postgresql/src/backend/replication/walreceiver.c

1436 lines
40 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* walreceiver.c
*
* The WAL receiver process (walreceiver) is new as of Postgres 9.0. It
* is the process in the standby server that takes charge of receiving
* XLOG records from a primary server during streaming replication.
*
* When the startup process determines that it's time to start streaming,
* it instructs postmaster to start walreceiver. Walreceiver first connects
* to the primary server (it will be served by a walsender process
* in the primary server), and then keeps receiving XLOG records and
* writing them to the disk as long as the connection is alive. As XLOG
* records are received and flushed to disk, it updates the
* WalRcv->receivedUpto variable in shared memory, to inform the startup
* process of how far it can proceed with XLOG replay.
*
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
* If the primary server ends streaming, but doesn't disconnect, walreceiver
* goes into "waiting" mode, and waits for the startup process to give new
* instructions. The startup process will treat that the same as
* disconnection, and will rescan the archive/pg_wal directory. But when the
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
* startup process wants to try streaming replication again, it will just
* nudge the existing walreceiver process that's waiting, instead of launching
* a new one.
*
* Normal termination is by SIGTERM, which instructs the walreceiver to
* exit(0). Emergency termination is by SIGQUIT; like any postmaster child
* process, the walreceiver will simply abort and exit on SIGQUIT. A close
* of the connection and a FATAL error are treated not as a crash but as
* normal operation.
*
* This file contains the server-facing parts of walreceiver. The libpq-
* specific parts are in the libpqwalreceiver module. It's loaded
* dynamically to avoid linking the server with libpq.
*
2017-01-03 19:48:53 +01:00
* Portions Copyright (c) 2010-2017, PostgreSQL Global Development Group
*
*
* IDENTIFICATION
2010-09-20 22:08:53 +02:00
* src/backend/replication/walreceiver.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <signal.h>
#include <unistd.h>
#include "access/htup_details.h"
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
#include "access/timeline.h"
#include "access/transam.h"
#include "access/xlog_internal.h"
#include "catalog/pg_type.h"
#include "funcapi.h"
#include "libpq/pqformat.h"
#include "libpq/pqsignal.h"
#include "miscadmin.h"
#include "pgstat.h"
#include "replication/walreceiver.h"
#include "replication/walsender.h"
#include "storage/ipc.h"
#include "storage/pmsignal.h"
#include "storage/procarray.h"
#include "utils/builtins.h"
#include "utils/guc.h"
#include "utils/pg_lsn.h"
#include "utils/ps_status.h"
#include "utils/resowner.h"
#include "utils/timestamp.h"
Fix management of pendingOpsTable in auxiliary processes. mdinit() was misusing IsBootstrapProcessingMode() to decide whether to create an fsync pending-operations table in the current process. This led to creating a table not only in the startup and checkpointer processes as intended, but also in the bgwriter process, not to mention other auxiliary processes such as walwriter and walreceiver. Creation of the table in the bgwriter is fatal, because it absorbs fsync requests that should have gone to the checkpointer; instead they just sit in bgwriter local memory and are never acted on. So writes performed by the bgwriter were not being fsync'd which could result in data loss after an OS crash. I think there is no live bug with respect to walwriter and walreceiver because those never perform any writes of shared buffers; but the potential is there for future breakage in those processes too. To fix, make AuxiliaryProcessMain() export the current process's AuxProcType as a global variable, and then make mdinit() test directly for the types of aux process that should have a pendingOpsTable. Having done that, we might as well also get rid of the random bool flags such as am_walreceiver that some of the aux processes had grown. (Note that we could not have fixed the bug by examining those variables in mdinit(), because it's called from BaseInit() which is run by AuxiliaryProcessMain() before entering any of the process-type-specific code.) Back-patch to 9.2, where the problem was introduced by the split-up of bgwriter and checkpointer processes. The bogus pendingOpsTable exists in walwriter and walreceiver processes in earlier branches, but absent any evidence that it causes actual problems there, I'll leave the older branches alone.
2012-07-18 21:28:10 +02:00
/* GUC variables */
int wal_receiver_status_interval;
int wal_receiver_timeout;
bool hot_standby_feedback;
/* libpqwalreceiver connection */
static WalReceiverConn *wrconn = NULL;
WalReceiverFunctionsType *WalReceiverFunctions = NULL;
#define NAPTIME_PER_CYCLE 100 /* max sleep time between cycles (100ms) */
/*
* These variables are used similarly to openLogFile/SegNo/Off,
* but for walreceiver to write the XLOG. recvFileTLI is the TimeLineID
* corresponding the filename of recvFile.
*/
static int recvFile = -1;
static TimeLineID recvFileTLI = 0;
static XLogSegNo recvSegNo = 0;
static uint32 recvOff = 0;
/*
* Flags set by interrupt handlers of walreceiver for later service in the
* main loop.
*/
static volatile sig_atomic_t got_SIGHUP = false;
static volatile sig_atomic_t got_SIGTERM = false;
/*
* LogstreamResult indicates the byte positions that we have already
* written/fsynced.
*/
static struct
{
XLogRecPtr Write; /* last byte + 1 written out in the standby */
XLogRecPtr Flush; /* last byte + 1 flushed in the standby */
} LogstreamResult;
static StringInfoData reply_message;
static StringInfoData incoming_message;
/*
* About SIGTERM handling:
*
* We can't just exit(1) within SIGTERM signal handler, because the signal
* might arrive in the middle of some critical operation, like while we're
* holding a spinlock. We also can't just set a flag in signal handler and
* check it in the main loop, because we perform some blocking operations
* like libpqrcv_PQexec(), which can take a long time to finish.
*
* We use a combined approach: When WalRcvImmediateInterruptOK is true, it's
* safe for the signal handler to elog(FATAL) immediately. Otherwise it just
* sets got_SIGTERM flag, which is checked in the main loop when convenient.
*
* This is very much like what regular backends do with ImmediateInterruptOK,
* ProcessInterrupts() etc.
*/
static volatile bool WalRcvImmediateInterruptOK = false;
/* Prototypes for private functions */
static void ProcessWalRcvInterrupts(void);
static void EnableWalRcvImmediateExit(void);
static void DisableWalRcvImmediateExit(void);
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
static void WalRcvFetchTimeLineHistoryFiles(TimeLineID first, TimeLineID last);
static void WalRcvWaitForStartPosition(XLogRecPtr *startpoint, TimeLineID *startpointTLI);
static void WalRcvDie(int code, Datum arg);
static void XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len);
static void XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr);
static void XLogWalRcvFlush(bool dying);
static void XLogWalRcvSendReply(bool force, bool requestReply);
static void XLogWalRcvSendHSFeedback(bool immed);
static void ProcessWalSndrMessage(XLogRecPtr walEnd, TimestampTz sendTime);
/* Signal handlers */
static void WalRcvSigHupHandler(SIGNAL_ARGS);
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
static void WalRcvSigUsr1Handler(SIGNAL_ARGS);
static void WalRcvShutdownHandler(SIGNAL_ARGS);
static void WalRcvQuickDieHandler(SIGNAL_ARGS);
static void
ProcessWalRcvInterrupts(void)
{
/*
2010-02-26 03:01:40 +01:00
* Although walreceiver interrupt handling doesn't use the same scheme as
* regular backends, call CHECK_FOR_INTERRUPTS() to make sure we receive
* any incoming signals on Win32.
*/
CHECK_FOR_INTERRUPTS();
if (got_SIGTERM)
{
WalRcvImmediateInterruptOK = false;
ereport(FATAL,
(errcode(ERRCODE_ADMIN_SHUTDOWN),
errmsg("terminating walreceiver process due to administrator command")));
}
}
static void
EnableWalRcvImmediateExit(void)
{
WalRcvImmediateInterruptOK = true;
ProcessWalRcvInterrupts();
}
static void
DisableWalRcvImmediateExit(void)
{
WalRcvImmediateInterruptOK = false;
ProcessWalRcvInterrupts();
}
/* Main entry point for walreceiver process */
void
WalReceiverMain(void)
{
2010-02-26 03:01:40 +01:00
char conninfo[MAXCONNINFO];
char *tmp_conninfo;
char slotname[NAMEDATALEN];
2010-02-26 03:01:40 +01:00
XLogRecPtr startpoint;
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
TimeLineID startpointTLI;
TimeLineID primaryTLI;
bool first_stream;
WalRcvData *walrcv = WalRcv;
TimestampTz last_recv_timestamp;
bool ping_sent;
/*
2010-02-26 03:01:40 +01:00
* WalRcv should be set up already (if we are a backend, we inherit this
* by fork() or EXEC_BACKEND mechanism from the postmaster).
*/
Assert(walrcv != NULL);
/*
* Mark walreceiver as running in shared memory.
*
2010-02-26 03:01:40 +01:00
* Do this as early as possible, so that if we fail later on, we'll set
* state to STOPPED. If we die before this, the startup process will keep
* waiting for us to start up, until it times out.
*/
SpinLockAcquire(&walrcv->mutex);
Assert(walrcv->pid == 0);
2010-02-26 03:01:40 +01:00
switch (walrcv->walRcvState)
{
case WALRCV_STOPPING:
/* If we've already been requested to stop, don't start up. */
walrcv->walRcvState = WALRCV_STOPPED;
/* fall through */
case WALRCV_STOPPED:
SpinLockRelease(&walrcv->mutex);
proc_exit(1);
break;
case WALRCV_STARTING:
/* The usual case */
break;
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
case WALRCV_WAITING:
case WALRCV_STREAMING:
case WALRCV_RESTARTING:
default:
/* Shouldn't happen */
elog(PANIC, "walreceiver still running according to shared memory state");
}
/* Advertise our PID so that the startup process can kill us */
walrcv->pid = MyProcPid;
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
walrcv->walRcvState = WALRCV_STREAMING;
/* Fetch information required to start streaming */
walrcv->ready_to_display = false;
strlcpy(conninfo, (char *) walrcv->conninfo, MAXCONNINFO);
strlcpy(slotname, (char *) walrcv->slotname, NAMEDATALEN);
startpoint = walrcv->receiveStart;
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
startpointTLI = walrcv->receiveStartTLI;
/* Initialise to a sanish value */
walrcv->lastMsgSendTime = walrcv->lastMsgReceiptTime = walrcv->latestWalEndTime = GetCurrentTimestamp();
SpinLockRelease(&walrcv->mutex);
/* Arrange to clean up at walreceiver exit */
on_shmem_exit(WalRcvDie, 0);
walrcv->latch = &MyProc->procLatch;
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
/* Properly accept or ignore signals the postmaster might send us */
2010-02-26 03:01:40 +01:00
pqsignal(SIGHUP, WalRcvSigHupHandler); /* set flag to read config
* file */
pqsignal(SIGINT, SIG_IGN);
pqsignal(SIGTERM, WalRcvShutdownHandler); /* request shutdown */
pqsignal(SIGQUIT, WalRcvQuickDieHandler); /* hard crash time */
pqsignal(SIGALRM, SIG_IGN);
pqsignal(SIGPIPE, SIG_IGN);
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
pqsignal(SIGUSR1, WalRcvSigUsr1Handler);
pqsignal(SIGUSR2, SIG_IGN);
/* Reset some signals that are accepted by postmaster but not here */
pqsignal(SIGCHLD, SIG_DFL);
pqsignal(SIGTTIN, SIG_DFL);
pqsignal(SIGTTOU, SIG_DFL);
pqsignal(SIGCONT, SIG_DFL);
pqsignal(SIGWINCH, SIG_DFL);
/* We allow SIGQUIT (quickdie) at all times */
sigdelset(&BlockSig, SIGQUIT);
/* Load the libpq-specific functions */
load_file("libpqwalreceiver", false);
if (WalReceiverFunctions == NULL)
elog(ERROR, "libpqwalreceiver didn't initialize correctly");
/*
* Create a resource owner to keep track of our resources (not clear that
* we need this, but may as well have one).
*/
CurrentResourceOwner = ResourceOwnerCreate(NULL, "Wal Receiver");
/* Unblock signals (they were blocked when the postmaster forked us) */
PG_SETMASK(&UnBlockSig);
/* Establish the connection to the primary for XLOG streaming */
EnableWalRcvImmediateExit();
wrconn = walrcv_connect(conninfo, false, "walreceiver");
DisableWalRcvImmediateExit();
/*
* Save user-visible connection string. This clobbers the original
* conninfo, for security.
*/
tmp_conninfo = walrcv_get_conninfo(wrconn);
SpinLockAcquire(&walrcv->mutex);
memset(walrcv->conninfo, 0, MAXCONNINFO);
if (tmp_conninfo)
{
strlcpy((char *) walrcv->conninfo, tmp_conninfo, MAXCONNINFO);
pfree(tmp_conninfo);
}
walrcv->ready_to_display = true;
SpinLockRelease(&walrcv->mutex);
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
first_stream = true;
for (;;)
{
char *primary_sysid;
char standby_sysid[32];
/*
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
* Check that we're connected to a valid server using the
* IDENTIFY_SYSTEM replication command,
*/
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
EnableWalRcvImmediateExit();
primary_sysid = walrcv_identify_system(wrconn, &primaryTLI);
snprintf(standby_sysid, sizeof(standby_sysid), UINT64_FORMAT,
GetSystemIdentifier());
if (strcmp(primary_sysid, standby_sysid) != 0)
{
ereport(ERROR,
(errmsg("database system identifier differs between the primary and standby"),
errdetail("The primary's identifier is %s, the standby's identifier is %s.",
primary_sysid, standby_sysid)));
}
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
DisableWalRcvImmediateExit();
/*
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
* Confirm that the current timeline of the primary is the same or
* ahead of ours.
*/
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
if (primaryTLI < startpointTLI)
ereport(ERROR,
(errmsg("highest timeline %u of the primary is behind recovery timeline %u",
primaryTLI, startpointTLI)));
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
/*
* Get any missing history files. We do this always, even when we're
* not interested in that timeline, so that if we're promoted to
* become the master later on, we don't select the same timeline that
* was already used in the current master. This isn't bullet-proof -
* you'll need some external software to manage your cluster if you
* need to ensure that a unique timeline id is chosen in every case,
* but let's avoid the confusion of timeline id collisions where we
* can.
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
*/
WalRcvFetchTimeLineHistoryFiles(startpointTLI, primaryTLI);
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
/*
* Start streaming.
*
* We'll try to start at the requested starting point and timeline,
* even if it's different from the server's latest timeline. In case
* we've already reached the end of the old timeline, the server will
* finish the streaming immediately, and we will go back to await
* orders from the startup process. If recovery_target_timeline is
* 'latest', the startup process will scan pg_wal and find the new
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
* history file, bump recovery target timeline, and ask us to restart
* on the new timeline.
*/
ThisTimeLineID = startpointTLI;
if (walrcv_startstreaming(wrconn, startpointTLI, startpoint,
slotname[0] != '\0' ? slotname : NULL))
{
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
if (first_stream)
ereport(LOG,
(errmsg("started streaming WAL from primary at %X/%X on timeline %u",
(uint32) (startpoint >> 32), (uint32) startpoint,
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
startpointTLI)));
else
ereport(LOG,
(errmsg("restarted WAL streaming at %X/%X on timeline %u",
(uint32) (startpoint >> 32), (uint32) startpoint,
startpointTLI)));
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
first_stream = false;
/* Initialize LogstreamResult and buffers for processing messages */
Follow TLI of last replayed record, not recovery target TLI, in walsenders. Most of the time, the last replayed record comes from the recovery target timeline, but there is a corner case where it makes a difference. When the startup process scans for a new timeline, and decides to change recovery target timeline, there is a window where the recovery target TLI has already been bumped, but there are no WAL segments from the new timeline in pg_xlog yet. For example, if we have just replayed up to point 0/30002D8, on timeline 1, there is a WAL file called 000000010000000000000003 in pg_xlog that contains the WAL up to that point. When recovery switches recovery target timeline to 2, a walsender can immediately try to read WAL from 0/30002D8, from timeline 2, so it will try to open WAL file 000000020000000000000003. However, that doesn't exist yet - the startup process hasn't copied that file from the archive yet nor has the walreceiver streamed it yet, so walsender fails with error "requested WAL segment 000000020000000000000003 has already been removed". That's harmless, in that the standby will try to reconnect later and by that time the segment is already created, but error messages that should be ignored are not good. To fix that, have walsender track the TLI of the last replayed record, instead of the recovery target timeline. That way walsender will not try to read anything from timeline 2, until the WAL segment has been created and at least one record has been replayed from it. The recovery target timeline is now xlog.c's internal affair, it doesn't need to be exposed in shared memory anymore. This fixes the error reported by Thom Brown. depesz the same error message, but I'm not sure if this fixes his scenario.
2012-12-20 13:23:31 +01:00
LogstreamResult.Write = LogstreamResult.Flush = GetXLogReplayRecPtr(NULL);
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
initStringInfo(&reply_message);
initStringInfo(&incoming_message);
/* Initialize the last recv timestamp */
last_recv_timestamp = GetCurrentTimestamp();
ping_sent = false;
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
/* Loop until end-of-streaming or error */
for (;;)
{
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
char *buf;
int len;
bool endofwal = false;
pgsocket wait_fd = PGINVALID_SOCKET;
int rc;
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
/*
* Exit walreceiver if we're not in recovery. This should not
* happen, but cross-check the status here.
*/
if (!RecoveryInProgress())
ereport(FATAL,
(errmsg("cannot continue WAL streaming, recovery has already ended")));
/* Process any requests or signals received recently */
ProcessWalRcvInterrupts();
if (got_SIGHUP)
{
got_SIGHUP = false;
ProcessConfigFile(PGC_SIGHUP);
XLogWalRcvSendHSFeedback(true);
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
}
/* See if we can read data immediately */
len = walrcv_receive(wrconn, &buf, &wait_fd);
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
if (len != 0)
{
/*
* Process the received data, and any subsequent data we
* can read without blocking.
*/
for (;;)
{
if (len > 0)
{
/*
* Something was received from master, so reset
* timeout
*/
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
last_recv_timestamp = GetCurrentTimestamp();
ping_sent = false;
XLogWalRcvProcessMsg(buf[0], &buf[1], len - 1);
}
else if (len == 0)
break;
else if (len < 0)
{
ereport(LOG,
(errmsg("replication terminated by primary server"),
2013-07-28 12:59:09 +02:00
errdetail("End of WAL reached on timeline %u at %X/%X.",
startpointTLI,
(uint32) (LogstreamResult.Write >> 32), (uint32) LogstreamResult.Write)));
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
endofwal = true;
break;
}
len = walrcv_receive(wrconn, &buf, &wait_fd);
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
}
/* Let the master know that we received some data. */
XLogWalRcvSendReply(false, false);
/*
* If we've written some records, flush them to disk and
* let the startup process and primary server know about
* them.
*/
XLogWalRcvFlush(false);
}
/* Check if we need to exit the streaming loop. */
if (endofwal)
break;
/*
* Ideally we would reuse a WaitEventSet object repeatedly
* here to avoid the overheads of WaitLatchOrSocket on epoll
* systems, but we can't be sure that libpq (or any other
* walreceiver implementation) has the same socket (even if
* the fd is the same number, it may have been closed and
* reopened since the last time). In future, if there is a
* function for removing sockets from WaitEventSet, then we
* could add and remove just the socket each time, potentially
* avoiding some system calls.
*/
Assert(wait_fd != PGINVALID_SOCKET);
rc = WaitLatchOrSocket(walrcv->latch,
2016-06-10 00:02:36 +02:00
WL_POSTMASTER_DEATH | WL_SOCKET_READABLE |
WL_TIMEOUT | WL_LATCH_SET,
wait_fd,
NAPTIME_PER_CYCLE,
WAIT_EVENT_WAL_RECEIVER_MAIN);
if (rc & WL_LATCH_SET)
{
ResetLatch(walrcv->latch);
if (walrcv->force_reply)
{
/*
* The recovery process has asked us to send apply
* feedback now. Make sure the flag is really set to
2016-06-10 00:02:36 +02:00
* false in shared memory before sending the reply, so
* we don't miss a new request for a reply.
*/
walrcv->force_reply = false;
pg_memory_barrier();
XLogWalRcvSendReply(true, false);
}
}
if (rc & WL_POSTMASTER_DEATH)
{
/*
* Emergency bailout if postmaster has died. This is to
* avoid the necessity for manual cleanup of all
* postmaster children.
*/
exit(1);
}
if (rc & WL_TIMEOUT)
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
{
/*
* We didn't receive anything new. If we haven't heard
* anything from the server for more than
* wal_receiver_timeout / 2, ping the server. Also, if
* it's been longer than wal_receiver_status_interval
* since the last update we sent, send a status update to
* the master anyway, to report any progress in applying
* WAL.
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
*/
bool requestReply = false;
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
/*
* Check if time since last receive from standby has
* reached the configured limit.
*/
if (wal_receiver_timeout > 0)
{
TimestampTz now = GetCurrentTimestamp();
TimestampTz timeout;
timeout =
TimestampTzPlusMilliseconds(last_recv_timestamp,
wal_receiver_timeout);
if (now >= timeout)
ereport(ERROR,
(errmsg("terminating walreceiver due to timeout")));
/*
* We didn't receive anything new, for half of
* receiver replication timeout. Ping the server.
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
*/
if (!ping_sent)
{
timeout = TimestampTzPlusMilliseconds(last_recv_timestamp,
(wal_receiver_timeout / 2));
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
if (now >= timeout)
{
requestReply = true;
ping_sent = true;
}
}
}
XLogWalRcvSendReply(requestReply, requestReply);
XLogWalRcvSendHSFeedback(false);
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
}
}
/*
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
* The backend finished streaming. Exit streaming COPY-mode from
* our side, too.
*/
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
EnableWalRcvImmediateExit();
walrcv_endstreaming(wrconn, &primaryTLI);
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
DisableWalRcvImmediateExit();
/*
* If the server had switched to a new timeline that we didn't
* know about when we began streaming, fetch its timeline history
* file now.
*/
WalRcvFetchTimeLineHistoryFiles(startpointTLI, primaryTLI);
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
}
else
ereport(LOG,
(errmsg("primary server contains no more WAL on requested timeline %u",
startpointTLI)));
/*
* End of WAL reached on the requested timeline. Close the last
* segment, and await for new orders from the startup process.
*/
if (recvFile >= 0)
{
char xlogfname[MAXFNAMELEN];
XLogWalRcvFlush(false);
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
if (close(recvFile) != 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not close log segment %s: %m",
XLogFileNameP(recvFileTLI, recvSegNo))));
/*
* Create .done file forcibly to prevent the streamed segment from
* being archived later.
*/
XLogFileName(xlogfname, recvFileTLI, recvSegNo);
if (XLogArchiveMode != ARCHIVE_MODE_ALWAYS)
XLogArchiveForceDone(xlogfname);
else
XLogArchiveNotify(xlogfname);
}
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
recvFile = -1;
elog(DEBUG1, "walreceiver ended streaming and awaits new instructions");
WalRcvWaitForStartPosition(&startpoint, &startpointTLI);
}
/* not reached */
}
/*
* Wait for startup process to set receiveStart and receiveStartTLI.
*/
static void
WalRcvWaitForStartPosition(XLogRecPtr *startpoint, TimeLineID *startpointTLI)
{
WalRcvData *walrcv = WalRcv;
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
int state;
SpinLockAcquire(&walrcv->mutex);
state = walrcv->walRcvState;
if (state != WALRCV_STREAMING)
{
SpinLockRelease(&walrcv->mutex);
if (state == WALRCV_STOPPING)
proc_exit(0);
else
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
elog(FATAL, "unexpected walreceiver state");
}
walrcv->walRcvState = WALRCV_WAITING;
walrcv->receiveStart = InvalidXLogRecPtr;
walrcv->receiveStartTLI = 0;
SpinLockRelease(&walrcv->mutex);
if (update_process_title)
set_ps_display("idle", false);
/*
* nudge startup process to notice that we've stopped streaming and are
* now waiting for instructions.
*/
WakeupRecovery();
for (;;)
{
ResetLatch(walrcv->latch);
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
/*
* Emergency bailout if postmaster has died. This is to avoid the
* necessity for manual cleanup of all postmaster children.
*/
if (!PostmasterIsAlive())
exit(1);
ProcessWalRcvInterrupts();
SpinLockAcquire(&walrcv->mutex);
Assert(walrcv->walRcvState == WALRCV_RESTARTING ||
walrcv->walRcvState == WALRCV_WAITING ||
walrcv->walRcvState == WALRCV_STOPPING);
if (walrcv->walRcvState == WALRCV_RESTARTING)
{
/* we don't expect primary_conninfo to change */
*startpoint = walrcv->receiveStart;
*startpointTLI = walrcv->receiveStartTLI;
walrcv->walRcvState = WALRCV_STREAMING;
SpinLockRelease(&walrcv->mutex);
break;
}
if (walrcv->walRcvState == WALRCV_STOPPING)
{
/*
* We should've received SIGTERM if the startup process wants us
* to die, but might as well check it here too.
*/
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
SpinLockRelease(&walrcv->mutex);
exit(1);
}
SpinLockRelease(&walrcv->mutex);
WaitLatch(walrcv->latch, WL_LATCH_SET | WL_POSTMASTER_DEATH, 0,
WAIT_EVENT_WAL_RECEIVER_WAIT_START);
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
}
if (update_process_title)
{
char activitymsg[50];
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
snprintf(activitymsg, sizeof(activitymsg), "restarting at %X/%X",
(uint32) (*startpoint >> 32),
(uint32) *startpoint);
set_ps_display(activitymsg, false);
}
}
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
/*
* Fetch any missing timeline history files between 'first' and 'last'
* (inclusive) from the server.
*/
static void
WalRcvFetchTimeLineHistoryFiles(TimeLineID first, TimeLineID last)
{
TimeLineID tli;
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
for (tli = first; tli <= last; tli++)
{
/* there's no history file for timeline 1 */
if (tli != 1 && !existsTimeLineHistory(tli))
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
{
char *fname;
char *content;
int len;
char expectedfname[MAXFNAMELEN];
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
ereport(LOG,
(errmsg("fetching timeline history file for timeline %u from primary server",
tli)));
EnableWalRcvImmediateExit();
walrcv_readtimelinehistoryfile(wrconn, tli, &fname, &content, &len);
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
DisableWalRcvImmediateExit();
/*
* Check that the filename on the master matches what we
* calculated ourselves. This is just a sanity check, it should
* always match.
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
*/
TLHistoryFileName(expectedfname, tli);
if (strcmp(fname, expectedfname) != 0)
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
2013-05-31 02:56:58 +02:00
errmsg_internal("primary reported unexpected file name for timeline history file of timeline %u",
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
tli)));
/*
* Write the file to pg_wal.
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
*/
writeTimeLineHistoryFile(tli, content, len);
pfree(fname);
pfree(content);
}
}
}
/*
* Mark us as STOPPED in shared memory at exit.
*/
static void
WalRcvDie(int code, Datum arg)
{
WalRcvData *walrcv = WalRcv;
/* Ensure that all WAL records received are flushed to disk */
XLogWalRcvFlush(true);
walrcv->latch = NULL;
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
SpinLockAcquire(&walrcv->mutex);
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
Assert(walrcv->walRcvState == WALRCV_STREAMING ||
walrcv->walRcvState == WALRCV_RESTARTING ||
walrcv->walRcvState == WALRCV_STARTING ||
walrcv->walRcvState == WALRCV_WAITING ||
walrcv->walRcvState == WALRCV_STOPPING);
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
Assert(walrcv->pid == MyProcPid);
walrcv->walRcvState = WALRCV_STOPPED;
walrcv->pid = 0;
walrcv->ready_to_display = false;
SpinLockRelease(&walrcv->mutex);
/* Terminate the connection gracefully. */
if (wrconn != NULL)
walrcv_disconnect(wrconn);
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
/* Wake up the startup process to notice promptly that we're gone */
WakeupRecovery();
}
/* SIGHUP: set flag to re-read config file at next convenient time */
static void
WalRcvSigHupHandler(SIGNAL_ARGS)
{
got_SIGHUP = true;
}
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
/* SIGUSR1: used by latch mechanism */
static void
WalRcvSigUsr1Handler(SIGNAL_ARGS)
{
int save_errno = errno;
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
latch_sigusr1_handler();
errno = save_errno;
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
}
/* SIGTERM: set flag for main loop, or shutdown immediately if safe */
static void
WalRcvShutdownHandler(SIGNAL_ARGS)
{
int save_errno = errno;
got_SIGTERM = true;
if (WalRcv->latch)
SetLatch(WalRcv->latch);
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
/* Don't joggle the elbow of proc_exit */
if (!proc_exit_inprogress && WalRcvImmediateInterruptOK)
ProcessWalRcvInterrupts();
errno = save_errno;
}
/*
* WalRcvQuickDieHandler() occurs when signalled SIGQUIT by the postmaster.
*
* Some backend has bought the farm, so we need to stop what we're doing and
* exit.
*/
static void
WalRcvQuickDieHandler(SIGNAL_ARGS)
{
PG_SETMASK(&BlockSig);
/*
* We DO NOT want to run proc_exit() callbacks -- we're here because
* shared memory may be corrupted, so we don't want to try to clean up our
* transaction. Just nail the windows shut and get out of town. Now that
* there's an atexit callback to prevent third-party code from breaking
* things by calling exit() directly, we have to reset the callbacks
* explicitly to make this work as intended.
*/
on_exit_reset();
/*
* Note we do exit(2) not exit(0). This is to force the postmaster into a
* system reset cycle if some idiot DBA sends a manual SIGQUIT to a random
* backend. This is necessary precisely because we don't clean up our
* shared memory state. (The "dead man switch" mechanism in pmsignal.c
2010-02-26 03:01:40 +01:00
* should ensure the postmaster sees this as a crash, too, but no harm in
* being doubly sure.)
*/
exit(2);
}
/*
* Accept the message from XLOG stream, and process it.
*/
static void
XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len)
{
int hdrlen;
XLogRecPtr dataStart;
XLogRecPtr walEnd;
TimestampTz sendTime;
bool replyRequested;
resetStringInfo(&incoming_message);
switch (type)
{
2010-02-26 03:01:40 +01:00
case 'w': /* WAL records */
{
/* copy message to StringInfo */
hdrlen = sizeof(int64) + sizeof(int64) + sizeof(int64);
if (len < hdrlen)
2010-02-26 03:01:40 +01:00
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg_internal("invalid WAL message received from primary")));
appendBinaryStringInfo(&incoming_message, buf, hdrlen);
/* read the fields */
dataStart = pq_getmsgint64(&incoming_message);
walEnd = pq_getmsgint64(&incoming_message);
sendTime = IntegerTimestampToTimestampTz(
pq_getmsgint64(&incoming_message));
ProcessWalSndrMessage(walEnd, sendTime);
buf += hdrlen;
len -= hdrlen;
XLogWalRcvWrite(buf, len, dataStart);
2010-02-26 03:01:40 +01:00
break;
}
case 'k': /* Keepalive */
{
/* copy message to StringInfo */
hdrlen = sizeof(int64) + sizeof(int64) + sizeof(char);
if (len != hdrlen)
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg_internal("invalid keepalive message received from primary")));
appendBinaryStringInfo(&incoming_message, buf, hdrlen);
/* read the fields */
walEnd = pq_getmsgint64(&incoming_message);
sendTime = IntegerTimestampToTimestampTz(
pq_getmsgint64(&incoming_message));
replyRequested = pq_getmsgbyte(&incoming_message);
ProcessWalSndrMessage(walEnd, sendTime);
/* If the primary requested a reply, send one immediately */
if (replyRequested)
XLogWalRcvSendReply(true, false);
break;
}
default:
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg_internal("invalid replication message type %d",
type)));
}
}
/*
* Write XLOG data to disk.
*/
static void
XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr)
{
2010-02-26 03:01:40 +01:00
int startoff;
int byteswritten;
while (nbytes > 0)
{
2010-02-26 03:01:40 +01:00
int segbytes;
if (recvFile < 0 || !XLByteInSeg(recptr, recvSegNo))
{
2010-02-26 03:01:40 +01:00
bool use_existent;
/*
2010-02-26 03:01:40 +01:00
* fsync() and close current file before we switch to next one. We
* would otherwise have to reopen this file to fsync it later
*/
if (recvFile >= 0)
{
char xlogfname[MAXFNAMELEN];
XLogWalRcvFlush(false);
/*
* XLOG segment files will be re-read by recovery in startup
* process soon, so we don't advise the OS to release cache
* pages associated with the file like XLogFileClose() does.
*/
if (close(recvFile) != 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not close log segment %s: %m",
XLogFileNameP(recvFileTLI, recvSegNo))));
/*
* Create .done file forcibly to prevent the streamed segment
* from being archived later.
*/
XLogFileName(xlogfname, recvFileTLI, recvSegNo);
if (XLogArchiveMode != ARCHIVE_MODE_ALWAYS)
XLogArchiveForceDone(xlogfname);
else
XLogArchiveNotify(xlogfname);
}
recvFile = -1;
/* Create/use new log file */
XLByteToSeg(recptr, recvSegNo);
use_existent = true;
recvFile = XLogFileInit(recvSegNo, &use_existent, true);
recvFileTLI = ThisTimeLineID;
recvOff = 0;
}
/* Calculate the start offset of the received logs */
startoff = recptr % XLogSegSize;
if (startoff + nbytes > XLogSegSize)
segbytes = XLogSegSize - startoff;
else
segbytes = nbytes;
/* Need to seek in the file? */
if (recvOff != startoff)
{
if (lseek(recvFile, (off_t) startoff, SEEK_SET) < 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not seek in log segment %s to offset %u: %m",
XLogFileNameP(recvFileTLI, recvSegNo),
startoff)));
recvOff = startoff;
}
/* OK to write the logs */
errno = 0;
byteswritten = write(recvFile, buf, segbytes);
if (byteswritten <= 0)
{
/* if write didn't set errno, assume no disk space */
if (errno == 0)
errno = ENOSPC;
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not write to log segment %s "
"at offset %u, length %lu: %m",
XLogFileNameP(recvFileTLI, recvSegNo),
recvOff, (unsigned long) segbytes)));
}
/* Update state for write */
recptr += byteswritten;
recvOff += byteswritten;
nbytes -= byteswritten;
buf += byteswritten;
2010-02-26 03:01:40 +01:00
LogstreamResult.Write = recptr;
}
}
/*
* Flush the log to disk.
*
* If we're in the midst of dying, it's unwise to do anything that might throw
* an error, so we skip sending a reply in that case.
*/
static void
XLogWalRcvFlush(bool dying)
{
if (LogstreamResult.Flush < LogstreamResult.Write)
{
WalRcvData *walrcv = WalRcv;
issue_xlog_fsync(recvFile, recvSegNo);
LogstreamResult.Flush = LogstreamResult.Write;
/* Update shared-memory status */
SpinLockAcquire(&walrcv->mutex);
if (walrcv->receivedUpto < LogstreamResult.Flush)
{
walrcv->latestChunkStart = walrcv->receivedUpto;
walrcv->receivedUpto = LogstreamResult.Flush;
Allow a streaming replication standby to follow a timeline switch. Before this patch, streaming replication would refuse to start replicating if the timeline in the primary doesn't exactly match the standby. The situation where it doesn't match is when you have a master, and two standbys, and you promote one of the standbys to become new master. Promoting bumps up the timeline ID, and after that bump, the other standby would refuse to continue. There's significantly more timeline related logic in streaming replication now. First of all, when a standby connects to primary, it will ask the primary for any timeline history files that are missing from the standby. The missing files are sent using a new replication command TIMELINE_HISTORY, and stored in standby's pg_xlog directory. Using the timeline history files, the standby can follow the latest timeline present in the primary (recovery_target_timeline='latest'), just as it can follow new timelines appearing in an archive directory. START_REPLICATION now takes a TIMELINE parameter, to specify exactly which timeline to stream WAL from. This allows the standby to request the primary to send over WAL that precedes the promotion. The replication protocol is changed slightly (in a backwards-compatible way although there's little hope of streaming replication working across major versions anyway), to allow replication to stop when the end of timeline reached, putting the walsender back into accepting a replication command. Many thanks to Amit Kapila for testing and reviewing various versions of this patch.
2012-12-13 18:00:00 +01:00
walrcv->receivedTLI = ThisTimeLineID;
}
SpinLockRelease(&walrcv->mutex);
/* Signal the startup process and walsender that new WAL has arrived */
WakeupRecovery();
if (AllowCascadeReplication())
WalSndWakeup();
/* Report XLOG streaming progress in PS display */
if (update_process_title)
{
char activitymsg[50];
snprintf(activitymsg, sizeof(activitymsg), "streaming %X/%X",
(uint32) (LogstreamResult.Write >> 32),
(uint32) LogstreamResult.Write);
set_ps_display(activitymsg, false);
}
/* Also let the master know that we made some progress */
if (!dying)
{
XLogWalRcvSendReply(false, false);
XLogWalRcvSendHSFeedback(false);
}
}
}
/*
* Send reply message to primary, indicating our current XLOG positions, oldest
* xmin and the current time.
*
* If 'force' is not set, the message is only sent if enough time has
2012-10-15 12:01:31 +02:00
* passed since last status update to reach wal_receiver_status_interval.
* If wal_receiver_status_interval is disabled altogether and 'force' is
* false, this is a no-op.
*
* If 'requestReply' is true, requests the server to reply immediately upon
* receiving this message. This is used for heartbearts, when approaching
* wal_receiver_timeout.
*/
static void
XLogWalRcvSendReply(bool force, bool requestReply)
{
static XLogRecPtr writePtr = 0;
static XLogRecPtr flushPtr = 0;
XLogRecPtr applyPtr;
static TimestampTz sendTime = 0;
2011-04-10 17:42:00 +02:00
TimestampTz now;
/*
* If the user doesn't want status to be reported to the master, be sure
* to exit before doing anything at all.
*/
if (!force && wal_receiver_status_interval <= 0)
return;
/* Get current timestamp. */
now = GetCurrentTimestamp();
/*
* We can compare the write and flush positions to the last message we
* sent without taking any lock, but the apply position requires a spin
* lock, so we don't check that unless something else has changed or 10
* seconds have passed. This means that the apply log position will
* appear, from the master's point of view, to lag slightly, but since
* this is only for reporting purposes and only on idle systems, that's
* probably OK.
*/
if (!force
&& writePtr == LogstreamResult.Write
&& flushPtr == LogstreamResult.Flush
&& !TimestampDifferenceExceeds(sendTime, now,
2011-04-10 17:42:00 +02:00
wal_receiver_status_interval * 1000))
return;
sendTime = now;
/* Construct a new message */
writePtr = LogstreamResult.Write;
flushPtr = LogstreamResult.Flush;
Follow TLI of last replayed record, not recovery target TLI, in walsenders. Most of the time, the last replayed record comes from the recovery target timeline, but there is a corner case where it makes a difference. When the startup process scans for a new timeline, and decides to change recovery target timeline, there is a window where the recovery target TLI has already been bumped, but there are no WAL segments from the new timeline in pg_xlog yet. For example, if we have just replayed up to point 0/30002D8, on timeline 1, there is a WAL file called 000000010000000000000003 in pg_xlog that contains the WAL up to that point. When recovery switches recovery target timeline to 2, a walsender can immediately try to read WAL from 0/30002D8, from timeline 2, so it will try to open WAL file 000000020000000000000003. However, that doesn't exist yet - the startup process hasn't copied that file from the archive yet nor has the walreceiver streamed it yet, so walsender fails with error "requested WAL segment 000000020000000000000003 has already been removed". That's harmless, in that the standby will try to reconnect later and by that time the segment is already created, but error messages that should be ignored are not good. To fix that, have walsender track the TLI of the last replayed record, instead of the recovery target timeline. That way walsender will not try to read anything from timeline 2, until the WAL segment has been created and at least one record has been replayed from it. The recovery target timeline is now xlog.c's internal affair, it doesn't need to be exposed in shared memory anymore. This fixes the error reported by Thom Brown. depesz the same error message, but I'm not sure if this fixes his scenario.
2012-12-20 13:23:31 +01:00
applyPtr = GetXLogReplayRecPtr(NULL);
resetStringInfo(&reply_message);
pq_sendbyte(&reply_message, 'r');
pq_sendint64(&reply_message, writePtr);
pq_sendint64(&reply_message, flushPtr);
pq_sendint64(&reply_message, applyPtr);
pq_sendint64(&reply_message, GetCurrentIntegerTimestamp());
pq_sendbyte(&reply_message, requestReply ? 1 : 0);
/* Send it */
elog(DEBUG2, "sending write %X/%X flush %X/%X apply %X/%X%s",
(uint32) (writePtr >> 32), (uint32) writePtr,
(uint32) (flushPtr >> 32), (uint32) flushPtr,
(uint32) (applyPtr >> 32), (uint32) applyPtr,
requestReply ? " (reply requested)" : "");
walrcv_send(wrconn, reply_message.data, reply_message.len);
}
/*
* Send hot standby feedback message to primary, plus the current time,
* in case they don't have a watch.
*
* If the user disables feedback, send one final message to tell sender
* to forget about the xmin on this standby.
*/
static void
XLogWalRcvSendHSFeedback(bool immed)
{
2011-04-10 17:42:00 +02:00
TimestampTz now;
TransactionId nextXid;
uint32 nextEpoch;
TransactionId xmin;
static TimestampTz sendTime = 0;
static bool master_has_standby_xmin = false;
/*
* If the user doesn't want status to be reported to the master, be sure
* to exit before doing anything at all.
*/
if ((wal_receiver_status_interval <= 0 || !hot_standby_feedback) &&
!master_has_standby_xmin)
return;
/* Get current timestamp. */
now = GetCurrentTimestamp();
if (!immed)
{
/*
* Send feedback at most once per wal_receiver_status_interval.
*/
if (!TimestampDifferenceExceeds(sendTime, now,
wal_receiver_status_interval * 1000))
return;
sendTime = now;
}
/*
2011-04-10 17:42:00 +02:00
* If Hot Standby is not yet active there is nothing to send. Check this
* after the interval has expired to reduce number of calls.
*/
if (!HotStandbyActive())
{
Assert(!master_has_standby_xmin);
return;
}
/*
2011-04-10 17:42:00 +02:00
* Make the expensive call to get the oldest xmin once we are certain
* everything else has been checked.
*/
if (hot_standby_feedback)
xmin = GetOldestXmin(NULL, false);
else
xmin = InvalidTransactionId;
/*
2011-04-10 17:42:00 +02:00
* Get epoch and adjust if nextXid and oldestXmin are different sides of
* the epoch boundary.
*/
GetNextXidAndEpoch(&nextXid, &nextEpoch);
if (nextXid < xmin)
nextEpoch--;
elog(DEBUG2, "sending hot standby feedback xmin %u epoch %u",
xmin, nextEpoch);
/* Construct the message and send it. */
resetStringInfo(&reply_message);
pq_sendbyte(&reply_message, 'h');
pq_sendint64(&reply_message, GetCurrentIntegerTimestamp());
pq_sendint(&reply_message, xmin, 4);
pq_sendint(&reply_message, nextEpoch, 4);
walrcv_send(wrconn, reply_message.data, reply_message.len);
if (TransactionIdIsValid(xmin))
master_has_standby_xmin = true;
else
master_has_standby_xmin = false;
}
/*
* Update shared memory status upon receiving a message from primary.
*
* 'walEnd' and 'sendTime' are the end-of-WAL and timestamp of the latest
* message, reported by primary.
*/
static void
ProcessWalSndrMessage(XLogRecPtr walEnd, TimestampTz sendTime)
{
WalRcvData *walrcv = WalRcv;
TimestampTz lastMsgReceiptTime = GetCurrentTimestamp();
/* Update shared-memory status */
SpinLockAcquire(&walrcv->mutex);
if (walrcv->latestWalEnd < walEnd)
walrcv->latestWalEndTime = sendTime;
walrcv->latestWalEnd = walEnd;
walrcv->lastMsgSendTime = sendTime;
walrcv->lastMsgReceiptTime = lastMsgReceiptTime;
SpinLockRelease(&walrcv->mutex);
2012-01-13 14:21:45 +01:00
if (log_min_messages <= DEBUG2)
{
char *sendtime;
char *receipttime;
int applyDelay;
/* Copy because timestamptz_to_str returns a static buffer */
sendtime = pstrdup(timestamptz_to_str(sendTime));
receipttime = pstrdup(timestamptz_to_str(lastMsgReceiptTime));
applyDelay = GetReplicationApplyDelay();
/* apply delay is not available */
if (applyDelay == -1)
elog(DEBUG2, "sendtime %s receipttime %s replication apply delay (N/A) transfer latency %d ms",
sendtime,
receipttime,
GetReplicationTransferLatency());
else
elog(DEBUG2, "sendtime %s receipttime %s replication apply delay %d ms transfer latency %d ms",
sendtime,
receipttime,
applyDelay,
GetReplicationTransferLatency());
pfree(sendtime);
pfree(receipttime);
}
}
/*
* Wake up the walreceiver main loop.
*
* This is called by the startup process whenever interesting xlog records
* are applied, so that walreceiver can check if it needs to send an apply
* notification back to the master which may be waiting in a COMMIT with
* synchronous_commit = remote_apply.
*/
void
WalRcvForceReply(void)
{
WalRcv->force_reply = true;
if (WalRcv->latch)
SetLatch(WalRcv->latch);
}
/*
* Return a string constant representing the state. This is used
* in system functions and views, and should *not* be translated.
*/
static const char *
WalRcvGetStateString(WalRcvState state)
{
switch (state)
{
case WALRCV_STOPPED:
return "stopped";
case WALRCV_STARTING:
return "starting";
case WALRCV_STREAMING:
return "streaming";
case WALRCV_WAITING:
return "waiting";
case WALRCV_RESTARTING:
return "restarting";
case WALRCV_STOPPING:
return "stopping";
}
return "UNKNOWN";
}
/*
* Returns activity of WAL receiver, including pid, state and xlog locations
* received from the WAL sender of another server.
*/
Datum
pg_stat_get_wal_receiver(PG_FUNCTION_ARGS)
{
TupleDesc tupdesc;
Datum *values;
bool *nulls;
WalRcvData *walrcv = WalRcv;
WalRcvState state;
XLogRecPtr receive_start_lsn;
TimeLineID receive_start_tli;
XLogRecPtr received_lsn;
TimeLineID received_tli;
2016-06-10 00:02:36 +02:00
TimestampTz last_send_time;
TimestampTz last_receipt_time;
XLogRecPtr latest_end_lsn;
2016-06-10 00:02:36 +02:00
TimestampTz latest_end_time;
char *slotname;
char *conninfo;
/*
* No WAL receiver (or not ready yet), just return a tuple with NULL
* values
*/
if (walrcv->pid == 0 || !walrcv->ready_to_display)
PG_RETURN_NULL();
/* determine result type */
if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
elog(ERROR, "return type must be a row type");
values = palloc0(sizeof(Datum) * tupdesc->natts);
nulls = palloc0(sizeof(bool) * tupdesc->natts);
/* Take a lock to ensure value consistency */
SpinLockAcquire(&walrcv->mutex);
state = walrcv->walRcvState;
receive_start_lsn = walrcv->receiveStart;
receive_start_tli = walrcv->receiveStartTLI;
received_lsn = walrcv->receivedUpto;
received_tli = walrcv->receivedTLI;
last_send_time = walrcv->lastMsgSendTime;
last_receipt_time = walrcv->lastMsgReceiptTime;
latest_end_lsn = walrcv->latestWalEnd;
latest_end_time = walrcv->latestWalEndTime;
slotname = pstrdup(walrcv->slotname);
conninfo = pstrdup(walrcv->conninfo);
SpinLockRelease(&walrcv->mutex);
/* Fetch values */
values[0] = Int32GetDatum(walrcv->pid);
if (!superuser())
{
/*
2016-06-10 00:02:36 +02:00
* Only superusers can see details. Other users only get the pid value
* to know whether it is a WAL receiver, but no details.
*/
MemSet(&nulls[1], true, sizeof(bool) * (tupdesc->natts - 1));
}
else
{
values[1] = CStringGetTextDatum(WalRcvGetStateString(state));
if (XLogRecPtrIsInvalid(receive_start_lsn))
nulls[2] = true;
else
values[2] = LSNGetDatum(receive_start_lsn);
values[3] = Int32GetDatum(receive_start_tli);
if (XLogRecPtrIsInvalid(received_lsn))
nulls[4] = true;
else
values[4] = LSNGetDatum(received_lsn);
values[5] = Int32GetDatum(received_tli);
if (last_send_time == 0)
nulls[6] = true;
else
values[6] = TimestampTzGetDatum(last_send_time);
if (last_receipt_time == 0)
nulls[7] = true;
else
values[7] = TimestampTzGetDatum(last_receipt_time);
if (XLogRecPtrIsInvalid(latest_end_lsn))
nulls[8] = true;
else
values[8] = LSNGetDatum(latest_end_lsn);
if (latest_end_time == 0)
nulls[9] = true;
else
values[9] = TimestampTzGetDatum(latest_end_time);
if (*slotname == '\0')
nulls[10] = true;
else
values[10] = CStringGetTextDatum(slotname);
if (*conninfo == '\0')
nulls[11] = true;
else
values[11] = CStringGetTextDatum(conninfo);
}
/* Returns the record as Datum */
PG_RETURN_DATUM(HeapTupleGetDatum(
2016-06-10 00:02:36 +02:00
heap_form_tuple(tupdesc, values, nulls)));
}