postgresql/src/backend/storage/lmgr/multi.c

416 lines
11 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* multi.c--
* multi level lock table manager
*
* Standard multi-level lock manager as per the Gray paper
* (at least, that is what it is supposed to be). We implement
* three levels -- RELN, PAGE, TUPLE. Tuple is actually TID
* a physical record pointer. It isn't an object id.
*
* Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/storage/lmgr/Attic/multi.c,v 1.3 1997/08/12 22:54:09 momjian Exp $
*
* NOTES:
* (1) The lock.c module assumes that the caller here is doing
* two phase locking.
*
*-------------------------------------------------------------------------
*/
#include <stdio.h>
#include <string.h>
#include "postgres.h"
#include "storage/lmgr.h"
#include "storage/multilev.h"
#include "utils/rel.h"
#include "miscadmin.h" /* MyDatabaseId */
/*
* INTENT indicates to higher level that a lower level lock has been
* set. For example, a write lock on a tuple conflicts with a write
* lock on a relation. This conflict is detected as a WRITE_INTENT/
* WRITE conflict between the tuple's intent lock and the relation's
* write lock.
*/
static int MultiConflicts[] = {
(int)NULL,
/* All reads and writes at any level conflict with a write lock */
(1 << WRITE_LOCK)|(1 << WRITE_INTENT)|(1 << READ_LOCK)|(1 << READ_INTENT),
/* read locks conflict with write locks at curr and lower levels */
(1 << WRITE_LOCK)| (1 << WRITE_INTENT),
/* write intent locks */
(1 << READ_LOCK) | (1 << WRITE_LOCK),
/* read intent locks*/
(1 << WRITE_LOCK),
/* extend locks for archive storage manager conflict only w/extend locks */
(1 << EXTEND_LOCK)
};
/*
* write locks have higher priority than read locks and extend locks. May
* want to treat INTENT locks differently.
*/
static int MultiPrios[] = {
(int)NULL,
2,
1,
2,
1,
1
};
/*
* Lock table identifier for this lock table. The multi-level
* lock table is ONE lock table, not three.
*/
LockTableId MultiTableId = (LockTableId)NULL;
LockTableId ShortTermTableId = (LockTableId)NULL;
/*
* Create the lock table described by MultiConflicts and Multiprio.
*/
LockTableId
InitMultiLevelLockm()
{
int tableId;
/* -----------------------
* If we're already initialized just return the table id.
* -----------------------
*/
if (MultiTableId)
return MultiTableId;
tableId = LockTabInit("LockTable", MultiConflicts, MultiPrios, 5);
MultiTableId = tableId;
if (! (MultiTableId)) {
elog(WARN,"InitMultiLockm: couldnt initialize lock table");
}
/* -----------------------
* No short term lock table for now. -Jeff 15 July 1991
*
* ShortTermTableId = LockTabRename(tableId);
* if (! (ShortTermTableId)) {
* elog(WARN,"InitMultiLockm: couldnt rename lock table");
* }
* -----------------------
*/
return MultiTableId;
}
/*
* MultiLockReln -- lock a relation
*
* Returns: TRUE if the lock can be set, FALSE otherwise.
*/
bool
MultiLockReln(LockInfo linfo, LOCKT lockt)
{
LOCKTAG tag;
/* LOCKTAG has two bytes of padding, unfortunately. The
* hash function will return miss if the padding bytes aren't
* zero'd.
*/
memset(&tag,0,sizeof(tag));
tag.relId = linfo->lRelId.relId;
tag.dbId = linfo->lRelId.dbId;
return(MultiAcquire(MultiTableId, &tag, lockt, RELN_LEVEL));
}
/*
* MultiLockTuple -- Lock the TID associated with a tuple
*
* Returns: TRUE if lock is set, FALSE otherwise.
*
* Side Effects: causes intention level locks to be set
* at the page and relation level.
*/
bool
MultiLockTuple(LockInfo linfo, ItemPointer tidPtr, LOCKT lockt)
{
LOCKTAG tag;
/* LOCKTAG has two bytes of padding, unfortunately. The
* hash function will return miss if the padding bytes aren't
* zero'd.
*/
memset(&tag,0,sizeof(tag));
tag.relId = linfo->lRelId.relId;
tag.dbId = linfo->lRelId.dbId;
/* not locking any valid Tuple, just the page */
tag.tupleId = *tidPtr;
return(MultiAcquire(MultiTableId, &tag, lockt, TUPLE_LEVEL));
}
/*
* same as above at page level
*/
bool
MultiLockPage(LockInfo linfo, ItemPointer tidPtr, LOCKT lockt)
{
LOCKTAG tag;
/* LOCKTAG has two bytes of padding, unfortunately. The
* hash function will return miss if the padding bytes aren't
* zero'd.
*/
memset(&tag,0,sizeof(tag));
/* ----------------------------
* Now we want to set the page offset to be invalid
* and lock the block. There is some confusion here as to what
* a page is. In Postgres a page is an 8k block, however this
* block may be partitioned into many subpages which are sometimes
* also called pages. The term is overloaded, so don't be fooled
* when we say lock the page we mean the 8k block. -Jeff 16 July 1991
* ----------------------------
*/
tag.relId = linfo->lRelId.relId;
tag.dbId = linfo->lRelId.dbId;
BlockIdCopy(&(tag.tupleId.ip_blkid), &(tidPtr->ip_blkid));
return(MultiAcquire(MultiTableId, &tag, lockt, PAGE_LEVEL));
}
/*
* MultiAcquire -- acquire multi level lock at requested level
*
* Returns: TRUE if lock is set, FALSE if not
* Side Effects:
*/
bool
MultiAcquire(LockTableId tableId,
LOCKTAG *tag,
LOCKT lockt,
LOCK_LEVEL level)
{
LOCKT locks[N_LEVELS];
int i,status;
LOCKTAG xxTag, *tmpTag = &xxTag;
int retStatus = TRUE;
/*
* Three levels implemented. If we set a low level (e.g. Tuple)
* lock, we must set INTENT locks on the higher levels. The
* intent lock detects conflicts between the low level lock
* and an existing high level lock. For example, setting a
* write lock on a tuple in a relation is disallowed if there
* is an existing read lock on the entire relation. The
* write lock would set a WRITE + INTENT lock on the relation
* and that lock would conflict with the read.
*/
switch (level) {
case RELN_LEVEL:
locks[0] = lockt;
locks[1] = NO_LOCK;
locks[2] = NO_LOCK;
break;
case PAGE_LEVEL:
locks[0] = lockt + INTENT;
locks[1] = lockt;
locks[2] = NO_LOCK;
break;
case TUPLE_LEVEL:
locks[0] = lockt + INTENT;
locks[1] = lockt + INTENT;
locks[2] = lockt;
break;
default:
elog(WARN,"MultiAcquire: bad lock level");
return(FALSE);
}
/*
* construct a new tag as we go. Always loop through all levels,
* but if we arent' seting a low level lock, locks[i] is set to
* NO_LOCK for the lower levels. Always start from the highest
* level and go to the lowest level.
*/
memset(tmpTag,0,sizeof(*tmpTag));
tmpTag->relId = tag->relId;
tmpTag->dbId = tag->dbId;
for (i=0;i<N_LEVELS;i++) {
if (locks[i] != NO_LOCK) {
switch (i) {
case RELN_LEVEL:
/* -------------
* Set the block # and offset to invalid
* -------------
*/
BlockIdSet(&(tmpTag->tupleId.ip_blkid), InvalidBlockNumber);
tmpTag->tupleId.ip_posid = InvalidOffsetNumber;
break;
case PAGE_LEVEL:
/* -------------
* Copy the block #, set the offset to invalid
* -------------
*/
BlockIdCopy(&(tmpTag->tupleId.ip_blkid),
&(tag->tupleId.ip_blkid));
tmpTag->tupleId.ip_posid = InvalidOffsetNumber;
break;
case TUPLE_LEVEL:
/* --------------
* Copy the entire tuple id.
* --------------
*/
ItemPointerCopy(&tmpTag->tupleId, &tag->tupleId);
break;
}
status = LockAcquire(tableId, tmpTag, locks[i]);
if (! status) {
/* failed for some reason. Before returning we have
* to release all of the locks we just acquired.
* MultiRelease(xx,xx,xx, i) means release starting from
* the last level lock we successfully acquired
*/
retStatus = FALSE;
MultiRelease(tableId, tag, lockt, i);
/* now leave the loop. Don't try for any more locks */
break;
}
}
}
return(retStatus);
}
/* ------------------
* Release a page in the multi-level lock table
* ------------------
*/
bool
MultiReleasePage(LockInfo linfo, ItemPointer tidPtr, LOCKT lockt)
{
LOCKTAG tag;
/* ------------------
* LOCKTAG has two bytes of padding, unfortunately. The
* hash function will return miss if the padding bytes aren't
* zero'd.
* ------------------
*/
memset(&tag, 0,sizeof(LOCKTAG));
tag.relId = linfo->lRelId.relId;
tag.dbId = linfo->lRelId.dbId;
BlockIdCopy(&(tag.tupleId.ip_blkid), &(tidPtr->ip_blkid));
return (MultiRelease(MultiTableId, &tag, lockt, PAGE_LEVEL));
}
/* ------------------
* Release a relation in the multi-level lock table
* ------------------
*/
bool
MultiReleaseReln(LockInfo linfo, LOCKT lockt)
{
LOCKTAG tag;
/* ------------------
* LOCKTAG has two bytes of padding, unfortunately. The
* hash function will return miss if the padding bytes aren't
* zero'd.
* ------------------
*/
memset(&tag, 0, sizeof(LOCKTAG));
tag.relId = linfo->lRelId.relId;
tag.dbId = linfo->lRelId.dbId;
return (MultiRelease(MultiTableId, &tag, lockt, RELN_LEVEL));
}
/*
* MultiRelease -- release a multi-level lock
*
* Returns: TRUE if successful, FALSE otherwise.
*/
bool
MultiRelease(LockTableId tableId,
LOCKTAG *tag,
LOCKT lockt,
LOCK_LEVEL level)
{
LOCKT locks[N_LEVELS];
int i,status;
LOCKTAG xxTag, *tmpTag = &xxTag;
/*
* same level scheme as MultiAcquire().
*/
switch (level) {
case RELN_LEVEL:
locks[0] = lockt;
locks[1] = NO_LOCK;
locks[2] = NO_LOCK;
break;
case PAGE_LEVEL:
locks[0] = lockt + INTENT;
locks[1] = lockt;
locks[2] = NO_LOCK;
break;
case TUPLE_LEVEL:
locks[0] = lockt + INTENT;
locks[1] = lockt + INTENT;
locks[2] = lockt;
break;
default:
elog(WARN,"MultiRelease: bad lockt");
}
/*
* again, construct the tag on the fly. This time, however,
* we release the locks in the REVERSE order -- from lowest
* level to highest level.
*
* Must zero out the tag to set padding byes to zero and ensure
* hashing consistency.
*/
memset(tmpTag, 0, sizeof(*tmpTag));
tmpTag->relId = tag->relId;
tmpTag->dbId = tag->dbId;
for (i=(N_LEVELS-1); i>=0; i--) {
if (locks[i] != NO_LOCK) {
switch (i) {
case RELN_LEVEL:
/* -------------
* Set the block # and offset to invalid
* -------------
*/
BlockIdSet(&(tmpTag->tupleId.ip_blkid), InvalidBlockNumber);
tmpTag->tupleId.ip_posid = InvalidOffsetNumber;
break;
case PAGE_LEVEL:
/* -------------
* Copy the block #, set the offset to invalid
* -------------
*/
BlockIdCopy(&(tmpTag->tupleId.ip_blkid),
&(tag->tupleId.ip_blkid));
tmpTag->tupleId.ip_posid = InvalidOffsetNumber;
break;
case TUPLE_LEVEL:
ItemPointerCopy(&tmpTag->tupleId, &tag->tupleId);
break;
}
status = LockRelease(tableId, tmpTag, locks[i]);
if (! status) {
elog(WARN,"MultiRelease: couldn't release after error");
}
}
}
/* shouldn't reach here */
return false;
}