postgresql/src/backend/executor/execMain.c

1076 lines
29 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* execMain.c--
* top level executor interface routines
*
* INTERFACE ROUTINES
* ExecutorStart()
* ExecutorRun()
* ExecutorEnd()
*
* The old ExecutorMain() has been replaced by ExecutorStart(),
* ExecutorRun() and ExecutorEnd()
*
* These three procedures are the external interfaces to the executor.
* In each case, the query descriptor and the execution state is required
* as arguments
*
* ExecutorStart() must be called at the beginning of any execution of any
* query plan and ExecutorEnd() should always be called at the end of
* execution of a plan.
*
* ExecutorRun accepts 'feature' and 'count' arguments that specify whether
* the plan is to be executed forwards, backwards, and for how many tuples.
*
* Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/execMain.c,v 1.15 1997/08/18 20:52:25 momjian Exp $
*
*-------------------------------------------------------------------------
*/
#include <string.h>
#include "postgres.h"
#include "miscadmin.h"
#include "executor/executor.h"
#include "executor/execdefs.h"
#include "executor/execdebug.h"
#include "executor/nodeIndexscan.h"
#include "utils/builtins.h"
#include "utils/palloc.h"
#include "utils/acl.h"
#include "utils/syscache.h"
#include "parser/parsetree.h" /* rt_fetch() */
#include "storage/bufmgr.h"
1996-10-26 06:15:05 +02:00
#include "storage/lmgr.h"
#include "storage/smgr.h"
#include "commands/async.h"
/* #include "access/localam.h" */
#include "optimizer/var.h"
#include "access/heapam.h"
#include "catalog/heap.h"
/* decls for local routines only used within this module */
static void ExecCheckPerms(CmdType operation, int resultRelation, List *rangeTable,
Query *parseTree);
static TupleDesc InitPlan(CmdType operation, Query *parseTree,
Plan *plan, EState *estate);
static void EndPlan(Plan *plan, EState *estate);
static TupleTableSlot *ExecutePlan(EState *estate, Plan *plan,
Query *parseTree, CmdType operation,
int numberTuples, ScanDirection direction,
void (*printfunc)());
static void ExecRetrieve(TupleTableSlot *slot, void (*printfunc)(),
Relation intoRelationDesc);
static void ExecAppend(TupleTableSlot *slot,ItemPointer tupleid,
EState *estate);
static void ExecDelete(TupleTableSlot *slot, ItemPointer tupleid,
EState *estate);
static void ExecReplace(TupleTableSlot *slot, ItemPointer tupleid,
EState *estate, Query *parseTree);
/* end of local decls */
#ifdef QUERY_LIMIT
static int queryLimit = ALL_TUPLES;
#undef ALL_TUPLES
#define ALL_TUPLES queryLimit
int
ExecutorLimit(int limit)
{
return queryLimit = limit;
}
#endif
/* ----------------------------------------------------------------
* ExecutorStart
*
* This routine must be called at the beginning of any execution of any
* query plan
*
* returns (AttrInfo*) which describes the attributes of the tuples to
* be returned by the query.
*
* ----------------------------------------------------------------
*/
TupleDesc
ExecutorStart(QueryDesc *queryDesc, EState *estate)
{
TupleDesc result;
/* sanity checks */
Assert(queryDesc!=NULL);
result = InitPlan(queryDesc->operation,
queryDesc->parsetree,
queryDesc->plantree,
estate);
/* reset buffer refcount. the current refcounts
* are saved and will be restored when ExecutorEnd is called
*
* this makes sure that when ExecutorRun's are
* called recursively as for postquel functions,
* the buffers pinned by one ExecutorRun will not be
* unpinned by another ExecutorRun.
*/
BufferRefCountReset(estate->es_refcount);
return result;
}
/* ----------------------------------------------------------------
* ExecutorRun
*
* This is the main routine of the executor module. It accepts
* the query descriptor from the traffic cop and executes the
* query plan.
*
* ExecutorStart must have been called already.
*
* the different features supported are:
* EXEC_RUN: retrieve all tuples in the forward direction
* EXEC_FOR: retrieve 'count' number of tuples in the forward dir
* EXEC_BACK: retrieve 'count' number of tuples in the backward dir
* EXEC_RETONE: return one tuple but don't 'retrieve' it
* used in postquel function processing
*
*
* ----------------------------------------------------------------
*/
TupleTableSlot*
ExecutorRun(QueryDesc *queryDesc, EState *estate, int feature, int count)
{
CmdType operation;
Query *parseTree;
Plan *plan;
TupleTableSlot *result;
CommandDest dest;
void (*destination)();
/* ----------------
* sanity checks
* ----------------
*/
Assert(queryDesc!=NULL);
/* ----------------
* extract information from the query descriptor
* and the query feature.
* ----------------
*/
operation = queryDesc->operation;
parseTree = queryDesc->parsetree;
plan = queryDesc->plantree;
dest = queryDesc->dest;
destination = (void (*)()) DestToFunction(dest);
#if 0
/*
* It doesn't work in common case (i.g. if function has a aggregate).
* Now we store parameter values before ExecutorStart. - vadim 01/22/97
*/
#ifdef INDEXSCAN_PATCH
/*
* If the plan is an index scan and some of the scan key are
* function arguments rescan the indices after the parameter
* values have been stored in the execution state. DZ - 27-8-1996
*/
if ((nodeTag(plan) == T_IndexScan) &&
(((IndexScan *)plan)->indxstate->iss_RuntimeKeyInfo != NULL)) {
ExprContext *econtext;
econtext = ((IndexScan *)plan)->scan.scanstate->cstate.cs_ExprContext;
ExecIndexReScan((IndexScan *)plan, econtext, plan);
}
#endif
#endif
switch(feature) {
case EXEC_RUN:
result = ExecutePlan(estate,
plan,
parseTree,
operation,
ALL_TUPLES,
ForwardScanDirection,
destination);
break;
case EXEC_FOR:
result = ExecutePlan(estate,
plan,
parseTree,
operation,
count,
ForwardScanDirection,
destination);
break;
/* ----------------
* retrieve next n "backward" tuples
* ----------------
*/
case EXEC_BACK:
result = ExecutePlan(estate,
plan,
parseTree,
operation,
count,
BackwardScanDirection,
destination);
break;
/* ----------------
* return one tuple but don't "retrieve" it.
* (this is used by the rule manager..) -cim 9/14/89
* ----------------
*/
case EXEC_RETONE:
result = ExecutePlan(estate,
plan,
parseTree,
operation,
ONE_TUPLE,
ForwardScanDirection,
destination);
break;
default:
result = NULL;
elog(DEBUG, "ExecutorRun: Unknown feature %d", feature);
break;
}
return result;
}
/* ----------------------------------------------------------------
* ExecutorEnd
*
* This routine must be called at the end of any execution of any
* query plan
*
* returns (AttrInfo*) which describes the attributes of the tuples to
* be returned by the query.
*
* ----------------------------------------------------------------
*/
void
ExecutorEnd(QueryDesc *queryDesc, EState *estate)
{
/* sanity checks */
Assert(queryDesc!=NULL);
EndPlan(queryDesc->plantree, estate);
/* restore saved refcounts. */
BufferRefCountRestore(estate->es_refcount);
}
/* ===============================================================
* ===============================================================
static routines follow
* ===============================================================
* ===============================================================
*/
static void
ExecCheckPerms(CmdType operation,
int resultRelation,
List *rangeTable,
Query *parseTree)
{
int i = 1;
Oid relid;
HeapTuple htp;
List *lp;
List *qvars, *tvars;
int32 ok = 1, aclcheck_result = -1;
char *opstr;
NameData rname;
char *userName;
#define CHECK(MODE) pg_aclcheck(rname.data, userName, MODE)
userName = GetPgUserName();
foreach (lp, rangeTable) {
RangeTblEntry *rte = lfirst(lp);
relid = rte->relid;
htp = SearchSysCacheTuple(RELOID,
ObjectIdGetDatum(relid),
0,0,0);
if (!HeapTupleIsValid(htp))
elog(WARN, "ExecCheckPerms: bogus RT relid: %d",
relid);
strNcpy(rname.data,
((Form_pg_class) GETSTRUCT(htp))->relname.data,
NAMEDATALEN-1);
if (i == resultRelation) { /* this is the result relation */
qvars = pull_varnos(parseTree->qual);
tvars = pull_varnos((Node*)parseTree->targetList);
if (intMember(resultRelation, qvars) ||
intMember(resultRelation, tvars)) {
/* result relation is scanned */
ok = ((aclcheck_result = CHECK(ACL_RD)) == ACLCHECK_OK);
opstr = "read";
if (!ok)
break;
}
switch (operation) {
case CMD_INSERT:
ok = ((aclcheck_result = CHECK(ACL_AP)) == ACLCHECK_OK) ||
((aclcheck_result = CHECK(ACL_WR)) == ACLCHECK_OK);
opstr = "append";
break;
case CMD_NOTIFY: /* what does this mean?? -- jw, 1/6/94 */
case CMD_DELETE:
case CMD_UPDATE:
ok = ((aclcheck_result = CHECK(ACL_WR)) == ACLCHECK_OK);
opstr = "write";
break;
default:
elog(WARN, "ExecCheckPerms: bogus operation %d",
operation);
}
} else {
/* XXX NOTIFY?? */
ok = ((aclcheck_result = CHECK(ACL_RD)) == ACLCHECK_OK);
opstr = "read";
}
if (!ok)
break;
++i;
}
if (!ok) {
elog(WARN, "%s: %s", rname.data, aclcheck_error_strings[aclcheck_result]);
}
}
/* ----------------------------------------------------------------
* InitPlan
*
* Initializes the query plan: open files, allocate storage
* and start up the rule manager
* ----------------------------------------------------------------
*/
static TupleDesc
InitPlan(CmdType operation, Query *parseTree, Plan *plan, EState *estate)
{
List *rangeTable;
int resultRelation;
Relation intoRelationDesc;
TupleDesc tupType;
List *targetList;
int len;
/* ----------------
* get information from query descriptor
* ----------------
*/
rangeTable = parseTree->rtable;
resultRelation = parseTree->resultRelation;
/* ----------------
* initialize the node's execution state
* ----------------
*/
estate->es_range_table = rangeTable;
/* ----------------
* initialize the BaseId counter so node base_id's
* are assigned correctly. Someday baseid's will have to
* be stored someplace other than estate because they
* should be unique per query planned.
* ----------------
*/
estate->es_BaseId = 1;
/* ----------------
* initialize result relation stuff
* ----------------
*/
if (resultRelation != 0 && operation != CMD_SELECT) {
/* ----------------
* if we have a result relation, open it and
* initialize the result relation info stuff.
* ----------------
*/
RelationInfo *resultRelationInfo;
Index resultRelationIndex;
RangeTblEntry *rtentry;
Oid resultRelationOid;
Relation resultRelationDesc;
resultRelationIndex = resultRelation;
rtentry = rt_fetch(resultRelationIndex, rangeTable);
resultRelationOid = rtentry->relid;
resultRelationDesc = heap_open(resultRelationOid);
if ( resultRelationDesc->rd_rel->relkind == RELKIND_SEQUENCE )
elog (WARN, "You can't change sequence relation %s",
resultRelationDesc->rd_rel->relname.data);
/* Write-lock the result relation right away: if the relation
is used in a subsequent scan, we won't have to elevate the
read-lock set by heap_beginscan to a write-lock (needed by
heap_insert, heap_delete and heap_replace).
This will hopefully prevent some deadlocks. - 01/24/94 */
RelationSetLockForWrite(resultRelationDesc);
resultRelationInfo = makeNode(RelationInfo);
resultRelationInfo->ri_RangeTableIndex = resultRelationIndex;
resultRelationInfo->ri_RelationDesc = resultRelationDesc;
resultRelationInfo->ri_NumIndices = 0;
resultRelationInfo->ri_IndexRelationDescs = NULL;
resultRelationInfo->ri_IndexRelationInfo = NULL;
/* ----------------
* open indices on result relation and save descriptors
* in the result relation information..
* ----------------
*/
ExecOpenIndices(resultRelationOid, resultRelationInfo);
estate->es_result_relation_info = resultRelationInfo;
} else {
/* ----------------
* if no result relation, then set state appropriately
* ----------------
*/
estate->es_result_relation_info = NULL;
}
#ifndef NO_SECURITY
ExecCheckPerms(operation, resultRelation, rangeTable, parseTree);
#endif
/* ----------------
* initialize the executor "tuple" table.
* ----------------
*/
{
int nSlots = ExecCountSlotsNode(plan);
TupleTable tupleTable = ExecCreateTupleTable(nSlots+10); /* why add ten? - jolly */
estate->es_tupleTable = tupleTable;
}
/* ----------------
* initialize the private state information for
* all the nodes in the query tree. This opens
* files, allocates storage and leaves us ready
* to start processing tuples..
* ----------------
*/
ExecInitNode(plan, estate, NULL);
/* ----------------
* get the tuple descriptor describing the type
* of tuples to return.. (this is especially important
* if we are creating a relation with "retrieve into")
* ----------------
*/
tupType = ExecGetTupType(plan); /* tuple descriptor */
targetList = plan->targetlist;
len = ExecTargetListLength(targetList); /* number of attributes */
/* ----------------
* now that we have the target list, initialize the junk filter
* if this is a REPLACE or a DELETE query.
* We also init the junk filter if this is an append query
* (there might be some rule lock info there...)
* NOTE: in the future we might want to initialize the junk
* filter for all queries.
* ----------------
*/
if (operation == CMD_UPDATE || operation == CMD_DELETE ||
operation == CMD_INSERT) {
JunkFilter *j = (JunkFilter*) ExecInitJunkFilter(targetList);
estate->es_junkFilter = j;
} else
estate->es_junkFilter = NULL;
/* ----------------
* initialize the "into" relation
* ----------------
*/
intoRelationDesc = (Relation) NULL;
if (operation == CMD_SELECT) {
char *intoName;
char archiveMode;
Oid intoRelationId;
if (!parseTree->isPortal) {
/*
* a select into table
*/
if (parseTree->into != NULL) {
/* ----------------
* create the "into" relation
*
* note: there is currently no way for the user to
* specify the desired archive mode of the
* "into" relation...
* ----------------
*/
intoName = parseTree->into;
archiveMode = 'n';
/* fixup to prevent zero-length columns in create */
setVarAttrLenForCreateTable(tupType, targetList, rangeTable);
intoRelationId = heap_create(intoName,
intoName, /* not used */
archiveMode,
DEFAULT_SMGR,
tupType);
resetVarAttrLenForCreateTable(tupType);
/* ----------------
* XXX rather than having to call setheapoverride(true)
* and then back to false, we should change the
* arguments to heap_open() instead..
* ----------------
*/
setheapoverride(true);
intoRelationDesc = heap_open(intoRelationId);
setheapoverride(false);
}
}
}
estate->es_into_relation_descriptor = intoRelationDesc;
/* ----------------
* return the type information..
* ----------------
*/
/*
attinfo = (AttrInfo *)palloc(sizeof(AttrInfo));
attinfo->numAttr = len;
attinfo->attrs = tupType->attrs;
*/
return tupType;
}
/* ----------------------------------------------------------------
* EndPlan
*
* Cleans up the query plan -- closes files and free up storages
* ----------------------------------------------------------------
*/
static void
EndPlan(Plan *plan, EState *estate)
{
RelationInfo *resultRelationInfo;
Relation intoRelationDesc;
/* ----------------
* get information from state
* ----------------
*/
resultRelationInfo = estate->es_result_relation_info;
intoRelationDesc = estate->es_into_relation_descriptor;
/* ----------------
* shut down the query
* ----------------
*/
ExecEndNode(plan, plan);
/* ----------------
* destroy the executor "tuple" table.
* ----------------
*/
{
TupleTable tupleTable = (TupleTable) estate->es_tupleTable;
ExecDestroyTupleTable(tupleTable,true); /* was missing last arg */
estate->es_tupleTable = NULL;
}
/* ----------------
* close the result relations if necessary
* ----------------
*/
if (resultRelationInfo != NULL) {
Relation resultRelationDesc;
resultRelationDesc = resultRelationInfo->ri_RelationDesc;
heap_close(resultRelationDesc);
/* ----------------
* close indices on the result relation
* ----------------
*/
ExecCloseIndices(resultRelationInfo);
}
/* ----------------
* close the "into" relation if necessary
* ----------------
*/
if (intoRelationDesc != NULL) {
heap_close(intoRelationDesc);
}
}
/* ----------------------------------------------------------------
* ExecutePlan
*
* processes the query plan to retrieve 'tupleCount' tuples in the
* direction specified.
* Retrieves all tuples if tupleCount is 0
*
* result is either a slot containing a tuple in the case
* of a RETRIEVE or NULL otherwise.
*
* ----------------------------------------------------------------
*/
/* the ctid attribute is a 'junk' attribute that is removed before the
user can see it*/
static TupleTableSlot *
ExecutePlan(EState *estate,
Plan *plan,
Query *parseTree,
CmdType operation,
int numberTuples,
ScanDirection direction,
void (*printfunc)())
{
Relation intoRelationDesc;
JunkFilter *junkfilter;
TupleTableSlot *slot;
ItemPointer tupleid = NULL;
ItemPointerData tuple_ctid;
int current_tuple_count;
TupleTableSlot *result;
/* ----------------
* get information
* ----------------
*/
intoRelationDesc = estate->es_into_relation_descriptor;
/* ----------------
* initialize local variables
* ----------------
*/
slot = NULL;
current_tuple_count = 0;
result = NULL;
/* ----------------
* Set the direction.
* ----------------
*/
estate->es_direction = direction;
/* ----------------
* Loop until we've processed the proper number
* of tuples from the plan..
* ----------------
*/
for(;;) {
if (operation != CMD_NOTIFY) {
/* ----------------
* Execute the plan and obtain a tuple
* ----------------
*/
/* at the top level, the parent of a plan (2nd arg) is itself */
slot = ExecProcNode(plan,plan);
/* ----------------
* if the tuple is null, then we assume
* there is nothing more to process so
* we just return null...
* ----------------
*/
if (TupIsNull(slot)) {
result = NULL;
break;
}
}
/* ----------------
* if we have a junk filter, then project a new
* tuple with the junk removed.
*
* Store this new "clean" tuple in the place of the
* original tuple.
*
* Also, extract all the junk ifnormation we need.
* ----------------
*/
if ((junkfilter = estate->es_junkFilter) != (JunkFilter*)NULL) {
Datum datum;
/* NameData attrName; */
HeapTuple newTuple;
bool isNull;
/* ---------------
* extract the 'ctid' junk attribute.
* ---------------
*/
if (operation == CMD_UPDATE || operation == CMD_DELETE) {
if (! ExecGetJunkAttribute(junkfilter,
slot,
"ctid",
&datum,
&isNull))
elog(WARN,"ExecutePlan: NO (junk) `ctid' was found!");
if (isNull)
elog(WARN,"ExecutePlan: (junk) `ctid' is NULL!");
tupleid = (ItemPointer) DatumGetPointer(datum);
tuple_ctid = *tupleid; /* make sure we don't free the ctid!! */
tupleid = &tuple_ctid;
}
/* ---------------
* Finally create a new "clean" tuple with all junk attributes
* removed
* ---------------
*/
newTuple = ExecRemoveJunk(junkfilter, slot);
slot = ExecStoreTuple(newTuple, /* tuple to store */
slot, /* destination slot */
InvalidBuffer,/* this tuple has no buffer */
true); /* tuple should be pfreed */
} /* if (junkfilter... */
/* ----------------
* now that we have a tuple, do the appropriate thing
* with it.. either return it to the user, add
* it to a relation someplace, delete it from a
* relation, or modify some of it's attributes.
* ----------------
*/
switch(operation) {
case CMD_SELECT:
ExecRetrieve(slot, /* slot containing tuple */
printfunc, /* print function */
intoRelationDesc); /* "into" relation */
result = slot;
break;
case CMD_INSERT:
ExecAppend(slot, tupleid, estate);
result = NULL;
break;
case CMD_DELETE:
ExecDelete(slot, tupleid, estate);
result = NULL;
break;
case CMD_UPDATE:
ExecReplace(slot, tupleid, estate, parseTree);
result = NULL;
break;
/* Total hack. I'm ignoring any accessor functions for
Relation, RelationTupleForm, NameData.
Assuming that NameData.data has offset 0.
*/
case CMD_NOTIFY: {
RelationInfo *rInfo = estate->es_result_relation_info;
Relation rDesc = rInfo->ri_RelationDesc;
Async_Notify(rDesc->rd_rel->relname.data);
result = NULL;
current_tuple_count = 0;
numberTuples = 1;
elog(DEBUG, "ExecNotify %s",&rDesc->rd_rel->relname);
}
break;
default:
elog(DEBUG, "ExecutePlan: unknown operation in queryDesc");
result = NULL;
break;
}
/* ----------------
* check our tuple count.. if we've returned the
* proper number then return, else loop again and
* process more tuples..
* ----------------
*/
current_tuple_count += 1;
if (numberTuples == current_tuple_count)
break;
}
/* ----------------
* here, result is either a slot containing a tuple in the case
* of a RETRIEVE or NULL otherwise.
* ----------------
*/
return result;
}
/* ----------------------------------------------------------------
* ExecRetrieve
*
* RETRIEVEs are easy.. we just pass the tuple to the appropriate
* print function. The only complexity is when we do a
* "retrieve into", in which case we insert the tuple into
* the appropriate relation (note: this is a newly created relation
* so we don't need to worry about indices or locks.)
* ----------------------------------------------------------------
*/
static void
ExecRetrieve(TupleTableSlot *slot,
void (*printfunc)(),
Relation intoRelationDesc)
{
HeapTuple tuple;
TupleDesc attrtype;
/* ----------------
* get the heap tuple out of the tuple table slot
* ----------------
*/
tuple = slot->val;
attrtype = slot->ttc_tupleDescriptor;
/* ----------------
* insert the tuple into the "into relation"
* ----------------
*/
if (intoRelationDesc != NULL) {
heap_insert (intoRelationDesc, tuple);
IncrAppended();
}
/* ----------------
* send the tuple to the front end (or the screen)
* ----------------
*/
(*printfunc)(tuple, attrtype);
IncrRetrieved();
}
/* ----------------------------------------------------------------
* ExecAppend
*
* APPENDs are trickier.. we have to insert the tuple into
* the base relation and insert appropriate tuples into the
* index relations.
* ----------------------------------------------------------------
*/
static void
ExecAppend(TupleTableSlot *slot,
ItemPointer tupleid,
EState *estate)
{
HeapTuple tuple;
RelationInfo *resultRelationInfo;
Relation resultRelationDesc;
int numIndices;
Oid newId;
/* ----------------
* get the heap tuple out of the tuple table slot
* ----------------
*/
tuple = slot->val;
/* ----------------
* get information on the result relation
* ----------------
*/
resultRelationInfo = estate->es_result_relation_info;
resultRelationDesc = resultRelationInfo->ri_RelationDesc;
/* ----------------
* have to add code to preform unique checking here.
* cim -12/1/89
* ----------------
*/
/* ----------------
* insert the tuple
* ----------------
*/
newId = heap_insert(resultRelationDesc, /* relation desc */
tuple); /* heap tuple */
IncrAppended();
UpdateAppendOid(newId);
/* ----------------
* process indices
*
* Note: heap_insert adds a new tuple to a relation. As a side
* effect, the tupleid of the new tuple is placed in the new
* tuple's t_ctid field.
* ----------------
*/
numIndices = resultRelationInfo->ri_NumIndices;
if (numIndices > 0) {
ExecInsertIndexTuples(slot, &(tuple->t_ctid), estate, false);
}
}
/* ----------------------------------------------------------------
* ExecDelete
*
* DELETE is like append, we delete the tuple and its
* index tuples.
* ----------------------------------------------------------------
*/
static void
ExecDelete(TupleTableSlot *slot,
ItemPointer tupleid,
EState *estate)
{
RelationInfo *resultRelationInfo;
Relation resultRelationDesc;
/* ----------------
* get the result relation information
* ----------------
*/
resultRelationInfo = estate->es_result_relation_info;
resultRelationDesc = resultRelationInfo->ri_RelationDesc;
/* ----------------
* delete the tuple
* ----------------
*/
heap_delete(resultRelationDesc, /* relation desc */
tupleid); /* item pointer to tuple */
IncrDeleted();
/* ----------------
* Note: Normally one would think that we have to
* delete index tuples associated with the
* heap tuple now..
*
* ... but in POSTGRES, we have no need to do this
* because the vacuum daemon automatically
* opens an index scan and deletes index tuples
* when it finds deleted heap tuples. -cim 9/27/89
* ----------------
*/
}
/* ----------------------------------------------------------------
* ExecReplace
*
* note: we can't run replace queries with transactions
* off because replaces are actually appends and our
* scan will mistakenly loop forever, replacing the tuple
* it just appended.. This should be fixed but until it
* is, we don't want to get stuck in an infinite loop
* which corrupts your database..
* ----------------------------------------------------------------
*/
static void
ExecReplace(TupleTableSlot *slot,
ItemPointer tupleid,
EState *estate,
Query *parseTree)
{
HeapTuple tuple;
RelationInfo *resultRelationInfo;
Relation resultRelationDesc;
int numIndices;
/* ----------------
* abort the operation if not running transactions
* ----------------
*/
if (IsBootstrapProcessingMode()) {
elog(DEBUG, "ExecReplace: replace can't run without transactions");
return;
}
/* ----------------
* get the heap tuple out of the tuple table slot
* ----------------
*/
tuple = slot->val;
/* ----------------
* get the result relation information
* ----------------
*/
resultRelationInfo = estate->es_result_relation_info;
resultRelationDesc = resultRelationInfo->ri_RelationDesc;
/* ----------------
* have to add code to preform unique checking here.
* in the event of unique tuples, this becomes a deletion
* of the original tuple affected by the replace.
* cim -12/1/89
* ----------------
*/
/* ----------------
* replace the heap tuple
*
* Don't want to continue if our heap_replace didn't actually
* do a replace. This would be the case if heap_replace
* detected a non-functional update. -kw 12/30/93
* ----------------
*/
if (heap_replace(resultRelationDesc, /* relation desc */
tupleid, /* item ptr of tuple to replace */
tuple)) { /* replacement heap tuple */
return;
}
IncrReplaced();
/* ----------------
* Note: instead of having to update the old index tuples
* associated with the heap tuple, all we do is form
* and insert new index tuples.. This is because
* replaces are actually deletes and inserts and
* index tuple deletion is done automagically by
* the vaccuum deamon.. All we do is insert new
* index tuples. -cim 9/27/89
* ----------------
*/
/* ----------------
* process indices
*
* heap_replace updates a tuple in the base relation by invalidating
* it and then appending a new tuple to the relation. As a side
* effect, the tupleid of the new tuple is placed in the new
* tuple's t_ctid field. So we now insert index tuples using
* the new tupleid stored there.
* ----------------
*/
numIndices = resultRelationInfo->ri_NumIndices;
if (numIndices > 0) {
ExecInsertIndexTuples(slot, &(tuple->t_ctid), estate, true);
}
}