 07:34:00 +02:00
<para>
In the first syntax shown above, the key field(s) for the
index are specified as column names.
Multiple fields can be specified if the index access method supports
2002-01-20 23:19:57 +01:00
multicolumn indexes.
1998-05-13 07:34:00 +02:00
</para>
<para>
In the second syntax shown above, an index is defined on the result
of a user-specified function <replaceable
class="parameter">func_name</replaceable> applied to one or more
columns of a single table. These <firstterm>functional
indexes</firstterm> can be used to obtain fast access to data based
on operators that would normally require some transformation to apply
them to the base data. For example, a functional index on
<literal>upper(col)</> would allow the clause
<literal>WHERE upper(col) = 'JIM'</> to use an index.
</para>
<para>
<application>PostgreSQL</application> provides B-tree, R-tree, hash,
and GiST access methods for indexes. The B-tree access method is an
implementation of Lehman-Yao high-concurrency B-trees. The R-tree
access method implements standard R-trees using Guttman's quadratic
split algorithm. The hash access method is an implementation of
Litwin's linear hashing. We mention the algorithms used solely to
indicate that all of these access methods are fully dynamic and do
not have to be optimized periodically (as is the case with, for
example, static hash access methods).
</para>
<para>
When the <command>WHERE</command> clause is present, a
<firstterm>partial index</firstterm> is created.
A partial index is an index that contains entries for only a portion of
a table, usually a portion that is somehow more interesting than the
rest of the table. For example, if you have a table that contains both
billed and unbilled orders where the unbilled orders take up a small
fraction of the total table and yet that is an often used section, you
can improve performance by creating an index on just that portion.
Another possible application is to use <command>WHERE</command> with
<command>UNIQUE</command> to enforce uniqueness over a subset of a
table.
</para>
<para>
The expression used in the <command>WHERE</command> clause may refer
only to columns of the underlying table (but it can use all columns,
not only the one(s) being indexed). Presently, sub-SELECTs and
aggregate expressions are also forbidden in <command>WHERE</command>.
</para>
<para>
All functions and operators used in an index definition must be
2002-03-22 20:20:45 +01:00
<firstterm>cacheable</>, that is, their results must depend only on
their input arguments and never on any outside influence (such as
the contents of another table or the current time). This restriction
ensures that the behavior of the index is well-defined. To use a
2002-03-22 20:20:45 +01:00
user-defined function in an index, remember to mark the function cacheable
when you create it.
</para>
<para>
Use <xref linkend="sql-dropindex" endterm="sql-dropindex-title">
to remove an index.
</para>
<refsect2 id="R2-SQL-CREATEINDEX-3">
<refsect2info>
<date>1998-09-09</date>
</refsect2info>
<title>
1998-05-13 07:34:00 +02:00
Notes
</title>
<para>
The <productname>PostgreSQL</productname>
2002-01-20 23:19:57 +01:00
query optimizer will consider using a B-tree index whenever
an indexed attribute is involved in a comparison using one of:
<simplelist type="inline">
<member>&lt;</member>
<member>&lt;=</member>
<member>=</member>
<member>&gt;=</member>
<member>&gt;</member>
</simplelist>
</para>
<para>
The <productname>PostgreSQL</productname>
2002-01-20 23:19:57 +01:00
query optimizer will consider using an R-tree index whenever
an indexed attribute is involved in a comparison using one of:
<simplelist type="inline">
<member>&lt;&lt;</member>
<member>&amp;&lt;</member>
<member>&amp;&gt;</member>
<member>&gt;&gt;</member>
<member>@</member>
<member>~=</member>
<member>&amp;&amp;</member>
</simplelist>
</para>
<para>
The <productname>PostgreSQL</productname>
query optimizer will consider using a hash index whenever
an indexed attribute is involved in a comparison using
the <literal>=</literal> operator.
</para>
<para>
2002-03-22 20:20:45 +01:00
Currently, only the B-tree and gist access methods support multicolumn
indexes. Up to 16 keys may be specified by default (this limit
can be altered when building
2002-01-20 23:19:57 +01:00
<application>PostgreSQL</application>). Only B-tree currently supports
unique indexes.
1998-05-13 07:34:00 +02:00
</para>
<para>
An <firstterm>operator class</firstterm> can be specified for each
column of an index. The operator class identifies the operators to be
used by the index for that column. For example, a B-tree index on
four-byte integers would use the <literal>int4_ops</literal> class;
this operator class includes comparison functions for four-byte
integers. In practice the default operator class for the field's data
type is usually sufficient. The main point of having operator classes
2000-09-12 22:52:08 +02:00
is that for some data types, there could be more than one meaningful
ordering. For example, we might want to sort a complex-number data
type either by absolute value or by real part. We could do this by
defining two operator classes for the data type and then selecting
the proper class when making an index. There are also some operator
classes with special purposes:
<itemizedlist>
<listitem>
<para>
The operator classes <literal>box_ops</literal> and
2002-01-20 23:19:57 +01:00
<literal>bigbox_ops</literal> both support R-tree indexes on the
2000-09-12 22:52:08 +02:00
<literal>box</literal> data type.
The difference between them is that <literal>bigbox_ops</literal>
scales box coordinates down, to avoid floating-point exceptions from
doing multiplication, addition, and subtraction on very large
floating-point coordinates. (Note: this was true some time ago,
but currently the two operator classes both use floating point
and are effectively identical.)
</para>
</listitem>
</itemizedlist>
</para>
<para>
The following query shows all defined operator classes:
<programlisting>
SELECT am.amname AS acc_method,
opc.opcname AS ops_name,
opr.oprname AS ops_comp
FROM pg_am am, pg_opclass opc, pg_amop amop, pg_operator opr
WHERE opc.opcamid = am.oid AND
amop.amopclaid = opc.oid AND
amop.amopopr = opr.oid
2001-09-14 10:05:55 +02:00
ORDER BY acc_method, ops_name, ops_comp;
</programlisting>
</para>
</refsect2>
</refsect1>
<refsect1 id="R1-SQL-CREATEINDEX-2">
<title>
1998-05-13 07:34:00 +02:00
Usage
</title>
2002-01-20 23:19:57 +01:00
<para>To create a B-tree index on the field <literal>title</literal>
1998-05-13 07:34:00 +02:00
in the table <literal>films</literal>:
</para>
<programlisting>
1998-09-16 16:43:12 +02:00
CREATE UNIQUE INDEX title_idx
ON films (title);
</programlisting>
1998-09-16 16:43:12 +02:00
<!--
<comment>
Is this example correct?
</comment>
1998-05-13 07:34:00 +02:00
<para>
2002-01-20 23:19:57 +01:00
To create a R-tree index on a point attribute so that we
1998-05-13 07:34:00 +02:00
can efficiently use box operators on the result of the
conversion function:
</para>
<programlisting>
1998-09-16 16:43:12 +02:00
CREATE INDEX pointloc
ON points USING RTREE (point2box(location) box_ops);
SELECT * FROM points
WHERE point2box(points.pointloc) = boxes.box;
1998-05-13 07:34:00 +02:00
</programlisting>
1998-09-16 16:43:12 +02:00
-->
</refsect1>
1998-05-13 07:34:00 +02:00
<refsect1 id="R1-SQL-CREATEINDEX-3">
<title>
1998-05-13 07:34:00 +02:00
Compatibility
</title>
1998-05-13 07:34:00 +02:00
<refsect2 id="R2-SQL-CREATEINDEX-4">
<refsect2info>
<date>1998-09-09</date>
</refsect2info>
<title>
1998-05-13 07:34:00 +02:00
SQL92
</title>
<para>
CREATE INDEX is a <productname>PostgreSQL</productname> language extension.
</para>
1998-05-13 07:34:00 +02:00
<para>
1998-09-16 16:43:12 +02:00
There is no <command>CREATE INDEX</command> command in SQL92.
1998-05-13 07:34:00 +02:00
</para>
</refsect2>
</refsect1>
</refentry>
1998-05-13 07:34:00 +02:00
<!-- Keep this comment at the end of the file
Local variables:
mode: sgml
sgml-omittag:nil
1998-05-13 07:34:00 +02:00
sgml-shorttag:t
sgml-minimize-attributes:nil
sgml-always-quote-attributes:t
sgml-indent-step:1
sgml-indent-data:t
sgml-parent-document:nil
sgml-default-dtd-file:"../reference.ced"
sgml-exposed-tags:nil
sgml-local-catalogs:"/usr/lib/sgml/catalog"
sgml-local-ecat-files:nil
End:
-->