postgresql/src/backend/commands/tablecmds.c

8209 lines
237 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* tablecmds.c
* Commands for creating and altering table structures and settings
*
2009-01-01 18:24:05 +01:00
* Portions Copyright (c) 1996-2009, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/commands/tablecmds.c,v 1.303 2009/10/13 00:53:07 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/genam.h"
#include "access/heapam.h"
#include "access/reloptions.h"
#include "access/relscan.h"
#include "access/sysattr.h"
#include "access/xact.h"
#include "catalog/catalog.h"
#include "catalog/dependency.h"
#include "catalog/heap.h"
#include "catalog/index.h"
1999-07-16 07:00:38 +02:00
#include "catalog/indexing.h"
#include "catalog/namespace.h"
#include "catalog/pg_constraint.h"
#include "catalog/pg_depend.h"
#include "catalog/pg_inherits.h"
#include "catalog/pg_inherits_fn.h"
#include "catalog/pg_namespace.h"
#include "catalog/pg_opclass.h"
#include "catalog/pg_tablespace.h"
#include "catalog/pg_trigger.h"
#include "catalog/pg_type.h"
#include "catalog/pg_type_fn.h"
#include "catalog/storage.h"
#include "catalog/toasting.h"
2002-11-23 05:05:52 +01:00
#include "commands/cluster.h"
#include "commands/comment.h"
#include "commands/defrem.h"
#include "commands/sequence.h"
#include "commands/tablecmds.h"
#include "commands/tablespace.h"
#include "commands/trigger.h"
#include "commands/typecmds.h"
#include "executor/executor.h"
1999-07-16 07:00:38 +02:00
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "nodes/parsenodes.h"
#include "optimizer/clauses.h"
#include "parser/parse_clause.h"
#include "parser/parse_coerce.h"
#include "parser/parse_expr.h"
#include "parser/parse_oper.h"
#include "parser/parse_relation.h"
#include "parser/parse_type.h"
#include "parser/parse_utilcmd.h"
#include "parser/parser.h"
Changes pg_trigger and extend pg_rewrite in order to allow triggers and rules to be defined with different, per session controllable, behaviors for replication purposes. This will allow replication systems like Slony-I and, as has been stated on pgsql-hackers, other products to control the firing mechanism of triggers and rewrite rules without modifying the system catalog directly. The firing mechanisms are controlled by a new superuser-only GUC variable, session_replication_role, together with a change to pg_trigger.tgenabled and a new column pg_rewrite.ev_enabled. Both columns are a single char data type now (tgenabled was a bool before). The possible values in these attributes are: 'O' - Trigger/Rule fires when session_replication_role is "origin" (default) or "local". This is the default behavior. 'D' - Trigger/Rule is disabled and fires never 'A' - Trigger/Rule fires always regardless of the setting of session_replication_role 'R' - Trigger/Rule fires when session_replication_role is "replica" The GUC variable can only be changed as long as the system does not have any cached query plans. This will prevent changing the session role and accidentally executing stored procedures or functions that have plans cached that expand to the wrong query set due to differences in the rule firing semantics. The SQL syntax for changing a triggers/rules firing semantics is ALTER TABLE <tabname> <when> TRIGGER|RULE <name>; <when> ::= ENABLE | ENABLE ALWAYS | ENABLE REPLICA | DISABLE psql's \d command as well as pg_dump are extended in a backward compatible fashion. Jan
2007-03-20 00:38:32 +01:00
#include "rewrite/rewriteDefine.h"
#include "rewrite/rewriteHandler.h"
#include "storage/bufmgr.h"
#include "storage/lmgr.h"
#include "storage/smgr.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/fmgroids.h"
#include "utils/inval.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/relcache.h"
#include "utils/snapmgr.h"
#include "utils/syscache.h"
#include "utils/tqual.h"
/*
* ON COMMIT action list
*/
typedef struct OnCommitItem
{
2003-08-04 02:43:34 +02:00
Oid relid; /* relid of relation */
OnCommitAction oncommit; /* what to do at end of xact */
/*
* If this entry was created during the current transaction,
* creating_subid is the ID of the creating subxact; if created in a prior
* transaction, creating_subid is zero. If deleted during the current
* transaction, deleting_subid is the ID of the deleting subxact; if no
* deletion request is pending, deleting_subid is zero.
*/
SubTransactionId creating_subid;
SubTransactionId deleting_subid;
} OnCommitItem;
static List *on_commits = NIL;
/*
* State information for ALTER TABLE
*
* The pending-work queue for an ALTER TABLE is a List of AlteredTableInfo
* structs, one for each table modified by the operation (the named table
* plus any child tables that are affected). We save lists of subcommands
* to apply to this table (possibly modified by parse transformation steps);
* these lists will be executed in Phase 2. If a Phase 3 step is needed,
* necessary information is stored in the constraints and newvals lists.
*
* Phase 2 is divided into multiple passes; subcommands are executed in
* a pass determined by subcommand type.
*/
#define AT_PASS_DROP 0 /* DROP (all flavors) */
#define AT_PASS_ALTER_TYPE 1 /* ALTER COLUMN TYPE */
#define AT_PASS_OLD_INDEX 2 /* re-add existing indexes */
#define AT_PASS_OLD_CONSTR 3 /* re-add existing constraints */
#define AT_PASS_COL_ATTRS 4 /* set other column attributes */
/* We could support a RENAME COLUMN pass here, but not currently used */
#define AT_PASS_ADD_COL 5 /* ADD COLUMN */
#define AT_PASS_ADD_INDEX 6 /* ADD indexes */
#define AT_PASS_ADD_CONSTR 7 /* ADD constraints, defaults */
#define AT_PASS_MISC 8 /* other stuff */
#define AT_NUM_PASSES 9
typedef struct AlteredTableInfo
{
/* Information saved before any work commences: */
Oid relid; /* Relation to work on */
char relkind; /* Its relkind */
TupleDesc oldDesc; /* Pre-modification tuple descriptor */
/* Information saved by Phase 1 for Phase 2: */
2004-08-29 07:07:03 +02:00
List *subcmds[AT_NUM_PASSES]; /* Lists of AlterTableCmd */
/* Information saved by Phases 1/2 for Phase 3: */
List *constraints; /* List of NewConstraint */
List *newvals; /* List of NewColumnValue */
bool new_notnull; /* T if we added new NOT NULL constraints */
bool new_changeoids; /* T if we added/dropped the OID column */
Oid newTableSpace; /* new tablespace; 0 means no change */
/* Objects to rebuild after completing ALTER TYPE operations */
List *changedConstraintOids; /* OIDs of constraints to rebuild */
List *changedConstraintDefs; /* string definitions of same */
2004-08-29 07:07:03 +02:00
List *changedIndexOids; /* OIDs of indexes to rebuild */
List *changedIndexDefs; /* string definitions of same */
} AlteredTableInfo;
/* Struct describing one new constraint to check in Phase 3 scan */
/* Note: new NOT NULL constraints are handled elsewhere */
typedef struct NewConstraint
{
char *name; /* Constraint name, or NULL if none */
ConstrType contype; /* CHECK or FOREIGN */
Oid refrelid; /* PK rel, if FOREIGN */
Oid refindid; /* OID of PK's index, if FOREIGN */
Oid conid; /* OID of pg_constraint entry, if FOREIGN */
Node *qual; /* Check expr or CONSTR_FOREIGN Constraint */
List *qualstate; /* Execution state for CHECK */
} NewConstraint;
/*
* Struct describing one new column value that needs to be computed during
* Phase 3 copy (this could be either a new column with a non-null default, or
* a column that we're changing the type of). Columns without such an entry
* are just copied from the old table during ATRewriteTable. Note that the
* expr is an expression over *old* table values.
*/
typedef struct NewColumnValue
{
AttrNumber attnum; /* which column */
Expr *expr; /* expression to compute */
ExprState *exprstate; /* execution state */
} NewColumnValue;
/*
* Error-reporting support for RemoveRelations
*/
struct dropmsgstrings
{
char kind;
int nonexistent_code;
const char *nonexistent_msg;
const char *skipping_msg;
const char *nota_msg;
const char *drophint_msg;
};
static const struct dropmsgstrings dropmsgstringarray[] = {
{RELKIND_RELATION,
ERRCODE_UNDEFINED_TABLE,
gettext_noop("table \"%s\" does not exist"),
gettext_noop("table \"%s\" does not exist, skipping"),
gettext_noop("\"%s\" is not a table"),
gettext_noop("Use DROP TABLE to remove a table.")},
{RELKIND_SEQUENCE,
ERRCODE_UNDEFINED_TABLE,
gettext_noop("sequence \"%s\" does not exist"),
gettext_noop("sequence \"%s\" does not exist, skipping"),
gettext_noop("\"%s\" is not a sequence"),
gettext_noop("Use DROP SEQUENCE to remove a sequence.")},
{RELKIND_VIEW,
ERRCODE_UNDEFINED_TABLE,
gettext_noop("view \"%s\" does not exist"),
gettext_noop("view \"%s\" does not exist, skipping"),
gettext_noop("\"%s\" is not a view"),
gettext_noop("Use DROP VIEW to remove a view.")},
{RELKIND_INDEX,
ERRCODE_UNDEFINED_OBJECT,
gettext_noop("index \"%s\" does not exist"),
gettext_noop("index \"%s\" does not exist, skipping"),
gettext_noop("\"%s\" is not an index"),
gettext_noop("Use DROP INDEX to remove an index.")},
{RELKIND_COMPOSITE_TYPE,
ERRCODE_UNDEFINED_OBJECT,
gettext_noop("type \"%s\" does not exist"),
gettext_noop("type \"%s\" does not exist, skipping"),
gettext_noop("\"%s\" is not a type"),
gettext_noop("Use DROP TYPE to remove a type.")},
{'\0', 0, NULL, NULL, NULL, NULL}
};
static void truncate_check_rel(Relation rel);
static List *MergeAttributes(List *schema, List *supers, bool istemp,
List **supOids, List **supconstr, int *supOidCount);
static bool MergeCheckConstraint(List *constraints, char *name, Node *expr);
static bool change_varattnos_walker(Node *node, const AttrNumber *newattno);
static void MergeAttributesIntoExisting(Relation child_rel, Relation parent_rel);
static void MergeConstraintsIntoExisting(Relation child_rel, Relation parent_rel);
static void StoreCatalogInheritance(Oid relationId, List *supers);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
static void StoreCatalogInheritance1(Oid relationId, Oid parentOid,
int16 seqNumber, Relation inhRelation);
static int findAttrByName(const char *attributeName, List *schema);
static void setRelhassubclassInRelation(Oid relationId, bool relhassubclass);
static void AlterIndexNamespaces(Relation classRel, Relation rel,
2005-10-15 04:49:52 +02:00
Oid oldNspOid, Oid newNspOid);
static void AlterSeqNamespaces(Relation classRel, Relation rel,
2005-10-15 04:49:52 +02:00
Oid oldNspOid, Oid newNspOid,
const char *newNspName);
static int transformColumnNameList(Oid relId, List *colList,
2003-08-04 02:43:34 +02:00
int16 *attnums, Oid *atttypids);
static int transformFkeyGetPrimaryKey(Relation pkrel, Oid *indexOid,
2004-08-29 07:07:03 +02:00
List **attnamelist,
int16 *attnums, Oid *atttypids,
Oid *opclasses);
2003-08-04 02:43:34 +02:00
static Oid transformFkeyCheckAttrs(Relation pkrel,
2004-08-29 07:07:03 +02:00
int numattrs, int16 *attnums,
Oid *opclasses);
static void checkFkeyPermissions(Relation rel, int16 *attnums, int natts);
static void validateForeignKeyConstraint(Constraint *fkconstraint,
Relation rel, Relation pkrel,
Oid pkindOid, Oid constraintOid);
static void createForeignKeyTriggers(Relation rel, Constraint *fkconstraint,
Oid constraintOid, Oid indexOid);
static void ATController(Relation rel, List *cmds, bool recurse);
static void ATPrepCmd(List **wqueue, Relation rel, AlterTableCmd *cmd,
2004-08-29 07:07:03 +02:00
bool recurse, bool recursing);
static void ATRewriteCatalogs(List **wqueue);
static void ATExecCmd(List **wqueue, AlteredTableInfo *tab, Relation rel,
AlterTableCmd *cmd);
static void ATRewriteTables(List **wqueue);
static void ATRewriteTable(AlteredTableInfo *tab, Oid OIDNewHeap);
static AlteredTableInfo *ATGetQueueEntry(List **wqueue, Relation rel);
static void ATSimplePermissions(Relation rel, bool allowView);
static void ATSimplePermissionsRelationOrIndex(Relation rel);
static void ATSimpleRecursion(List **wqueue, Relation rel,
2004-08-29 07:07:03 +02:00
AlterTableCmd *cmd, bool recurse);
static void ATOneLevelRecursion(List **wqueue, Relation rel,
2004-08-29 07:07:03 +02:00
AlterTableCmd *cmd);
static void ATPrepAddColumn(List **wqueue, Relation rel, bool recurse,
2004-08-29 07:07:03 +02:00
AlterTableCmd *cmd);
static void ATExecAddColumn(AlteredTableInfo *tab, Relation rel,
ColumnDef *colDef, bool isOid);
static void add_column_datatype_dependency(Oid relid, int32 attnum, Oid typid);
static void ATPrepAddOids(List **wqueue, Relation rel, bool recurse,
AlterTableCmd *cmd);
static void ATExecDropNotNull(Relation rel, const char *colName);
static void ATExecSetNotNull(AlteredTableInfo *tab, Relation rel,
2004-08-29 07:07:03 +02:00
const char *colName);
static void ATExecColumnDefault(Relation rel, const char *colName,
2004-08-29 07:07:03 +02:00
Node *newDefault);
static void ATPrepSetStatistics(Relation rel, const char *colName,
Node *newValue);
static void ATExecSetStatistics(Relation rel, const char *colName,
2004-08-29 07:07:03 +02:00
Node *newValue);
static void ATPrepSetDistinct(Relation rel, const char *colName,
Node *newValue);
static void ATExecSetDistinct(Relation rel, const char *colName,
Node *newValue);
static void ATExecSetStorage(Relation rel, const char *colName,
2004-08-29 07:07:03 +02:00
Node *newValue);
static void ATExecDropColumn(List **wqueue, Relation rel, const char *colName,
2004-08-29 07:07:03 +02:00
DropBehavior behavior,
bool recurse, bool recursing,
bool missing_ok);
static void ATExecAddIndex(AlteredTableInfo *tab, Relation rel,
2004-08-29 07:07:03 +02:00
IndexStmt *stmt, bool is_rebuild);
static void ATExecAddConstraint(List **wqueue,
AlteredTableInfo *tab, Relation rel,
Constraint *newConstraint, bool recurse);
static void ATAddCheckConstraint(List **wqueue,
AlteredTableInfo *tab, Relation rel,
Constraint *constr,
bool recurse, bool recursing);
static void ATAddForeignKeyConstraint(AlteredTableInfo *tab, Relation rel,
Constraint *fkconstraint);
static void ATExecDropConstraint(Relation rel, const char *constrName,
DropBehavior behavior,
bool recurse, bool recursing,
bool missing_ok);
static void ATPrepAlterColumnType(List **wqueue,
2004-08-29 07:07:03 +02:00
AlteredTableInfo *tab, Relation rel,
bool recurse, bool recursing,
AlterTableCmd *cmd);
static void ATExecAlterColumnType(AlteredTableInfo *tab, Relation rel,
const char *colName, TypeName *typeName);
static void ATPostAlterTypeCleanup(List **wqueue, AlteredTableInfo *tab);
static void ATPostAlterTypeParse(char *cmd, List **wqueue);
static void change_owner_recurse_to_sequences(Oid relationOid,
2005-10-15 04:49:52 +02:00
Oid newOwnerId);
static void ATExecClusterOn(Relation rel, const char *indexName);
static void ATExecDropCluster(Relation rel);
static void ATPrepSetTableSpace(AlteredTableInfo *tab, Relation rel,
2004-08-29 07:07:03 +02:00
char *tablespacename);
static void ATExecSetTableSpace(Oid tableOid, Oid newTableSpace);
static void ATExecSetRelOptions(Relation rel, List *defList, bool isReset);
static void ATExecEnableDisableTrigger(Relation rel, char *trigname,
Changes pg_trigger and extend pg_rewrite in order to allow triggers and rules to be defined with different, per session controllable, behaviors for replication purposes. This will allow replication systems like Slony-I and, as has been stated on pgsql-hackers, other products to control the firing mechanism of triggers and rewrite rules without modifying the system catalog directly. The firing mechanisms are controlled by a new superuser-only GUC variable, session_replication_role, together with a change to pg_trigger.tgenabled and a new column pg_rewrite.ev_enabled. Both columns are a single char data type now (tgenabled was a bool before). The possible values in these attributes are: 'O' - Trigger/Rule fires when session_replication_role is "origin" (default) or "local". This is the default behavior. 'D' - Trigger/Rule is disabled and fires never 'A' - Trigger/Rule fires always regardless of the setting of session_replication_role 'R' - Trigger/Rule fires when session_replication_role is "replica" The GUC variable can only be changed as long as the system does not have any cached query plans. This will prevent changing the session role and accidentally executing stored procedures or functions that have plans cached that expand to the wrong query set due to differences in the rule firing semantics. The SQL syntax for changing a triggers/rules firing semantics is ALTER TABLE <tabname> <when> TRIGGER|RULE <name>; <when> ::= ENABLE | ENABLE ALWAYS | ENABLE REPLICA | DISABLE psql's \d command as well as pg_dump are extended in a backward compatible fashion. Jan
2007-03-20 00:38:32 +01:00
char fires_when, bool skip_system);
static void ATExecEnableDisableRule(Relation rel, char *rulename,
2007-11-15 22:14:46 +01:00
char fires_when);
static void ATExecAddInherit(Relation rel, RangeVar *parent);
static void ATExecDropInherit(Relation rel, RangeVar *parent);
static void copy_relation_data(SMgrRelation rel, SMgrRelation dst,
ForkNumber forkNum, bool istemp);
static const char *storage_name(char c);
/* ----------------------------------------------------------------
* DefineRelation
* Creates a new relation.
*
* If successful, returns the OID of the new relation.
* ----------------------------------------------------------------
*/
Oid
DefineRelation(CreateStmt *stmt, char relkind)
{
char relname[NAMEDATALEN];
Oid namespaceId;
List *schema = stmt->tableElts;
Oid relationId;
Oid tablespaceId;
Relation rel;
TupleDesc descriptor;
List *inheritOids;
List *old_constraints;
bool localHasOids;
int parentOidCount;
List *rawDefaults;
List *cookedDefaults;
Datum reloptions;
ListCell *listptr;
AttrNumber attnum;
static char *validnsps[] = HEAP_RELOPT_NAMESPACES;
/*
2005-10-15 04:49:52 +02:00
* Truncate relname to appropriate length (probably a waste of time, as
* parser should have done this already).
*/
StrNCpy(relname, stmt->relation->relname, NAMEDATALEN);
/*
* Check consistency of arguments
*/
if (stmt->oncommit != ONCOMMIT_NOOP && !stmt->relation->istemp)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
2005-10-15 04:49:52 +02:00
errmsg("ON COMMIT can only be used on temporary tables")));
/*
2005-10-15 04:49:52 +02:00
* Look up the namespace in which we are supposed to create the relation.
* Check we have permission to create there. Skip check if bootstrapping,
* since permissions machinery may not be working yet.
*/
namespaceId = RangeVarGetCreationNamespace(stmt->relation);
if (!IsBootstrapProcessingMode())
{
AclResult aclresult;
aclresult = pg_namespace_aclcheck(namespaceId, GetUserId(),
ACL_CREATE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, ACL_KIND_NAMESPACE,
get_namespace_name(namespaceId));
}
/*
* Select tablespace to use. If not specified, use default tablespace
* (which may in turn default to database's default).
*/
if (stmt->tablespacename)
{
tablespaceId = get_tablespace_oid(stmt->tablespacename);
if (!OidIsValid(tablespaceId))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("tablespace \"%s\" does not exist",
stmt->tablespacename)));
}
else
{
tablespaceId = GetDefaultTablespace(stmt->relation->istemp);
/* note InvalidOid is OK in this case */
}
/* Check permissions except when using database's default */
if (OidIsValid(tablespaceId) && tablespaceId != MyDatabaseTableSpace)
{
AclResult aclresult;
aclresult = pg_tablespace_aclcheck(tablespaceId, GetUserId(),
ACL_CREATE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, ACL_KIND_TABLESPACE,
get_tablespace_name(tablespaceId));
}
/*
* Parse and validate reloptions, if any.
*/
reloptions = transformRelOptions((Datum) 0, stmt->options, NULL, validnsps,
true, false);
(void) heap_reloptions(relkind, reloptions, true);
/*
2005-10-15 04:49:52 +02:00
* Look up inheritance ancestors and generate relation schema, including
* inherited attributes.
*/
schema = MergeAttributes(schema, stmt->inhRelations,
stmt->relation->istemp,
2005-10-15 04:49:52 +02:00
&inheritOids, &old_constraints, &parentOidCount);
/*
* Create a tuple descriptor from the relation schema. Note that this
* deals with column names, types, and NOT NULL constraints, but not
* default values or CHECK constraints; we handle those below.
*/
descriptor = BuildDescForRelation(schema);
localHasOids = interpretOidsOption(stmt->options);
descriptor->tdhasoid = (localHasOids || parentOidCount > 0);
/*
* Find columns with default values and prepare for insertion of the
* defaults. Pre-cooked (that is, inherited) defaults go into a list of
* CookedConstraint structs that we'll pass to heap_create_with_catalog,
* while raw defaults go into a list of RawColumnDefault structs that will
* be processed by AddRelationNewConstraints. (We can't deal with raw
* expressions until we can do transformExpr.)
*
* We can set the atthasdef flags now in the tuple descriptor; this just
* saves StoreAttrDefault from having to do an immediate update of the
* pg_attribute rows.
*/
rawDefaults = NIL;
cookedDefaults = NIL;
attnum = 0;
foreach(listptr, schema)
{
ColumnDef *colDef = lfirst(listptr);
attnum++;
2007-11-15 22:14:46 +01:00
if (colDef->raw_default != NULL)
{
RawColumnDefault *rawEnt;
2004-08-29 07:07:03 +02:00
Assert(colDef->cooked_default == NULL);
rawEnt = (RawColumnDefault *) palloc(sizeof(RawColumnDefault));
rawEnt->attnum = attnum;
rawEnt->raw_default = colDef->raw_default;
rawDefaults = lappend(rawDefaults, rawEnt);
descriptor->attrs[attnum - 1]->atthasdef = true;
}
else if (colDef->cooked_default != NULL)
{
CookedConstraint *cooked;
cooked = (CookedConstraint *) palloc(sizeof(CookedConstraint));
cooked->contype = CONSTR_DEFAULT;
cooked->name = NULL;
cooked->attnum = attnum;
cooked->expr = colDef->cooked_default;
cooked->is_local = true; /* not used for defaults */
cooked->inhcount = 0; /* ditto */
cookedDefaults = lappend(cookedDefaults, cooked);
descriptor->attrs[attnum - 1]->atthasdef = true;
}
}
/*
* Create the relation. Inherited defaults and constraints are passed in
* for immediate handling --- since they don't need parsing, they can be
* stored immediately.
*/
relationId = heap_create_with_catalog(relname,
namespaceId,
tablespaceId,
InvalidOid,
InvalidOid,
GetUserId(),
descriptor,
list_concat(cookedDefaults,
old_constraints),
relkind,
false,
localHasOids,
parentOidCount,
stmt->oncommit,
reloptions,
true,
allowSystemTableMods);
StoreCatalogInheritance(relationId, inheritOids);
/*
* We must bump the command counter to make the newly-created relation
* tuple visible for opening.
*/
CommandCounterIncrement();
/*
* Open the new relation and acquire exclusive lock on it. This isn't
2005-10-15 04:49:52 +02:00
* really necessary for locking out other backends (since they can't see
* the new rel anyway until we commit), but it keeps the lock manager from
* complaining about deadlock risks.
*/
rel = relation_open(relationId, AccessExclusiveLock);
/*
2005-10-15 04:49:52 +02:00
* Now add any newly specified column default values and CHECK constraints
* to the new relation. These are passed to us in the form of raw
* parsetrees; we need to transform them to executable expression trees
* before they can be added. The most convenient way to do that is to
* apply the parser's transformExpr routine, but transformExpr doesn't
* work unless we have a pre-existing relation. So, the transformation has
* to be postponed to this final step of CREATE TABLE.
*/
if (rawDefaults || stmt->constraints)
AddRelationNewConstraints(rel, rawDefaults, stmt->constraints,
true, true);
/*
* Clean up. We keep lock on new relation (although it shouldn't be
* visible to anyone else anyway, until commit).
*/
relation_close(rel, NoLock);
return relationId;
}
/*
* Emit the right error or warning message for a "DROP" command issued on a
* non-existent relation
*/
static void
DropErrorMsgNonExistent(const char *relname, char rightkind, bool missing_ok)
{
const struct dropmsgstrings *rentry;
for (rentry = dropmsgstringarray; rentry->kind != '\0'; rentry++)
{
if (rentry->kind == rightkind)
{
if (!missing_ok)
{
ereport(ERROR,
(errcode(rentry->nonexistent_code),
errmsg(rentry->nonexistent_msg, relname)));
}
else
{
ereport(NOTICE, (errmsg(rentry->skipping_msg, relname)));
break;
}
}
}
Assert(rentry->kind != '\0'); /* Should be impossible */
}
/*
* Emit the right error message for a "DROP" command issued on a
* relation of the wrong type
*/
static void
DropErrorMsgWrongType(const char *relname, char wrongkind, char rightkind)
{
const struct dropmsgstrings *rentry;
const struct dropmsgstrings *wentry;
for (rentry = dropmsgstringarray; rentry->kind != '\0'; rentry++)
if (rentry->kind == rightkind)
break;
Assert(rentry->kind != '\0');
for (wentry = dropmsgstringarray; wentry->kind != '\0'; wentry++)
if (wentry->kind == wrongkind)
break;
/* wrongkind could be something we don't have in our table... */
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg(rentry->nota_msg, relname),
(wentry->kind != '\0') ? errhint("%s", _(wentry->drophint_msg)) : 0));
}
/*
* RemoveRelations
* Implements DROP TABLE, DROP INDEX, DROP SEQUENCE, DROP VIEW
*/
void
RemoveRelations(DropStmt *drop)
{
ObjectAddresses *objects;
char relkind;
ListCell *cell;
/*
* First we identify all the relations, then we delete them in a single
* performMultipleDeletions() call. This is to avoid unwanted DROP
* RESTRICT errors if one of the relations depends on another.
*/
/* Determine required relkind */
switch (drop->removeType)
{
case OBJECT_TABLE:
relkind = RELKIND_RELATION;
break;
case OBJECT_INDEX:
relkind = RELKIND_INDEX;
break;
case OBJECT_SEQUENCE:
relkind = RELKIND_SEQUENCE;
break;
case OBJECT_VIEW:
relkind = RELKIND_VIEW;
break;
default:
elog(ERROR, "unrecognized drop object type: %d",
(int) drop->removeType);
relkind = 0; /* keep compiler quiet */
break;
}
/* Lock and validate each relation; build a list of object addresses */
objects = new_object_addresses();
foreach(cell, drop->objects)
{
RangeVar *rel = makeRangeVarFromNameList((List *) lfirst(cell));
Oid relOid;
HeapTuple tuple;
Form_pg_class classform;
ObjectAddress obj;
/*
* These next few steps are a great deal like relation_openrv, but we
* don't bother building a relcache entry since we don't need it.
*
* Check for shared-cache-inval messages before trying to access the
* relation. This is needed to cover the case where the name
* identifies a rel that has been dropped and recreated since the
* start of our transaction: if we don't flush the old syscache entry,
* then we'll latch onto that entry and suffer an error later.
*/
AcceptInvalidationMessages();
/* Look up the appropriate relation using namespace search */
relOid = RangeVarGetRelid(rel, true);
/* Not there? */
if (!OidIsValid(relOid))
{
DropErrorMsgNonExistent(rel->relname, relkind, drop->missing_ok);
continue;
}
/*
* In DROP INDEX, attempt to acquire lock on the parent table before
* locking the index. index_drop() will need this anyway, and since
* regular queries lock tables before their indexes, we risk deadlock
* if we do it the other way around. No error if we don't find a
* pg_index entry, though --- that most likely means it isn't an
* index, and we'll fail below.
*/
if (relkind == RELKIND_INDEX)
{
tuple = SearchSysCache(INDEXRELID,
ObjectIdGetDatum(relOid),
0, 0, 0);
if (HeapTupleIsValid(tuple))
{
Form_pg_index index = (Form_pg_index) GETSTRUCT(tuple);
LockRelationOid(index->indrelid, AccessExclusiveLock);
ReleaseSysCache(tuple);
}
}
/* Get the lock before trying to fetch the syscache entry */
LockRelationOid(relOid, AccessExclusiveLock);
tuple = SearchSysCache(RELOID,
ObjectIdGetDatum(relOid),
0, 0, 0);
if (!HeapTupleIsValid(tuple))
elog(ERROR, "cache lookup failed for relation %u", relOid);
classform = (Form_pg_class) GETSTRUCT(tuple);
if (classform->relkind != relkind)
DropErrorMsgWrongType(rel->relname, classform->relkind, relkind);
/* Allow DROP to either table owner or schema owner */
if (!pg_class_ownercheck(relOid, GetUserId()) &&
!pg_namespace_ownercheck(classform->relnamespace, GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, ACL_KIND_CLASS,
rel->relname);
if (!allowSystemTableMods && IsSystemClass(classform))
ereport(ERROR,
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
errmsg("permission denied: \"%s\" is a system catalog",
rel->relname)));
/* OK, we're ready to delete this one */
obj.classId = RelationRelationId;
obj.objectId = relOid;
obj.objectSubId = 0;
add_exact_object_address(&obj, objects);
ReleaseSysCache(tuple);
}
performMultipleDeletions(objects, drop->behavior);
free_object_addresses(objects);
}
/*
* ExecuteTruncate
2005-10-15 04:49:52 +02:00
* Executes a TRUNCATE command.
*
* This is a multi-relation truncate. We first open and grab exclusive
* lock on all relations involved, checking permissions and otherwise
* verifying that the relation is OK for truncation. In CASCADE mode,
* relations having FK references to the targeted relations are automatically
* added to the group; in RESTRICT mode, we check that all FK references are
* internal to the group that's being truncated. Finally all the relations
* are truncated and reindexed.
*/
void
ExecuteTruncate(TruncateStmt *stmt)
{
2005-10-15 04:49:52 +02:00
List *rels = NIL;
List *relids = NIL;
List *seq_relids = NIL;
EState *estate;
ResultRelInfo *resultRelInfos;
ResultRelInfo *resultRelInfo;
SubTransactionId mySubid;
2005-10-15 04:49:52 +02:00
ListCell *cell;
/*
* Open, exclusive-lock, and check all the explicitly-specified relations
*/
foreach(cell, stmt->relations)
{
RangeVar *rv = lfirst(cell);
Relation rel;
bool recurse = interpretInhOption(rv->inhOpt);
Oid myrelid;
rel = heap_openrv(rv, AccessExclusiveLock);
myrelid = RelationGetRelid(rel);
/* don't throw error for "TRUNCATE foo, foo" */
if (list_member_oid(relids, myrelid))
{
heap_close(rel, AccessExclusiveLock);
continue;
}
truncate_check_rel(rel);
rels = lappend(rels, rel);
relids = lappend_oid(relids, myrelid);
if (recurse)
{
ListCell *child;
List *children;
children = find_all_inheritors(myrelid, AccessExclusiveLock);
foreach(child, children)
{
Oid childrelid = lfirst_oid(child);
if (list_member_oid(relids, childrelid))
continue;
/* find_all_inheritors already got lock */
rel = heap_open(childrelid, NoLock);
truncate_check_rel(rel);
rels = lappend(rels, rel);
relids = lappend_oid(relids, childrelid);
}
}
}
/*
2006-10-04 02:30:14 +02:00
* In CASCADE mode, suck in all referencing relations as well. This
* requires multiple iterations to find indirectly-dependent relations. At
* each phase, we need to exclusive-lock new rels before looking for their
* dependencies, else we might miss something. Also, we check each rel as
* soon as we open it, to avoid a faux pas such as holding lock for a long
* time on a rel we have no permissions for.
*/
if (stmt->behavior == DROP_CASCADE)
{
for (;;)
{
2006-10-04 02:30:14 +02:00
List *newrelids;
newrelids = heap_truncate_find_FKs(relids);
if (newrelids == NIL)
break; /* nothing else to add */
foreach(cell, newrelids)
{
2006-10-04 02:30:14 +02:00
Oid relid = lfirst_oid(cell);
Relation rel;
rel = heap_open(relid, AccessExclusiveLock);
ereport(NOTICE,
(errmsg("truncate cascades to table \"%s\"",
RelationGetRelationName(rel))));
truncate_check_rel(rel);
rels = lappend(rels, rel);
relids = lappend_oid(relids, relid);
}
}
}
2002-11-23 05:05:52 +01:00
/*
* Check foreign key references. In CASCADE mode, this should be
2006-10-04 02:30:14 +02:00
* unnecessary since we just pulled in all the references; but as a
* cross-check, do it anyway if in an Assert-enabled build.
2002-11-23 05:05:52 +01:00
*/
#ifdef USE_ASSERT_CHECKING
heap_truncate_check_FKs(rels, false);
#else
if (stmt->behavior == DROP_RESTRICT)
heap_truncate_check_FKs(rels, false);
#endif
/*
* If we are asked to restart sequences, find all the sequences, lock them
* (we only need AccessShareLock because that's all that ALTER SEQUENCE
* takes), and check permissions. We want to do this early since it's
* pointless to do all the truncation work only to fail on sequence
* permissions.
*/
if (stmt->restart_seqs)
{
foreach(cell, rels)
{
Relation rel = (Relation) lfirst(cell);
List *seqlist = getOwnedSequences(RelationGetRelid(rel));
ListCell *seqcell;
foreach(seqcell, seqlist)
{
Oid seq_relid = lfirst_oid(seqcell);
Relation seq_rel;
seq_rel = relation_open(seq_relid, AccessShareLock);
/* This check must match AlterSequence! */
if (!pg_class_ownercheck(seq_relid, GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, ACL_KIND_CLASS,
RelationGetRelationName(seq_rel));
seq_relids = lappend_oid(seq_relids, seq_relid);
relation_close(seq_rel, NoLock);
}
}
}
/* Prepare to catch AFTER triggers. */
AfterTriggerBeginQuery();
/*
* To fire triggers, we'll need an EState as well as a ResultRelInfo for
* each relation.
*/
estate = CreateExecutorState();
resultRelInfos = (ResultRelInfo *)
palloc(list_length(rels) * sizeof(ResultRelInfo));
resultRelInfo = resultRelInfos;
foreach(cell, rels)
{
Relation rel = (Relation) lfirst(cell);
InitResultRelInfo(resultRelInfo,
rel,
0, /* dummy rangetable index */
CMD_DELETE, /* don't need any index info */
false);
resultRelInfo++;
}
estate->es_result_relations = resultRelInfos;
estate->es_num_result_relations = list_length(rels);
/*
* Process all BEFORE STATEMENT TRUNCATE triggers before we begin
* truncating (this is because one of them might throw an error). Also, if
* we were to allow them to prevent statement execution, that would need
* to be handled here.
*/
resultRelInfo = resultRelInfos;
foreach(cell, rels)
{
estate->es_result_relation_info = resultRelInfo;
ExecBSTruncateTriggers(estate, resultRelInfo);
resultRelInfo++;
}
/*
* OK, truncate each table.
*/
mySubid = GetCurrentSubTransactionId();
foreach(cell, rels)
{
Relation rel = (Relation) lfirst(cell);
/*
* Normally, we need a transaction-safe truncation here. However,
* if the table was either created in the current (sub)transaction
* or has a new relfilenode in the current (sub)transaction, then
* we can just truncate it in-place, because a rollback would
* cause the whole table or the current physical file to be
* thrown away anyway.
*/
if (rel->rd_createSubid == mySubid ||
rel->rd_newRelfilenodeSubid == mySubid)
{
/* Immediate, non-rollbackable truncation is OK */
heap_truncate_one_rel(rel);
}
else
{
Oid heap_relid;
Oid toast_relid;
/*
* Need the full transaction-safe pushups.
*
* Create a new empty storage file for the relation, and assign it
* as the relfilenode value. The old storage file is scheduled for
* deletion at commit.
*/
setNewRelfilenode(rel, RecentXmin);
heap_relid = RelationGetRelid(rel);
toast_relid = rel->rd_rel->reltoastrelid;
/*
* The same for the toast table, if any.
*/
if (OidIsValid(toast_relid))
{
rel = relation_open(toast_relid, AccessExclusiveLock);
setNewRelfilenode(rel, RecentXmin);
heap_close(rel, NoLock);
}
/*
* Reconstruct the indexes to match, and we're done.
*/
reindex_relation(heap_relid, true);
}
}
/*
* Process all AFTER STATEMENT TRUNCATE triggers.
*/
resultRelInfo = resultRelInfos;
foreach(cell, rels)
{
estate->es_result_relation_info = resultRelInfo;
ExecASTruncateTriggers(estate, resultRelInfo);
resultRelInfo++;
}
/* Handle queued AFTER triggers */
AfterTriggerEndQuery(estate);
/* We can clean up the EState now */
FreeExecutorState(estate);
/* And close the rels (can't do this while EState still holds refs) */
foreach(cell, rels)
{
Relation rel = (Relation) lfirst(cell);
heap_close(rel, NoLock);
}
/*
* Lastly, restart any owned sequences if we were asked to. This is done
* last because it's nontransactional: restarts will not roll back if we
* abort later. Hence it's important to postpone them as long as
* possible. (This is also a big reason why we locked and
* permission-checked the sequences beforehand.)
*/
if (stmt->restart_seqs)
{
List *options = list_make1(makeDefElem("restart", NULL));
foreach(cell, seq_relids)
{
Oid seq_relid = lfirst_oid(cell);
AlterSequenceInternal(seq_relid, options);
}
}
}
/*
2006-10-04 02:30:14 +02:00
* Check that a given rel is safe to truncate. Subroutine for ExecuteTruncate
*/
static void
truncate_check_rel(Relation rel)
{
AclResult aclresult;
/* Only allow truncate on regular tables */
if (rel->rd_rel->relkind != RELKIND_RELATION)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a table",
RelationGetRelationName(rel))));
/* Permissions checks */
aclresult = pg_class_aclcheck(RelationGetRelid(rel), GetUserId(),
ACL_TRUNCATE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, ACL_KIND_CLASS,
RelationGetRelationName(rel));
if (!allowSystemTableMods && IsSystemRelation(rel))
ereport(ERROR,
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
errmsg("permission denied: \"%s\" is a system catalog",
RelationGetRelationName(rel))));
/*
2006-10-04 02:30:14 +02:00
* We can never allow truncation of shared or nailed-in-cache relations,
* because we can't support changing their relfilenode values.
*/
if (rel->rd_rel->relisshared || rel->rd_isnailed)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot truncate system relation \"%s\"",
RelationGetRelationName(rel))));
/*
2006-10-04 02:30:14 +02:00
* Don't allow truncate on temp tables of other backends ... their local
* buffer manager is not going to cope.
*/
if (RELATION_IS_OTHER_TEMP(rel))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2006-10-04 02:30:14 +02:00
errmsg("cannot truncate temporary tables of other sessions")));
/*
* Also check for active uses of the relation in the current transaction,
* including open scans and pending AFTER trigger events.
*/
CheckTableNotInUse(rel, "TRUNCATE");
}
/*
* storage_name
* returns the name corresponding to a typstorage/attstorage enum value
*/
static const char *
storage_name(char c)
{
switch (c)
{
case 'p':
return "PLAIN";
case 'm':
return "MAIN";
case 'x':
return "EXTENDED";
case 'e':
return "EXTERNAL";
default:
return "???";
}
}
/*----------
* MergeAttributes
* Returns new schema given initial schema and superclasses.
*
* Input arguments:
* 'schema' is the column/attribute definition for the table. (It's a list
* of ColumnDef's.) It is destructively changed.
* 'supers' is a list of names (as RangeVar nodes) of parent relations.
* 'istemp' is TRUE if we are creating a temp relation.
*
* Output arguments:
* 'supOids' receives a list of the OIDs of the parent relations.
* 'supconstr' receives a list of constraints belonging to the parents,
* updated as necessary to be valid for the child.
* 'supOidCount' is set to the number of parents that have OID columns.
*
* Return value:
* Completed schema list.
*
* Notes:
* The order in which the attributes are inherited is very important.
* Intuitively, the inherited attributes should come first. If a table
* inherits from multiple parents, the order of those attributes are
* according to the order of the parents specified in CREATE TABLE.
*
* Here's an example:
*
* create table person (name text, age int4, location point);
* create table emp (salary int4, manager text) inherits(person);
* create table student (gpa float8) inherits (person);
* create table stud_emp (percent int4) inherits (emp, student);
*
* The order of the attributes of stud_emp is:
*
* person {1:name, 2:age, 3:location}
* / \
* {6:gpa} student emp {4:salary, 5:manager}
* \ /
* stud_emp {7:percent}
*
* If the same attribute name appears multiple times, then it appears
* in the result table in the proper location for its first appearance.
*
* Constraints (including NOT NULL constraints) for the child table
* are the union of all relevant constraints, from both the child schema
* and parent tables.
*
* The default value for a child column is defined as:
* (1) If the child schema specifies a default, that value is used.
* (2) If neither the child nor any parent specifies a default, then
* the column will not have a default.
* (3) If conflicting defaults are inherited from different parents
* (and not overridden by the child), an error is raised.
* (4) Otherwise the inherited default is used.
* Rule (3) is new in Postgres 7.1; in earlier releases you got a
* rather arbitrary choice of which parent default to use.
*----------
*/
static List *
MergeAttributes(List *schema, List *supers, bool istemp,
List **supOids, List **supconstr, int *supOidCount)
{
ListCell *entry;
List *inhSchema = NIL;
List *parentOids = NIL;
List *constraints = NIL;
int parentsWithOids = 0;
bool have_bogus_defaults = false;
int child_attno;
static Node bogus_marker = { 0 }; /* marks conflicting defaults */
/*
2005-10-15 04:49:52 +02:00
* Check for and reject tables with too many columns. We perform this
* check relatively early for two reasons: (a) we don't run the risk of
* overflowing an AttrNumber in subsequent code (b) an O(n^2) algorithm is
* okay if we're processing <= 1600 columns, but could take minutes to
* execute if the user attempts to create a table with hundreds of
* thousands of columns.
*
2005-10-15 04:49:52 +02:00
* Note that we also need to check that any we do not exceed this figure
* after including columns from inherited relations.
*/
if (list_length(schema) > MaxHeapAttributeNumber)
ereport(ERROR,
(errcode(ERRCODE_TOO_MANY_COLUMNS),
errmsg("tables can have at most %d columns",
MaxHeapAttributeNumber)));
/*
* Check for duplicate names in the explicit list of attributes.
*
2005-10-15 04:49:52 +02:00
* Although we might consider merging such entries in the same way that we
* handle name conflicts for inherited attributes, it seems to make more
* sense to assume such conflicts are errors.
*/
foreach(entry, schema)
{
ColumnDef *coldef = lfirst(entry);
ListCell *rest;
for_each_cell(rest, lnext(entry))
{
ColumnDef *restdef = lfirst(rest);
if (strcmp(coldef->colname, restdef->colname) == 0)
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_COLUMN),
errmsg("column \"%s\" specified more than once",
coldef->colname)));
}
}
/*
2005-10-15 04:49:52 +02:00
* Scan the parents left-to-right, and merge their attributes to form a
* list of inherited attributes (inhSchema). Also check to see if we need
* to inherit an OID column.
*/
child_attno = 0;
foreach(entry, supers)
{
RangeVar *parent = (RangeVar *) lfirst(entry);
Relation relation;
TupleDesc tupleDesc;
TupleConstr *constr;
AttrNumber *newattno;
AttrNumber parent_attno;
relation = heap_openrv(parent, AccessShareLock);
if (relation->rd_rel->relkind != RELKIND_RELATION)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("inherited relation \"%s\" is not a table",
parent->relname)));
/* Permanent rels cannot inherit from temporary ones */
if (!istemp && relation->rd_istemp)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
2005-10-15 04:49:52 +02:00
errmsg("cannot inherit from temporary relation \"%s\"",
parent->relname)));
/*
* We should have an UNDER permission flag for this, but for now,
* demand that creator of a child table own the parent.
*/
if (!pg_class_ownercheck(RelationGetRelid(relation), GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, ACL_KIND_CLASS,
RelationGetRelationName(relation));
/*
* Reject duplications in the list of parents.
*/
if (list_member_oid(parentOids, RelationGetRelid(relation)))
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_TABLE),
2007-11-15 22:14:46 +01:00
errmsg("relation \"%s\" would be inherited from more than once",
parent->relname)));
parentOids = lappend_oid(parentOids, RelationGetRelid(relation));
if (relation->rd_rel->relhasoids)
parentsWithOids++;
tupleDesc = RelationGetDescr(relation);
constr = tupleDesc->constr;
/*
2005-10-15 04:49:52 +02:00
* newattno[] will contain the child-table attribute numbers for the
* attributes of this parent table. (They are not the same for
* parents after the first one, nor if we have dropped columns.)
*/
newattno = (AttrNumber *)
palloc(tupleDesc->natts * sizeof(AttrNumber));
for (parent_attno = 1; parent_attno <= tupleDesc->natts;
parent_attno++)
{
Form_pg_attribute attribute = tupleDesc->attrs[parent_attno - 1];
char *attributeName = NameStr(attribute->attname);
int exist_attno;
ColumnDef *def;
/*
* Ignore dropped columns in the parent.
*/
if (attribute->attisdropped)
{
2002-09-04 22:31:48 +02:00
/*
* change_varattnos_of_a_node asserts that this is greater
2005-10-15 04:49:52 +02:00
* than zero, so if anything tries to use it, we should find
* out.
*/
newattno[parent_attno - 1] = 0;
continue;
}
/*
* Does it conflict with some previously inherited column?
*/
exist_attno = findAttrByName(attributeName, inhSchema);
if (exist_attno > 0)
{
2007-11-15 22:14:46 +01:00
Oid defTypeId;
int32 deftypmod;
/*
* Yes, try to merge the two column definitions. They must
* have the same type and typmod.
*/
ereport(NOTICE,
(errmsg("merging multiple inherited definitions of column \"%s\"",
attributeName)));
def = (ColumnDef *) list_nth(inhSchema, exist_attno - 1);
defTypeId = typenameTypeId(NULL, def->typeName, &deftypmod);
if (defTypeId != attribute->atttypid ||
deftypmod != attribute->atttypmod)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
2005-10-15 04:49:52 +02:00
errmsg("inherited column \"%s\" has a type conflict",
attributeName),
errdetail("%s versus %s",
TypeNameToString(def->typeName),
2005-10-15 04:49:52 +02:00
format_type_be(attribute->atttypid))));
/* Copy storage parameter */
if (def->storage == 0)
def->storage = attribute->attstorage;
else if (def->storage != attribute->attstorage)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("inherited column \"%s\" has a storage parameter conflict",
attributeName),
errdetail("%s versus %s",
storage_name(def->storage),
storage_name(attribute->attstorage))));
def->inhcount++;
/* Merge of NOT NULL constraints = OR 'em together */
def->is_not_null |= attribute->attnotnull;
/* Default and other constraints are handled below */
newattno[parent_attno - 1] = exist_attno;
}
else
{
/*
* No, create a new inherited column
*/
def = makeNode(ColumnDef);
def->colname = pstrdup(attributeName);
def->typeName = makeTypeNameFromOid(attribute->atttypid,
attribute->atttypmod);
def->inhcount = 1;
def->is_local = false;
def->is_not_null = attribute->attnotnull;
def->storage = attribute->attstorage;
def->raw_default = NULL;
def->cooked_default = NULL;
def->constraints = NIL;
inhSchema = lappend(inhSchema, def);
newattno[parent_attno - 1] = ++child_attno;
}
/*
* Copy default if any
*/
if (attribute->atthasdef)
{
Node *this_default = NULL;
AttrDefault *attrdef;
int i;
/* Find default in constraint structure */
Assert(constr != NULL);
attrdef = constr->defval;
for (i = 0; i < constr->num_defval; i++)
{
if (attrdef[i].adnum == parent_attno)
{
this_default = stringToNode(attrdef[i].adbin);
break;
}
}
Assert(this_default != NULL);
/*
2005-10-15 04:49:52 +02:00
* If default expr could contain any vars, we'd need to fix
* 'em, but it can't; so default is ready to apply to child.
*
* If we already had a default from some prior parent, check
* to see if they are the same. If so, no problem; if not,
* mark the column as having a bogus default. Below, we will
2005-10-15 04:49:52 +02:00
* complain if the bogus default isn't overridden by the child
* schema.
*/
Assert(def->raw_default == NULL);
if (def->cooked_default == NULL)
def->cooked_default = this_default;
else if (!equal(def->cooked_default, this_default))
{
def->cooked_default = &bogus_marker;
have_bogus_defaults = true;
}
}
}
/*
* Now copy the CHECK constraints of this parent, adjusting attnos
* using the completed newattno[] map. Identically named constraints
* are merged if possible, else we throw error.
*/
if (constr && constr->num_check > 0)
{
ConstrCheck *check = constr->check;
int i;
for (i = 0; i < constr->num_check; i++)
{
char *name = check[i].ccname;
Node *expr;
/* adjust varattnos of ccbin here */
expr = stringToNode(check[i].ccbin);
change_varattnos_of_a_node(expr, newattno);
/* check for duplicate */
if (!MergeCheckConstraint(constraints, name, expr))
{
/* nope, this is a new one */
CookedConstraint *cooked;
cooked = (CookedConstraint *) palloc(sizeof(CookedConstraint));
cooked->contype = CONSTR_CHECK;
cooked->name = pstrdup(name);
cooked->attnum = 0; /* not used for constraints */
cooked->expr = expr;
cooked->is_local = false;
cooked->inhcount = 1;
constraints = lappend(constraints, cooked);
}
}
}
pfree(newattno);
/*
2005-10-15 04:49:52 +02:00
* Close the parent rel, but keep our AccessShareLock on it until xact
* commit. That will prevent someone else from deleting or ALTERing
* the parent before the child is committed.
*/
heap_close(relation, NoLock);
}
/*
* If we had no inherited attributes, the result schema is just the
2005-10-15 04:49:52 +02:00
* explicitly declared columns. Otherwise, we need to merge the declared
* columns into the inherited schema list.
*/
if (inhSchema != NIL)
{
foreach(entry, schema)
{
ColumnDef *newdef = lfirst(entry);
char *attributeName = newdef->colname;
int exist_attno;
/*
* Does it conflict with some previously inherited column?
*/
exist_attno = findAttrByName(attributeName, inhSchema);
if (exist_attno > 0)
{
ColumnDef *def;
2007-11-15 22:14:46 +01:00
Oid defTypeId,
newTypeId;
int32 deftypmod,
newtypmod;
/*
* Yes, try to merge the two column definitions. They must
* have the same type and typmod.
*/
ereport(NOTICE,
2005-10-15 04:49:52 +02:00
(errmsg("merging column \"%s\" with inherited definition",
attributeName)));
def = (ColumnDef *) list_nth(inhSchema, exist_attno - 1);
defTypeId = typenameTypeId(NULL, def->typeName, &deftypmod);
newTypeId = typenameTypeId(NULL, newdef->typeName, &newtypmod);
if (defTypeId != newTypeId || deftypmod != newtypmod)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
2004-08-29 07:07:03 +02:00
errmsg("column \"%s\" has a type conflict",
attributeName),
errdetail("%s versus %s",
TypeNameToString(def->typeName),
TypeNameToString(newdef->typeName))));
/* Copy storage parameter */
if (def->storage == 0)
def->storage = newdef->storage;
else if (newdef->storage != 0 && def->storage != newdef->storage)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("column \"%s\" has a storage parameter conflict",
attributeName),
errdetail("%s versus %s",
storage_name(def->storage),
storage_name(newdef->storage))));
/* Mark the column as locally defined */
def->is_local = true;
/* Merge of NOT NULL constraints = OR 'em together */
def->is_not_null |= newdef->is_not_null;
/* If new def has a default, override previous default */
if (newdef->raw_default != NULL)
{
def->raw_default = newdef->raw_default;
def->cooked_default = newdef->cooked_default;
}
}
else
{
/*
* No, attach new column to result schema
*/
inhSchema = lappend(inhSchema, newdef);
}
}
schema = inhSchema;
/*
2005-10-15 04:49:52 +02:00
* Check that we haven't exceeded the legal # of columns after merging
* in inherited columns.
*/
if (list_length(schema) > MaxHeapAttributeNumber)
ereport(ERROR,
(errcode(ERRCODE_TOO_MANY_COLUMNS),
errmsg("tables can have at most %d columns",
MaxHeapAttributeNumber)));
}
/*
2005-10-15 04:49:52 +02:00
* If we found any conflicting parent default values, check to make sure
* they were overridden by the child.
*/
if (have_bogus_defaults)
{
foreach(entry, schema)
{
ColumnDef *def = lfirst(entry);
if (def->cooked_default == &bogus_marker)
ereport(ERROR,
(errcode(ERRCODE_INVALID_COLUMN_DEFINITION),
2005-10-15 04:49:52 +02:00
errmsg("column \"%s\" inherits conflicting default values",
def->colname),
errhint("To resolve the conflict, specify a default explicitly.")));
}
}
*supOids = parentOids;
*supconstr = constraints;
*supOidCount = parentsWithOids;
return schema;
}
/*
* MergeCheckConstraint
* Try to merge an inherited CHECK constraint with previous ones
*
* If we inherit identically-named constraints from multiple parents, we must
* merge them, or throw an error if they don't have identical definitions.
*
* constraints is a list of CookedConstraint structs for previous constraints.
*
* Returns TRUE if merged (constraint is a duplicate), or FALSE if it's
* got a so-far-unique name, or throws error if conflict.
*/
static bool
MergeCheckConstraint(List *constraints, char *name, Node *expr)
{
ListCell *lc;
2006-10-04 02:30:14 +02:00
foreach(lc, constraints)
2006-10-04 02:30:14 +02:00
{
CookedConstraint *ccon = (CookedConstraint *) lfirst(lc);
Assert(ccon->contype == CONSTR_CHECK);
/* Non-matching names never conflict */
if (strcmp(ccon->name, name) != 0)
continue;
if (equal(expr, ccon->expr))
{
/* OK to merge */
ccon->inhcount++;
return true;
}
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_OBJECT),
errmsg("check constraint name \"%s\" appears multiple times but with different expressions",
name)));
}
return false;
}
/*
* Replace varattno values in an expression tree according to the given
* map array, that is, varattno N is replaced by newattno[N-1]. It is
* caller's responsibility to ensure that the array is long enough to
* define values for all user varattnos present in the tree. System column
* attnos remain unchanged.
*
* Note that the passed node tree is modified in-place!
*/
void
change_varattnos_of_a_node(Node *node, const AttrNumber *newattno)
{
/* no setup needed, so away we go */
(void) change_varattnos_walker(node, newattno);
}
static bool
change_varattnos_walker(Node *node, const AttrNumber *newattno)
{
if (node == NULL)
return false;
if (IsA(node, Var))
{
Var *var = (Var *) node;
if (var->varlevelsup == 0 && var->varno == 1 &&
var->varattno > 0)
{
/*
2005-10-15 04:49:52 +02:00
* ??? the following may be a problem when the node is multiply
* referenced though stringToNode() doesn't create such a node
* currently.
*/
Assert(newattno[var->varattno - 1] > 0);
var->varattno = var->varoattno = newattno[var->varattno - 1];
}
return false;
}
return expression_tree_walker(node, change_varattnos_walker,
(void *) newattno);
}
/*
* Generate a map for change_varattnos_of_a_node from old and new TupleDesc's,
* matching according to column name.
*/
AttrNumber *
varattnos_map(TupleDesc olddesc, TupleDesc newdesc)
{
AttrNumber *attmap;
int i,
j;
attmap = (AttrNumber *) palloc0(sizeof(AttrNumber) * olddesc->natts);
for (i = 1; i <= olddesc->natts; i++)
{
if (olddesc->attrs[i - 1]->attisdropped)
continue; /* leave the entry as zero */
for (j = 1; j <= newdesc->natts; j++)
{
if (strcmp(NameStr(olddesc->attrs[i - 1]->attname),
NameStr(newdesc->attrs[j - 1]->attname)) == 0)
{
attmap[i - 1] = j;
break;
}
}
}
return attmap;
}
/*
* Generate a map for change_varattnos_of_a_node from a TupleDesc and a list
* of ColumnDefs
*/
AttrNumber *
varattnos_map_schema(TupleDesc old, List *schema)
{
AttrNumber *attmap;
int i;
attmap = (AttrNumber *) palloc0(sizeof(AttrNumber) * old->natts);
for (i = 1; i <= old->natts; i++)
{
if (old->attrs[i - 1]->attisdropped)
continue; /* leave the entry as zero */
attmap[i - 1] = findAttrByName(NameStr(old->attrs[i - 1]->attname),
schema);
}
return attmap;
}
/*
* StoreCatalogInheritance
* Updates the system catalogs with proper inheritance information.
*
* supers is a list of the OIDs of the new relation's direct ancestors.
*/
static void
StoreCatalogInheritance(Oid relationId, List *supers)
{
Relation relation;
int16 seqNumber;
ListCell *entry;
/*
* sanity checks
*/
AssertArg(OidIsValid(relationId));
if (supers == NIL)
return;
/*
2005-10-15 04:49:52 +02:00
* Store INHERITS information in pg_inherits using direct ancestors only.
* Also enter dependencies on the direct ancestors, and make sure they are
* marked with relhassubclass = true.
*
* (Once upon a time, both direct and indirect ancestors were found here
* and then entered into pg_ipl. Since that catalog doesn't exist
* anymore, there's no need to look for indirect ancestors.)
*/
relation = heap_open(InheritsRelationId, RowExclusiveLock);
seqNumber = 1;
foreach(entry, supers)
{
Oid parentOid = lfirst_oid(entry);
StoreCatalogInheritance1(relationId, parentOid, seqNumber, relation);
seqNumber++;
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
}
heap_close(relation, RowExclusiveLock);
}
/*
* Make catalog entries showing relationId as being an inheritance child
* of parentOid. inhRelation is the already-opened pg_inherits catalog.
*/
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
static void
StoreCatalogInheritance1(Oid relationId, Oid parentOid,
int16 seqNumber, Relation inhRelation)
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
{
TupleDesc desc = RelationGetDescr(inhRelation);
2006-10-04 02:30:14 +02:00
Datum datum[Natts_pg_inherits];
bool nullarr[Natts_pg_inherits];
2006-10-04 02:30:14 +02:00
ObjectAddress childobject,
parentobject;
HeapTuple tuple;
/*
* Make the pg_inherits entry
*/
datum[0] = ObjectIdGetDatum(relationId); /* inhrelid */
datum[1] = ObjectIdGetDatum(parentOid); /* inhparent */
datum[2] = Int16GetDatum(seqNumber); /* inhseqno */
nullarr[0] = false;
nullarr[1] = false;
nullarr[2] = false;
tuple = heap_form_tuple(desc, datum, nullarr);
simple_heap_insert(inhRelation, tuple);
CatalogUpdateIndexes(inhRelation, tuple);
heap_freetuple(tuple);
/*
* Store a dependency too
*/
parentobject.classId = RelationRelationId;
parentobject.objectId = parentOid;
parentobject.objectSubId = 0;
childobject.classId = RelationRelationId;
childobject.objectId = relationId;
childobject.objectSubId = 0;
recordDependencyOn(&childobject, &parentobject, DEPENDENCY_NORMAL);
/*
* Mark the parent as having subclasses.
*/
setRelhassubclassInRelation(parentOid, true);
}
/*
* Look for an existing schema entry with the given name.
*
* Returns the index (starting with 1) if attribute already exists in schema,
* 0 if it doesn't.
*/
static int
findAttrByName(const char *attributeName, List *schema)
{
ListCell *s;
int i = 1;
foreach(s, schema)
{
ColumnDef *def = lfirst(s);
if (strcmp(attributeName, def->colname) == 0)
return i;
i++;
}
return 0;
}
/*
* Update a relation's pg_class.relhassubclass entry to the given value
*/
static void
setRelhassubclassInRelation(Oid relationId, bool relhassubclass)
{
Relation relationRelation;
HeapTuple tuple;
Form_pg_class classtuple;
/*
* Fetch a modifiable copy of the tuple, modify it, update pg_class.
*
* If the tuple already has the right relhassubclass setting, we don't
* need to update it, but we still need to issue an SI inval message.
*/
relationRelation = heap_open(RelationRelationId, RowExclusiveLock);
tuple = SearchSysCacheCopy(RELOID,
ObjectIdGetDatum(relationId),
0, 0, 0);
if (!HeapTupleIsValid(tuple))
elog(ERROR, "cache lookup failed for relation %u", relationId);
classtuple = (Form_pg_class) GETSTRUCT(tuple);
if (classtuple->relhassubclass != relhassubclass)
{
classtuple->relhassubclass = relhassubclass;
simple_heap_update(relationRelation, &tuple->t_self, tuple);
/* keep the catalog indexes up to date */
CatalogUpdateIndexes(relationRelation, tuple);
}
else
{
/* no need to change tuple, but force relcache rebuild anyway */
CacheInvalidateRelcacheByTuple(tuple);
}
heap_freetuple(tuple);
heap_close(relationRelation, RowExclusiveLock);
}
/*
* renameatt - changes the name of a attribute in a relation
*
* Attname attribute is changed in attribute catalog.
* No record of the previous attname is kept (correct?).
*
* get proper relrelation from relation catalog (if not arg)
* scan attribute catalog
* for name conflict (within rel)
* for original attribute (if not arg)
* modify attname in attribute tuple
* insert modified attribute in attribute catalog
* delete original attribute from attribute catalog
*/
void
renameatt(Oid myrelid,
const char *oldattname,
const char *newattname,
bool recurse,
bool recursing)
{
Relation targetrelation;
Relation attrelation;
HeapTuple atttup;
Form_pg_attribute attform;
int attnum;
List *indexoidlist;
ListCell *indexoidscan;
/*
2005-10-15 04:49:52 +02:00
* Grab an exclusive lock on the target table, which we will NOT release
* until end of transaction.
*/
targetrelation = relation_open(myrelid, AccessExclusiveLock);
/*
2005-10-15 04:49:52 +02:00
* permissions checking. this would normally be done in utility.c, but
* this particular routine is recursive.
*
* normally, only the owner of a class can change its schema.
*/
if (!pg_class_ownercheck(myrelid, GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, ACL_KIND_CLASS,
RelationGetRelationName(targetrelation));
if (!allowSystemTableMods && IsSystemRelation(targetrelation))
ereport(ERROR,
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
errmsg("permission denied: \"%s\" is a system catalog",
RelationGetRelationName(targetrelation))));
/*
* if the 'recurse' flag is set then we are supposed to rename this
* attribute in all classes that inherit from 'relname' (as well as in
* 'relname').
*
* any permissions or problems with duplicate attributes will cause the
* whole transaction to abort, which is what we want -- all or nothing.
*/
if (recurse)
{
ListCell *child;
List *children;
children = find_all_inheritors(myrelid, AccessExclusiveLock);
/*
2005-10-15 04:49:52 +02:00
* find_all_inheritors does the recursive search of the inheritance
* hierarchy, so all we have to do is process all of the relids in the
* list that it returns.
*/
foreach(child, children)
{
Oid childrelid = lfirst_oid(child);
if (childrelid == myrelid)
continue;
/* note we need not recurse again */
renameatt(childrelid, oldattname, newattname, false, true);
}
}
else
{
/*
2005-10-15 04:49:52 +02:00
* If we are told not to recurse, there had better not be any child
* tables; else the rename would put them out of step.
*/
if (!recursing &&
find_inheritance_children(myrelid, NoLock) != NIL)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
errmsg("inherited column \"%s\" must be renamed in child tables too",
oldattname)));
}
attrelation = heap_open(AttributeRelationId, RowExclusiveLock);
2001-03-22 05:01:46 +01:00
atttup = SearchSysCacheCopyAttName(myrelid, oldattname);
if (!HeapTupleIsValid(atttup))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("column \"%s\" does not exist",
oldattname)));
attform = (Form_pg_attribute) GETSTRUCT(atttup);
attnum = attform->attnum;
if (attnum <= 0)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot rename system column \"%s\"",
oldattname)));
/*
2002-09-04 22:31:48 +02:00
* if the attribute is inherited, forbid the renaming, unless we are
* already inside a recursive rename.
*/
if (attform->attinhcount > 0 && !recursing)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
errmsg("cannot rename inherited column \"%s\"",
oldattname)));
/* should not already exist */
/* this test is deliberately not attisdropped-aware */
if (SearchSysCacheExists(ATTNAME,
ObjectIdGetDatum(myrelid),
PointerGetDatum(newattname),
0, 0))
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_COLUMN),
2004-08-29 07:07:03 +02:00
errmsg("column \"%s\" of relation \"%s\" already exists",
2005-10-15 04:49:52 +02:00
newattname, RelationGetRelationName(targetrelation))));
namestrcpy(&(attform->attname), newattname);
simple_heap_update(attrelation, &atttup->t_self, atttup);
/* keep system catalog indexes current */
CatalogUpdateIndexes(attrelation, atttup);
heap_freetuple(atttup);
/*
2005-10-15 04:49:52 +02:00
* Update column names of indexes that refer to the column being renamed.
*/
indexoidlist = RelationGetIndexList(targetrelation);
foreach(indexoidscan, indexoidlist)
{
Oid indexoid = lfirst_oid(indexoidscan);
HeapTuple indextup;
Form_pg_index indexform;
int i;
/*
* Scan through index columns to see if there's any simple index
2003-08-04 02:43:34 +02:00
* entries for this attribute. We ignore expressional entries.
*/
indextup = SearchSysCache(INDEXRELID,
ObjectIdGetDatum(indexoid),
0, 0, 0);
if (!HeapTupleIsValid(indextup))
elog(ERROR, "cache lookup failed for index %u", indexoid);
indexform = (Form_pg_index) GETSTRUCT(indextup);
for (i = 0; i < indexform->indnatts; i++)
{
if (attnum != indexform->indkey.values[i])
continue;
2003-08-04 02:43:34 +02:00
/*
* Found one, rename it.
*/
atttup = SearchSysCacheCopy(ATTNUM,
ObjectIdGetDatum(indexoid),
Int16GetDatum(i + 1),
0, 0);
if (!HeapTupleIsValid(atttup))
continue; /* should we raise an error? */
2003-08-04 02:43:34 +02:00
/*
* Update the (copied) attribute tuple.
*/
namestrcpy(&(((Form_pg_attribute) GETSTRUCT(atttup))->attname),
newattname);
simple_heap_update(attrelation, &atttup->t_self, atttup);
/* keep system catalog indexes current */
CatalogUpdateIndexes(attrelation, atttup);
heap_freetuple(atttup);
}
ReleaseSysCache(indextup);
}
list_free(indexoidlist);
heap_close(attrelation, RowExclusiveLock);
relation_close(targetrelation, NoLock); /* close rel but keep lock */
}
/*
* Execute ALTER TABLE/INDEX/SEQUENCE/VIEW RENAME
*
* Caller has already done permissions checks.
*/
void
RenameRelation(Oid myrelid, const char *newrelname, ObjectType reltype)
{
Relation targetrelation;
Oid namespaceId;
char relkind;
/*
2007-11-15 22:14:46 +01:00
* Grab an exclusive lock on the target table, index, sequence or view,
* which we will NOT release until end of transaction.
*/
targetrelation = relation_open(myrelid, AccessExclusiveLock);
namespaceId = RelationGetNamespace(targetrelation);
relkind = targetrelation->rd_rel->relkind;
/*
2007-11-15 22:14:46 +01:00
* For compatibility with prior releases, we don't complain if ALTER TABLE
* or ALTER INDEX is used to rename a sequence or view.
*/
if (reltype == OBJECT_SEQUENCE && relkind != RELKIND_SEQUENCE)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a sequence",
RelationGetRelationName(targetrelation))));
if (reltype == OBJECT_VIEW && relkind != RELKIND_VIEW)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a view",
RelationGetRelationName(targetrelation))));
/*
* Don't allow ALTER TABLE on composite types. We want people to use ALTER
* TYPE for that.
*/
if (relkind == RELKIND_COMPOSITE_TYPE)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is a composite type",
RelationGetRelationName(targetrelation)),
errhint("Use ALTER TYPE instead.")));
/* Do the work */
RenameRelationInternal(myrelid, newrelname, namespaceId);
/*
* Close rel, but keep exclusive lock!
*/
relation_close(targetrelation, NoLock);
}
/*
* RenameRelationInternal - change the name of a relation
*
* XXX - When renaming sequences, we don't bother to modify the
* sequence name that is stored within the sequence itself
* (this would cause problems with MVCC). In the future,
* the sequence name should probably be removed from the
* sequence, AFAIK there's no need for it to be there.
*/
void
RenameRelationInternal(Oid myrelid, const char *newrelname, Oid namespaceId)
{
Relation targetrelation;
Relation relrelation; /* for RELATION relation */
HeapTuple reltup;
Form_pg_class relform;
/*
* Grab an exclusive lock on the target table, index, sequence or view,
* which we will NOT release until end of transaction.
*/
targetrelation = relation_open(myrelid, AccessExclusiveLock);
/*
2005-10-15 04:49:52 +02:00
* Find relation's pg_class tuple, and make sure newrelname isn't in use.
*/
relrelation = heap_open(RelationRelationId, RowExclusiveLock);
reltup = SearchSysCacheCopy(RELOID,
ObjectIdGetDatum(myrelid),
0, 0, 0);
2003-08-04 02:43:34 +02:00
if (!HeapTupleIsValid(reltup)) /* shouldn't happen */
elog(ERROR, "cache lookup failed for relation %u", myrelid);
relform = (Form_pg_class) GETSTRUCT(reltup);
if (get_relname_relid(newrelname, namespaceId) != InvalidOid)
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_TABLE),
errmsg("relation \"%s\" already exists",
newrelname)));
/*
2005-10-15 04:49:52 +02:00
* Update pg_class tuple with new relname. (Scribbling on reltup is OK
* because it's a copy...)
*/
namestrcpy(&(relform->relname), newrelname);
simple_heap_update(relrelation, &reltup->t_self, reltup);
/* keep the system catalog indexes current */
CatalogUpdateIndexes(relrelation, reltup);
heap_freetuple(reltup);
heap_close(relrelation, RowExclusiveLock);
/*
* Also rename the associated type, if any.
*/
if (OidIsValid(targetrelation->rd_rel->reltype))
RenameTypeInternal(targetrelation->rd_rel->reltype,
newrelname, namespaceId);
/*
* Also rename the associated constraint, if any.
*/
if (targetrelation->rd_rel->relkind == RELKIND_INDEX)
{
Oid constraintId = get_index_constraint(myrelid);
if (OidIsValid(constraintId))
RenameConstraintById(constraintId, newrelname);
}
/*
* Close rel, but keep exclusive lock!
*/
relation_close(targetrelation, NoLock);
}
/*
* Disallow ALTER TABLE (and similar commands) when the current backend has
* any open reference to the target table besides the one just acquired by
* the calling command; this implies there's an open cursor or active plan.
* We need this check because our AccessExclusiveLock doesn't protect us
* against stomping on our own foot, only other people's feet!
*
* For ALTER TABLE, the only case known to cause serious trouble is ALTER
* COLUMN TYPE, and some changes are obviously pretty benign, so this could
* possibly be relaxed to only error out for certain types of alterations.
* But the use-case for allowing any of these things is not obvious, so we
* won't work hard at it for now.
*
* We also reject these commands if there are any pending AFTER trigger events
* for the rel. This is certainly necessary for the rewriting variants of
* ALTER TABLE, because they don't preserve tuple TIDs and so the pending
* events would try to fetch the wrong tuples. It might be overly cautious
* in other cases, but again it seems better to err on the side of paranoia.
*
* REINDEX calls this with "rel" referencing the index to be rebuilt; here
* we are worried about active indexscans on the index. The trigger-event
* check can be skipped, since we are doing no damage to the parent table.
*
* The statement name (eg, "ALTER TABLE") is passed for use in error messages.
*/
void
CheckTableNotInUse(Relation rel, const char *stmt)
{
int expected_refcnt;
expected_refcnt = rel->rd_isnailed ? 2 : 1;
if (rel->rd_refcnt != expected_refcnt)
ereport(ERROR,
(errcode(ERRCODE_OBJECT_IN_USE),
/* translator: first %s is a SQL command, eg ALTER TABLE */
errmsg("cannot %s \"%s\" because "
"it is being used by active queries in this session",
stmt, RelationGetRelationName(rel))));
if (rel->rd_rel->relkind != RELKIND_INDEX &&
AfterTriggerPendingOnRel(RelationGetRelid(rel)))
ereport(ERROR,
(errcode(ERRCODE_OBJECT_IN_USE),
/* translator: first %s is a SQL command, eg ALTER TABLE */
errmsg("cannot %s \"%s\" because "
"it has pending trigger events",
stmt, RelationGetRelationName(rel))));
}
/*
* AlterTable
* Execute ALTER TABLE, which can be a list of subcommands
*
* ALTER TABLE is performed in three phases:
* 1. Examine subcommands and perform pre-transformation checking.
* 2. Update system catalogs.
* 3. Scan table(s) to check new constraints, and optionally recopy
* the data into new table(s).
* Phase 3 is not performed unless one or more of the subcommands requires
2004-08-29 07:07:03 +02:00
* it. The intention of this design is to allow multiple independent
* updates of the table schema to be performed with only one pass over the
* data.
*
2004-08-29 07:07:03 +02:00
* ATPrepCmd performs phase 1. A "work queue" entry is created for
* each table to be affected (there may be multiple affected tables if the
* commands traverse a table inheritance hierarchy). Also we do preliminary
* validation of the subcommands, including parse transformation of those
* expressions that need to be evaluated with respect to the old table
* schema.
*
* ATRewriteCatalogs performs phase 2 for each affected table. (Note that
* phases 2 and 3 normally do no explicit recursion, since phase 1 already
* did it --- although some subcommands have to recurse in phase 2 instead.)
* Certain subcommands need to be performed before others to avoid
* unnecessary conflicts; for example, DROP COLUMN should come before
2004-08-29 07:07:03 +02:00
* ADD COLUMN. Therefore phase 1 divides the subcommands into multiple
* lists, one for each logical "pass" of phase 2.
*
* ATRewriteTables performs phase 3 for those tables that need it.
*
* Thanks to the magic of MVCC, an error anywhere along the way rolls back
* the whole operation; we don't have to do anything special to clean up.
*/
void
AlterTable(AlterTableStmt *stmt)
{
2007-11-15 22:14:46 +01:00
Relation rel = relation_openrv(stmt->relation, AccessExclusiveLock);
CheckTableNotInUse(rel, "ALTER TABLE");
/* Check relation type against type specified in the ALTER command */
switch (stmt->relkind)
{
case OBJECT_TABLE:
/*
* For mostly-historical reasons, we allow ALTER TABLE to apply to
* all relation types.
*/
break;
case OBJECT_INDEX:
if (rel->rd_rel->relkind != RELKIND_INDEX)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not an index",
RelationGetRelationName(rel))));
break;
case OBJECT_SEQUENCE:
if (rel->rd_rel->relkind != RELKIND_SEQUENCE)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a sequence",
RelationGetRelationName(rel))));
break;
case OBJECT_VIEW:
if (rel->rd_rel->relkind != RELKIND_VIEW)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a view",
RelationGetRelationName(rel))));
break;
default:
elog(ERROR, "unrecognized object type: %d", (int) stmt->relkind);
}
ATController(rel, stmt->cmds, interpretInhOption(stmt->relation->inhOpt));
}
/*
* AlterTableInternal
*
* ALTER TABLE with target specified by OID
*
* We do not reject if the relation is already open, because it's quite
* likely that one or more layers of caller have it open. That means it
* is unsafe to use this entry point for alterations that could break
* existing query plans. On the assumption it's not used for such, we
* don't have to reject pending AFTER triggers, either.
*/
void
AlterTableInternal(Oid relid, List *cmds, bool recurse)
{
2007-11-15 22:14:46 +01:00
Relation rel = relation_open(relid, AccessExclusiveLock);
ATController(rel, cmds, recurse);
}
static void
ATController(Relation rel, List *cmds, bool recurse)
{
List *wqueue = NIL;
ListCell *lcmd;
/* Phase 1: preliminary examination of commands, create work queue */
foreach(lcmd, cmds)
{
AlterTableCmd *cmd = (AlterTableCmd *) lfirst(lcmd);
ATPrepCmd(&wqueue, rel, cmd, recurse, false);
}
/* Close the relation, but keep lock until commit */
relation_close(rel, NoLock);
/* Phase 2: update system catalogs */
ATRewriteCatalogs(&wqueue);
/* Phase 3: scan/rewrite tables as needed */
ATRewriteTables(&wqueue);
}
/*
* ATPrepCmd
*
* Traffic cop for ALTER TABLE Phase 1 operations, including simple
* recursion and permission checks.
*
* Caller must have acquired AccessExclusiveLock on relation already.
* This lock should be held until commit.
*/
static void
ATPrepCmd(List **wqueue, Relation rel, AlterTableCmd *cmd,
bool recurse, bool recursing)
{
AlteredTableInfo *tab;
int pass;
/* Find or create work queue entry for this table */
tab = ATGetQueueEntry(wqueue, rel);
/*
* Copy the original subcommand for each table. This avoids conflicts
* when different child tables need to make different parse
2005-10-15 04:49:52 +02:00
* transformations (for example, the same column may have different column
* numbers in different children).
*/
cmd = copyObject(cmd);
/*
2005-10-15 04:49:52 +02:00
* Do permissions checking, recursion to child tables if needed, and any
* additional phase-1 processing needed.
*/
switch (cmd->subtype)
{
case AT_AddColumn: /* ADD COLUMN */
ATSimplePermissions(rel, false);
/* Performs own recursion */
ATPrepAddColumn(wqueue, rel, recurse, cmd);
pass = AT_PASS_ADD_COL;
break;
case AT_AddColumnToView: /* add column via CREATE OR REPLACE
* VIEW */
ATSimplePermissions(rel, true);
/* Performs own recursion */
ATPrepAddColumn(wqueue, rel, recurse, cmd);
pass = AT_PASS_ADD_COL;
break;
case AT_ColumnDefault: /* ALTER COLUMN DEFAULT */
2004-08-29 07:07:03 +02:00
/*
2005-10-15 04:49:52 +02:00
* We allow defaults on views so that INSERT into a view can have
* default-ish behavior. This works because the rewriter
* substitutes default values into INSERTs before it expands
* rules.
*/
ATSimplePermissions(rel, true);
ATSimpleRecursion(wqueue, rel, cmd, recurse);
/* No command-specific prep needed */
pass = cmd->def ? AT_PASS_ADD_CONSTR : AT_PASS_DROP;
break;
case AT_DropNotNull: /* ALTER COLUMN DROP NOT NULL */
ATSimplePermissions(rel, false);
ATSimpleRecursion(wqueue, rel, cmd, recurse);
/* No command-specific prep needed */
pass = AT_PASS_DROP;
break;
case AT_SetNotNull: /* ALTER COLUMN SET NOT NULL */
ATSimplePermissions(rel, false);
ATSimpleRecursion(wqueue, rel, cmd, recurse);
/* No command-specific prep needed */
pass = AT_PASS_ADD_CONSTR;
break;
case AT_SetStatistics: /* ALTER COLUMN SET STATISTICS */
ATSimpleRecursion(wqueue, rel, cmd, recurse);
/* Performs own permission checks */
ATPrepSetStatistics(rel, cmd->name, cmd->def);
pass = AT_PASS_COL_ATTRS;
break;
case AT_SetDistinct: /* ALTER COLUMN SET STATISTICS DISTINCT */
ATSimpleRecursion(wqueue, rel, cmd, recurse);
/* Performs own permission checks */
ATPrepSetDistinct(rel, cmd->name, cmd->def);
pass = AT_PASS_COL_ATTRS;
break;
case AT_SetStorage: /* ALTER COLUMN SET STORAGE */
ATSimplePermissions(rel, false);
ATSimpleRecursion(wqueue, rel, cmd, recurse);
/* No command-specific prep needed */
pass = AT_PASS_COL_ATTRS;
break;
case AT_DropColumn: /* DROP COLUMN */
ATSimplePermissions(rel, false);
/* Recursion occurs during execution phase */
/* No command-specific prep needed except saving recurse flag */
if (recurse)
cmd->subtype = AT_DropColumnRecurse;
pass = AT_PASS_DROP;
break;
case AT_AddIndex: /* ADD INDEX */
ATSimplePermissions(rel, false);
/* This command never recurses */
/* No command-specific prep needed */
pass = AT_PASS_ADD_INDEX;
break;
case AT_AddConstraint: /* ADD CONSTRAINT */
ATSimplePermissions(rel, false);
/* Recursion occurs during execution phase */
/* No command-specific prep needed except saving recurse flag */
if (recurse)
cmd->subtype = AT_AddConstraintRecurse;
pass = AT_PASS_ADD_CONSTR;
break;
case AT_DropConstraint: /* DROP CONSTRAINT */
ATSimplePermissions(rel, false);
/* Recursion occurs during execution phase */
/* No command-specific prep needed except saving recurse flag */
if (recurse)
cmd->subtype = AT_DropConstraintRecurse;
pass = AT_PASS_DROP;
break;
2004-08-29 07:07:03 +02:00
case AT_AlterColumnType: /* ALTER COLUMN TYPE */
ATSimplePermissions(rel, false);
/* Performs own recursion */
ATPrepAlterColumnType(wqueue, tab, rel, recurse, recursing, cmd);
pass = AT_PASS_ALTER_TYPE;
break;
case AT_ChangeOwner: /* ALTER OWNER */
/* This command never recurses */
/* No command-specific prep needed */
pass = AT_PASS_MISC;
break;
2004-08-29 07:07:03 +02:00
case AT_ClusterOn: /* CLUSTER ON */
case AT_DropCluster: /* SET WITHOUT CLUSTER */
ATSimplePermissions(rel, false);
/* These commands never recurse */
/* No command-specific prep needed */
pass = AT_PASS_MISC;
break;
case AT_AddOids: /* SET WITH OIDS */
ATSimplePermissions(rel, false);
/* Performs own recursion */
if (!rel->rd_rel->relhasoids || recursing)
ATPrepAddOids(wqueue, rel, recurse, cmd);
pass = AT_PASS_ADD_COL;
break;
2004-08-29 07:07:03 +02:00
case AT_DropOids: /* SET WITHOUT OIDS */
ATSimplePermissions(rel, false);
/* Performs own recursion */
if (rel->rd_rel->relhasoids)
{
AlterTableCmd *dropCmd = makeNode(AlterTableCmd);
dropCmd->subtype = AT_DropColumn;
dropCmd->name = pstrdup("oid");
dropCmd->behavior = cmd->behavior;
ATPrepCmd(wqueue, rel, dropCmd, recurse, false);
}
pass = AT_PASS_DROP;
break;
case AT_SetTableSpace: /* SET TABLESPACE */
ATSimplePermissionsRelationOrIndex(rel);
/* This command never recurses */
ATPrepSetTableSpace(tab, rel, cmd->name);
2004-08-29 07:07:03 +02:00
pass = AT_PASS_MISC; /* doesn't actually matter */
break;
2006-10-04 02:30:14 +02:00
case AT_SetRelOptions: /* SET (...) */
case AT_ResetRelOptions: /* RESET (...) */
ATSimplePermissionsRelationOrIndex(rel);
/* This command never recurses */
/* No command-specific prep needed */
pass = AT_PASS_MISC;
break;
case AT_EnableTrig: /* ENABLE TRIGGER variants */
Changes pg_trigger and extend pg_rewrite in order to allow triggers and rules to be defined with different, per session controllable, behaviors for replication purposes. This will allow replication systems like Slony-I and, as has been stated on pgsql-hackers, other products to control the firing mechanism of triggers and rewrite rules without modifying the system catalog directly. The firing mechanisms are controlled by a new superuser-only GUC variable, session_replication_role, together with a change to pg_trigger.tgenabled and a new column pg_rewrite.ev_enabled. Both columns are a single char data type now (tgenabled was a bool before). The possible values in these attributes are: 'O' - Trigger/Rule fires when session_replication_role is "origin" (default) or "local". This is the default behavior. 'D' - Trigger/Rule is disabled and fires never 'A' - Trigger/Rule fires always regardless of the setting of session_replication_role 'R' - Trigger/Rule fires when session_replication_role is "replica" The GUC variable can only be changed as long as the system does not have any cached query plans. This will prevent changing the session role and accidentally executing stored procedures or functions that have plans cached that expand to the wrong query set due to differences in the rule firing semantics. The SQL syntax for changing a triggers/rules firing semantics is ALTER TABLE <tabname> <when> TRIGGER|RULE <name>; <when> ::= ENABLE | ENABLE ALWAYS | ENABLE REPLICA | DISABLE psql's \d command as well as pg_dump are extended in a backward compatible fashion. Jan
2007-03-20 00:38:32 +01:00
case AT_EnableAlwaysTrig:
case AT_EnableReplicaTrig:
case AT_EnableTrigAll:
case AT_EnableTrigUser:
case AT_DisableTrig: /* DISABLE TRIGGER variants */
case AT_DisableTrigAll:
case AT_DisableTrigUser:
Changes pg_trigger and extend pg_rewrite in order to allow triggers and rules to be defined with different, per session controllable, behaviors for replication purposes. This will allow replication systems like Slony-I and, as has been stated on pgsql-hackers, other products to control the firing mechanism of triggers and rewrite rules without modifying the system catalog directly. The firing mechanisms are controlled by a new superuser-only GUC variable, session_replication_role, together with a change to pg_trigger.tgenabled and a new column pg_rewrite.ev_enabled. Both columns are a single char data type now (tgenabled was a bool before). The possible values in these attributes are: 'O' - Trigger/Rule fires when session_replication_role is "origin" (default) or "local". This is the default behavior. 'D' - Trigger/Rule is disabled and fires never 'A' - Trigger/Rule fires always regardless of the setting of session_replication_role 'R' - Trigger/Rule fires when session_replication_role is "replica" The GUC variable can only be changed as long as the system does not have any cached query plans. This will prevent changing the session role and accidentally executing stored procedures or functions that have plans cached that expand to the wrong query set due to differences in the rule firing semantics. The SQL syntax for changing a triggers/rules firing semantics is ALTER TABLE <tabname> <when> TRIGGER|RULE <name>; <when> ::= ENABLE | ENABLE ALWAYS | ENABLE REPLICA | DISABLE psql's \d command as well as pg_dump are extended in a backward compatible fashion. Jan
2007-03-20 00:38:32 +01:00
case AT_EnableRule: /* ENABLE/DISABLE RULE variants */
case AT_EnableAlwaysRule:
case AT_EnableReplicaRule:
case AT_DisableRule:
case AT_AddInherit: /* INHERIT / NO INHERIT */
case AT_DropInherit:
ATSimplePermissions(rel, false);
/* These commands never recurse */
/* No command-specific prep needed */
pass = AT_PASS_MISC;
break;
2004-08-29 07:07:03 +02:00
default: /* oops */
elog(ERROR, "unrecognized alter table type: %d",
(int) cmd->subtype);
pass = 0; /* keep compiler quiet */
break;
}
/* Add the subcommand to the appropriate list for phase 2 */
tab->subcmds[pass] = lappend(tab->subcmds[pass], cmd);
}
/*
* ATRewriteCatalogs
*
2004-08-29 07:07:03 +02:00
* Traffic cop for ALTER TABLE Phase 2 operations. Subcommands are
* dispatched in a "safe" execution order (designed to avoid unnecessary
* conflicts).
*/
static void
ATRewriteCatalogs(List **wqueue)
{
int pass;
ListCell *ltab;
/*
2005-10-15 04:49:52 +02:00
* We process all the tables "in parallel", one pass at a time. This is
* needed because we may have to propagate work from one table to another
* (specifically, ALTER TYPE on a foreign key's PK has to dispatch the
* re-adding of the foreign key constraint to the other table). Work can
* only be propagated into later passes, however.
*/
for (pass = 0; pass < AT_NUM_PASSES; pass++)
{
/* Go through each table that needs to be processed */
foreach(ltab, *wqueue)
{
AlteredTableInfo *tab = (AlteredTableInfo *) lfirst(ltab);
List *subcmds = tab->subcmds[pass];
Relation rel;
ListCell *lcmd;
if (subcmds == NIL)
continue;
2004-08-29 07:07:03 +02:00
/*
2005-10-15 04:49:52 +02:00
* Exclusive lock was obtained by phase 1, needn't get it again
2004-08-29 07:07:03 +02:00
*/
rel = relation_open(tab->relid, NoLock);
foreach(lcmd, subcmds)
ATExecCmd(wqueue, tab, rel, (AlterTableCmd *) lfirst(lcmd));
/*
2005-10-15 04:49:52 +02:00
* After the ALTER TYPE pass, do cleanup work (this is not done in
* ATExecAlterColumnType since it should be done only once if
* multiple columns of a table are altered).
*/
if (pass == AT_PASS_ALTER_TYPE)
ATPostAlterTypeCleanup(wqueue, tab);
relation_close(rel, NoLock);
}
}
/*
* Check to see if a toast table must be added, if we executed any
* subcommands that might have added a column or changed column storage.
*/
foreach(ltab, *wqueue)
{
AlteredTableInfo *tab = (AlteredTableInfo *) lfirst(ltab);
if (tab->relkind == RELKIND_RELATION &&
(tab->subcmds[AT_PASS_ADD_COL] ||
tab->subcmds[AT_PASS_ALTER_TYPE] ||
tab->subcmds[AT_PASS_COL_ATTRS]))
AlterTableCreateToastTable(tab->relid, InvalidOid,
(Datum) 0, false);
}
}
/*
* ATExecCmd: dispatch a subcommand to appropriate execution routine
*/
static void
ATExecCmd(List **wqueue, AlteredTableInfo *tab, Relation rel,
AlterTableCmd *cmd)
{
switch (cmd->subtype)
{
case AT_AddColumn: /* ADD COLUMN */
case AT_AddColumnToView: /* add column via CREATE OR REPLACE
* VIEW */
ATExecAddColumn(tab, rel, (ColumnDef *) cmd->def, false);
break;
case AT_ColumnDefault: /* ALTER COLUMN DEFAULT */
ATExecColumnDefault(rel, cmd->name, cmd->def);
break;
case AT_DropNotNull: /* ALTER COLUMN DROP NOT NULL */
ATExecDropNotNull(rel, cmd->name);
break;
case AT_SetNotNull: /* ALTER COLUMN SET NOT NULL */
ATExecSetNotNull(tab, rel, cmd->name);
break;
case AT_SetStatistics: /* ALTER COLUMN SET STATISTICS */
ATExecSetStatistics(rel, cmd->name, cmd->def);
break;
case AT_SetDistinct: /* ALTER COLUMN SET STATISTICS DISTINCT */
ATExecSetDistinct(rel, cmd->name, cmd->def);
break;
case AT_SetStorage: /* ALTER COLUMN SET STORAGE */
ATExecSetStorage(rel, cmd->name, cmd->def);
break;
case AT_DropColumn: /* DROP COLUMN */
ATExecDropColumn(wqueue, rel, cmd->name,
cmd->behavior, false, false, cmd->missing_ok);
break;
2004-08-29 07:07:03 +02:00
case AT_DropColumnRecurse: /* DROP COLUMN with recursion */
ATExecDropColumn(wqueue, rel, cmd->name,
cmd->behavior, true, false, cmd->missing_ok);
break;
case AT_AddIndex: /* ADD INDEX */
ATExecAddIndex(tab, rel, (IndexStmt *) cmd->def, false);
break;
case AT_ReAddIndex: /* ADD INDEX */
ATExecAddIndex(tab, rel, (IndexStmt *) cmd->def, true);
break;
case AT_AddConstraint: /* ADD CONSTRAINT */
ATExecAddConstraint(wqueue, tab, rel, (Constraint *) cmd->def,
false);
break;
case AT_AddConstraintRecurse: /* ADD CONSTRAINT with recursion */
ATExecAddConstraint(wqueue, tab, rel, (Constraint *) cmd->def,
true);
break;
case AT_DropConstraint: /* DROP CONSTRAINT */
ATExecDropConstraint(rel, cmd->name, cmd->behavior,
false, false,
cmd->missing_ok);
break;
case AT_DropConstraintRecurse: /* DROP CONSTRAINT with recursion */
ATExecDropConstraint(rel, cmd->name, cmd->behavior,
true, false,
cmd->missing_ok);
break;
2004-08-29 07:07:03 +02:00
case AT_AlterColumnType: /* ALTER COLUMN TYPE */
ATExecAlterColumnType(tab, rel, cmd->name, (TypeName *) cmd->def);
break;
case AT_ChangeOwner: /* ALTER OWNER */
ATExecChangeOwner(RelationGetRelid(rel),
get_roleid_checked(cmd->name),
false);
break;
case AT_ClusterOn: /* CLUSTER ON */
ATExecClusterOn(rel, cmd->name);
break;
2004-08-29 07:07:03 +02:00
case AT_DropCluster: /* SET WITHOUT CLUSTER */
ATExecDropCluster(rel);
break;
case AT_AddOids: /* SET WITH OIDS */
/* Use the ADD COLUMN code, unless prep decided to do nothing */
if (cmd->def != NULL)
ATExecAddColumn(tab, rel, (ColumnDef *) cmd->def, true);
break;
case AT_DropOids: /* SET WITHOUT OIDS */
2004-08-29 07:07:03 +02:00
/*
2004-08-29 07:07:03 +02:00
* Nothing to do here; we'll have generated a DropColumn
* subcommand to do the real work
*/
break;
2004-08-29 07:07:03 +02:00
case AT_SetTableSpace: /* SET TABLESPACE */
/*
* Nothing to do here; Phase 3 does the work
*/
break;
2006-10-04 02:30:14 +02:00
case AT_SetRelOptions: /* SET (...) */
ATExecSetRelOptions(rel, (List *) cmd->def, false);
break;
2006-10-04 02:30:14 +02:00
case AT_ResetRelOptions: /* RESET (...) */
ATExecSetRelOptions(rel, (List *) cmd->def, true);
break;
Changes pg_trigger and extend pg_rewrite in order to allow triggers and rules to be defined with different, per session controllable, behaviors for replication purposes. This will allow replication systems like Slony-I and, as has been stated on pgsql-hackers, other products to control the firing mechanism of triggers and rewrite rules without modifying the system catalog directly. The firing mechanisms are controlled by a new superuser-only GUC variable, session_replication_role, together with a change to pg_trigger.tgenabled and a new column pg_rewrite.ev_enabled. Both columns are a single char data type now (tgenabled was a bool before). The possible values in these attributes are: 'O' - Trigger/Rule fires when session_replication_role is "origin" (default) or "local". This is the default behavior. 'D' - Trigger/Rule is disabled and fires never 'A' - Trigger/Rule fires always regardless of the setting of session_replication_role 'R' - Trigger/Rule fires when session_replication_role is "replica" The GUC variable can only be changed as long as the system does not have any cached query plans. This will prevent changing the session role and accidentally executing stored procedures or functions that have plans cached that expand to the wrong query set due to differences in the rule firing semantics. The SQL syntax for changing a triggers/rules firing semantics is ALTER TABLE <tabname> <when> TRIGGER|RULE <name>; <when> ::= ENABLE | ENABLE ALWAYS | ENABLE REPLICA | DISABLE psql's \d command as well as pg_dump are extended in a backward compatible fashion. Jan
2007-03-20 00:38:32 +01:00
2007-11-15 22:14:46 +01:00
case AT_EnableTrig: /* ENABLE TRIGGER name */
ATExecEnableDisableTrigger(rel, cmd->name,
TRIGGER_FIRES_ON_ORIGIN, false);
Changes pg_trigger and extend pg_rewrite in order to allow triggers and rules to be defined with different, per session controllable, behaviors for replication purposes. This will allow replication systems like Slony-I and, as has been stated on pgsql-hackers, other products to control the firing mechanism of triggers and rewrite rules without modifying the system catalog directly. The firing mechanisms are controlled by a new superuser-only GUC variable, session_replication_role, together with a change to pg_trigger.tgenabled and a new column pg_rewrite.ev_enabled. Both columns are a single char data type now (tgenabled was a bool before). The possible values in these attributes are: 'O' - Trigger/Rule fires when session_replication_role is "origin" (default) or "local". This is the default behavior. 'D' - Trigger/Rule is disabled and fires never 'A' - Trigger/Rule fires always regardless of the setting of session_replication_role 'R' - Trigger/Rule fires when session_replication_role is "replica" The GUC variable can only be changed as long as the system does not have any cached query plans. This will prevent changing the session role and accidentally executing stored procedures or functions that have plans cached that expand to the wrong query set due to differences in the rule firing semantics. The SQL syntax for changing a triggers/rules firing semantics is ALTER TABLE <tabname> <when> TRIGGER|RULE <name>; <when> ::= ENABLE | ENABLE ALWAYS | ENABLE REPLICA | DISABLE psql's \d command as well as pg_dump are extended in a backward compatible fashion. Jan
2007-03-20 00:38:32 +01:00
break;
2007-11-15 22:14:46 +01:00
case AT_EnableAlwaysTrig: /* ENABLE ALWAYS TRIGGER name */
ATExecEnableDisableTrigger(rel, cmd->name,
TRIGGER_FIRES_ALWAYS, false);
Changes pg_trigger and extend pg_rewrite in order to allow triggers and rules to be defined with different, per session controllable, behaviors for replication purposes. This will allow replication systems like Slony-I and, as has been stated on pgsql-hackers, other products to control the firing mechanism of triggers and rewrite rules without modifying the system catalog directly. The firing mechanisms are controlled by a new superuser-only GUC variable, session_replication_role, together with a change to pg_trigger.tgenabled and a new column pg_rewrite.ev_enabled. Both columns are a single char data type now (tgenabled was a bool before). The possible values in these attributes are: 'O' - Trigger/Rule fires when session_replication_role is "origin" (default) or "local". This is the default behavior. 'D' - Trigger/Rule is disabled and fires never 'A' - Trigger/Rule fires always regardless of the setting of session_replication_role 'R' - Trigger/Rule fires when session_replication_role is "replica" The GUC variable can only be changed as long as the system does not have any cached query plans. This will prevent changing the session role and accidentally executing stored procedures or functions that have plans cached that expand to the wrong query set due to differences in the rule firing semantics. The SQL syntax for changing a triggers/rules firing semantics is ALTER TABLE <tabname> <when> TRIGGER|RULE <name>; <when> ::= ENABLE | ENABLE ALWAYS | ENABLE REPLICA | DISABLE psql's \d command as well as pg_dump are extended in a backward compatible fashion. Jan
2007-03-20 00:38:32 +01:00
break;
2007-11-15 22:14:46 +01:00
case AT_EnableReplicaTrig: /* ENABLE REPLICA TRIGGER name */
ATExecEnableDisableTrigger(rel, cmd->name,
TRIGGER_FIRES_ON_REPLICA, false);
break;
case AT_DisableTrig: /* DISABLE TRIGGER name */
2007-11-15 22:14:46 +01:00
ATExecEnableDisableTrigger(rel, cmd->name,
TRIGGER_DISABLED, false);
break;
case AT_EnableTrigAll: /* ENABLE TRIGGER ALL */
2007-11-15 22:14:46 +01:00
ATExecEnableDisableTrigger(rel, NULL,
TRIGGER_FIRES_ON_ORIGIN, false);
break;
case AT_DisableTrigAll: /* DISABLE TRIGGER ALL */
2007-11-15 22:14:46 +01:00
ATExecEnableDisableTrigger(rel, NULL,
TRIGGER_DISABLED, false);
break;
case AT_EnableTrigUser: /* ENABLE TRIGGER USER */
2007-11-15 22:14:46 +01:00
ATExecEnableDisableTrigger(rel, NULL,
TRIGGER_FIRES_ON_ORIGIN, true);
break;
2005-10-15 04:49:52 +02:00
case AT_DisableTrigUser: /* DISABLE TRIGGER USER */
2007-11-15 22:14:46 +01:00
ATExecEnableDisableTrigger(rel, NULL,
TRIGGER_DISABLED, true);
Changes pg_trigger and extend pg_rewrite in order to allow triggers and rules to be defined with different, per session controllable, behaviors for replication purposes. This will allow replication systems like Slony-I and, as has been stated on pgsql-hackers, other products to control the firing mechanism of triggers and rewrite rules without modifying the system catalog directly. The firing mechanisms are controlled by a new superuser-only GUC variable, session_replication_role, together with a change to pg_trigger.tgenabled and a new column pg_rewrite.ev_enabled. Both columns are a single char data type now (tgenabled was a bool before). The possible values in these attributes are: 'O' - Trigger/Rule fires when session_replication_role is "origin" (default) or "local". This is the default behavior. 'D' - Trigger/Rule is disabled and fires never 'A' - Trigger/Rule fires always regardless of the setting of session_replication_role 'R' - Trigger/Rule fires when session_replication_role is "replica" The GUC variable can only be changed as long as the system does not have any cached query plans. This will prevent changing the session role and accidentally executing stored procedures or functions that have plans cached that expand to the wrong query set due to differences in the rule firing semantics. The SQL syntax for changing a triggers/rules firing semantics is ALTER TABLE <tabname> <when> TRIGGER|RULE <name>; <when> ::= ENABLE | ENABLE ALWAYS | ENABLE REPLICA | DISABLE psql's \d command as well as pg_dump are extended in a backward compatible fashion. Jan
2007-03-20 00:38:32 +01:00
break;
2007-11-15 22:14:46 +01:00
case AT_EnableRule: /* ENABLE RULE name */
ATExecEnableDisableRule(rel, cmd->name,
RULE_FIRES_ON_ORIGIN);
Changes pg_trigger and extend pg_rewrite in order to allow triggers and rules to be defined with different, per session controllable, behaviors for replication purposes. This will allow replication systems like Slony-I and, as has been stated on pgsql-hackers, other products to control the firing mechanism of triggers and rewrite rules without modifying the system catalog directly. The firing mechanisms are controlled by a new superuser-only GUC variable, session_replication_role, together with a change to pg_trigger.tgenabled and a new column pg_rewrite.ev_enabled. Both columns are a single char data type now (tgenabled was a bool before). The possible values in these attributes are: 'O' - Trigger/Rule fires when session_replication_role is "origin" (default) or "local". This is the default behavior. 'D' - Trigger/Rule is disabled and fires never 'A' - Trigger/Rule fires always regardless of the setting of session_replication_role 'R' - Trigger/Rule fires when session_replication_role is "replica" The GUC variable can only be changed as long as the system does not have any cached query plans. This will prevent changing the session role and accidentally executing stored procedures or functions that have plans cached that expand to the wrong query set due to differences in the rule firing semantics. The SQL syntax for changing a triggers/rules firing semantics is ALTER TABLE <tabname> <when> TRIGGER|RULE <name>; <when> ::= ENABLE | ENABLE ALWAYS | ENABLE REPLICA | DISABLE psql's \d command as well as pg_dump are extended in a backward compatible fashion. Jan
2007-03-20 00:38:32 +01:00
break;
2007-11-15 22:14:46 +01:00
case AT_EnableAlwaysRule: /* ENABLE ALWAYS RULE name */
ATExecEnableDisableRule(rel, cmd->name,
RULE_FIRES_ALWAYS);
Changes pg_trigger and extend pg_rewrite in order to allow triggers and rules to be defined with different, per session controllable, behaviors for replication purposes. This will allow replication systems like Slony-I and, as has been stated on pgsql-hackers, other products to control the firing mechanism of triggers and rewrite rules without modifying the system catalog directly. The firing mechanisms are controlled by a new superuser-only GUC variable, session_replication_role, together with a change to pg_trigger.tgenabled and a new column pg_rewrite.ev_enabled. Both columns are a single char data type now (tgenabled was a bool before). The possible values in these attributes are: 'O' - Trigger/Rule fires when session_replication_role is "origin" (default) or "local". This is the default behavior. 'D' - Trigger/Rule is disabled and fires never 'A' - Trigger/Rule fires always regardless of the setting of session_replication_role 'R' - Trigger/Rule fires when session_replication_role is "replica" The GUC variable can only be changed as long as the system does not have any cached query plans. This will prevent changing the session role and accidentally executing stored procedures or functions that have plans cached that expand to the wrong query set due to differences in the rule firing semantics. The SQL syntax for changing a triggers/rules firing semantics is ALTER TABLE <tabname> <when> TRIGGER|RULE <name>; <when> ::= ENABLE | ENABLE ALWAYS | ENABLE REPLICA | DISABLE psql's \d command as well as pg_dump are extended in a backward compatible fashion. Jan
2007-03-20 00:38:32 +01:00
break;
2007-11-15 22:14:46 +01:00
case AT_EnableReplicaRule: /* ENABLE REPLICA RULE name */
ATExecEnableDisableRule(rel, cmd->name,
RULE_FIRES_ON_REPLICA);
Changes pg_trigger and extend pg_rewrite in order to allow triggers and rules to be defined with different, per session controllable, behaviors for replication purposes. This will allow replication systems like Slony-I and, as has been stated on pgsql-hackers, other products to control the firing mechanism of triggers and rewrite rules without modifying the system catalog directly. The firing mechanisms are controlled by a new superuser-only GUC variable, session_replication_role, together with a change to pg_trigger.tgenabled and a new column pg_rewrite.ev_enabled. Both columns are a single char data type now (tgenabled was a bool before). The possible values in these attributes are: 'O' - Trigger/Rule fires when session_replication_role is "origin" (default) or "local". This is the default behavior. 'D' - Trigger/Rule is disabled and fires never 'A' - Trigger/Rule fires always regardless of the setting of session_replication_role 'R' - Trigger/Rule fires when session_replication_role is "replica" The GUC variable can only be changed as long as the system does not have any cached query plans. This will prevent changing the session role and accidentally executing stored procedures or functions that have plans cached that expand to the wrong query set due to differences in the rule firing semantics. The SQL syntax for changing a triggers/rules firing semantics is ALTER TABLE <tabname> <when> TRIGGER|RULE <name>; <when> ::= ENABLE | ENABLE ALWAYS | ENABLE REPLICA | DISABLE psql's \d command as well as pg_dump are extended in a backward compatible fashion. Jan
2007-03-20 00:38:32 +01:00
break;
case AT_DisableRule: /* DISABLE RULE name */
2007-11-15 22:14:46 +01:00
ATExecEnableDisableRule(rel, cmd->name,
RULE_DISABLED);
break;
Changes pg_trigger and extend pg_rewrite in order to allow triggers and rules to be defined with different, per session controllable, behaviors for replication purposes. This will allow replication systems like Slony-I and, as has been stated on pgsql-hackers, other products to control the firing mechanism of triggers and rewrite rules without modifying the system catalog directly. The firing mechanisms are controlled by a new superuser-only GUC variable, session_replication_role, together with a change to pg_trigger.tgenabled and a new column pg_rewrite.ev_enabled. Both columns are a single char data type now (tgenabled was a bool before). The possible values in these attributes are: 'O' - Trigger/Rule fires when session_replication_role is "origin" (default) or "local". This is the default behavior. 'D' - Trigger/Rule is disabled and fires never 'A' - Trigger/Rule fires always regardless of the setting of session_replication_role 'R' - Trigger/Rule fires when session_replication_role is "replica" The GUC variable can only be changed as long as the system does not have any cached query plans. This will prevent changing the session role and accidentally executing stored procedures or functions that have plans cached that expand to the wrong query set due to differences in the rule firing semantics. The SQL syntax for changing a triggers/rules firing semantics is ALTER TABLE <tabname> <when> TRIGGER|RULE <name>; <when> ::= ENABLE | ENABLE ALWAYS | ENABLE REPLICA | DISABLE psql's \d command as well as pg_dump are extended in a backward compatible fashion. Jan
2007-03-20 00:38:32 +01:00
case AT_AddInherit:
ATExecAddInherit(rel, (RangeVar *) cmd->def);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
break;
case AT_DropInherit:
ATExecDropInherit(rel, (RangeVar *) cmd->def);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
break;
2004-08-29 07:07:03 +02:00
default: /* oops */
elog(ERROR, "unrecognized alter table type: %d",
(int) cmd->subtype);
break;
}
/*
2005-10-15 04:49:52 +02:00
* Bump the command counter to ensure the next subcommand in the sequence
* can see the changes so far
*/
CommandCounterIncrement();
}
/*
* ATRewriteTables: ALTER TABLE phase 3
*/
static void
ATRewriteTables(List **wqueue)
{
ListCell *ltab;
/* Go through each table that needs to be checked or rewritten */
foreach(ltab, *wqueue)
{
AlteredTableInfo *tab = (AlteredTableInfo *) lfirst(ltab);
/*
2005-10-15 04:49:52 +02:00
* We only need to rewrite the table if at least one column needs to
* be recomputed, or we are adding/removing the OID column.
*/
if (tab->newvals != NIL || tab->new_changeoids)
{
/* Build a temporary relation and copy data */
Oid OIDNewHeap;
char NewHeapName[NAMEDATALEN];
Oid NewTableSpace;
Relation OldHeap;
2004-08-29 07:07:03 +02:00
ObjectAddress object;
OldHeap = heap_open(tab->relid, NoLock);
/*
* We can never allow rewriting of shared or nailed-in-cache
2005-10-15 04:49:52 +02:00
* relations, because we can't support changing their relfilenode
* values.
*/
if (OldHeap->rd_rel->relisshared || OldHeap->rd_isnailed)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot rewrite system relation \"%s\"",
RelationGetRelationName(OldHeap))));
/*
2005-10-15 04:49:52 +02:00
* Don't allow rewrite on temp tables of other backends ... their
* local buffer manager is not going to cope.
*/
if (RELATION_IS_OTHER_TEMP(OldHeap))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2005-10-15 04:49:52 +02:00
errmsg("cannot rewrite temporary tables of other sessions")));
/*
* Select destination tablespace (same as original unless user
* requested a change)
*/
if (tab->newTableSpace)
NewTableSpace = tab->newTableSpace;
else
NewTableSpace = OldHeap->rd_rel->reltablespace;
heap_close(OldHeap, NoLock);
/*
* Create the new heap, using a temporary name in the same
2005-10-15 04:49:52 +02:00
* namespace as the existing table. NOTE: there is some risk of
* collision with user relnames. Working around this seems more
* trouble than it's worth; in particular, we can't create the new
* heap in a different namespace from the old, or we will have
* problems with the TEMP status of temp tables.
*/
snprintf(NewHeapName, sizeof(NewHeapName),
"pg_temp_%u", tab->relid);
OIDNewHeap = make_new_heap(tab->relid, NewHeapName, NewTableSpace);
/*
* Copy the heap data into the new table with the desired
* modifications, and test the current data within the table
* against new constraints generated by ALTER TABLE commands.
*/
ATRewriteTable(tab, OIDNewHeap);
/*
* Swap the physical files of the old and new heaps. Since we are
2007-11-15 22:14:46 +01:00
* generating a new heap, we can use RecentXmin for the table's
* new relfrozenxid because we rewrote all the tuples on
* ATRewriteTable, so no older Xid remains on the table.
*/
swap_relation_files(tab->relid, OIDNewHeap, RecentXmin);
CommandCounterIncrement();
/* Destroy new heap with old filenode */
object.classId = RelationRelationId;
object.objectId = OIDNewHeap;
object.objectSubId = 0;
/*
2004-08-29 07:07:03 +02:00
* The new relation is local to our transaction and we know
* nothing depends on it, so DROP_RESTRICT should be OK.
*/
performDeletion(&object, DROP_RESTRICT);
/* performDeletion does CommandCounterIncrement at end */
/*
2005-10-15 04:49:52 +02:00
* Rebuild each index on the relation (but not the toast table,
* which is all-new anyway). We do not need
* CommandCounterIncrement() because reindex_relation does it.
*/
reindex_relation(tab->relid, false);
}
else
{
/*
2005-10-15 04:49:52 +02:00
* Test the current data within the table against new constraints
* generated by ALTER TABLE commands, but don't rebuild data.
*/
if (tab->constraints != NIL || tab->new_notnull)
ATRewriteTable(tab, InvalidOid);
2004-08-29 07:07:03 +02:00
/*
2005-10-15 04:49:52 +02:00
* If we had SET TABLESPACE but no reason to reconstruct tuples,
* just do a block-by-block copy.
*/
if (tab->newTableSpace)
ATExecSetTableSpace(tab->relid, tab->newTableSpace);
}
}
/*
2004-08-29 07:07:03 +02:00
* Foreign key constraints are checked in a final pass, since (a) it's
2005-10-15 04:49:52 +02:00
* generally best to examine each one separately, and (b) it's at least
* theoretically possible that we have changed both relations of the
* foreign key, and we'd better have finished both rewrites before we try
* to read the tables.
*/
foreach(ltab, *wqueue)
{
2004-08-29 07:07:03 +02:00
AlteredTableInfo *tab = (AlteredTableInfo *) lfirst(ltab);
Relation rel = NULL;
ListCell *lcon;
foreach(lcon, tab->constraints)
{
NewConstraint *con = lfirst(lcon);
if (con->contype == CONSTR_FOREIGN)
{
Constraint *fkconstraint = (Constraint *) con->qual;
Relation refrel;
if (rel == NULL)
{
/* Long since locked, no need for another */
rel = heap_open(tab->relid, NoLock);
}
refrel = heap_open(con->refrelid, RowShareLock);
validateForeignKeyConstraint(fkconstraint, rel, refrel,
con->refindid,
con->conid);
heap_close(refrel, NoLock);
}
}
if (rel)
heap_close(rel, NoLock);
}
}
/*
* ATRewriteTable: scan or rewrite one table
*
* OIDNewHeap is InvalidOid if we don't need to rewrite
*/
static void
ATRewriteTable(AlteredTableInfo *tab, Oid OIDNewHeap)
{
Relation oldrel;
Relation newrel;
TupleDesc oldTupDesc;
TupleDesc newTupDesc;
bool needscan = false;
List *notnull_attrs;
int i;
ListCell *l;
EState *estate;
/*
* Open the relation(s). We have surely already locked the existing
* table.
*/
oldrel = heap_open(tab->relid, NoLock);
oldTupDesc = tab->oldDesc;
2004-08-29 07:07:03 +02:00
newTupDesc = RelationGetDescr(oldrel); /* includes all mods */
if (OidIsValid(OIDNewHeap))
newrel = heap_open(OIDNewHeap, AccessExclusiveLock);
else
newrel = NULL;
/*
2005-10-15 04:49:52 +02:00
* If we need to rewrite the table, the operation has to be propagated to
* tables that use this table's rowtype as a column type.
*
* (Eventually this will probably become true for scans as well, but at
* the moment a composite type does not enforce any constraints, so it's
* not necessary/appropriate to enforce them just during ALTER.)
*/
if (newrel)
find_composite_type_dependencies(oldrel->rd_rel->reltype,
RelationGetRelationName(oldrel),
NULL);
/*
* Generate the constraint and default execution states
*/
estate = CreateExecutorState();
/* Build the needed expression execution states */
foreach(l, tab->constraints)
{
NewConstraint *con = lfirst(l);
switch (con->contype)
{
case CONSTR_CHECK:
needscan = true;
con->qualstate = (List *)
ExecPrepareExpr((Expr *) con->qual, estate);
break;
case CONSTR_FOREIGN:
/* Nothing to do here */
break;
default:
elog(ERROR, "unrecognized constraint type: %d",
(int) con->contype);
}
}
foreach(l, tab->newvals)
{
2004-08-29 07:07:03 +02:00
NewColumnValue *ex = lfirst(l);
ex->exprstate = ExecPrepareExpr((Expr *) ex->expr, estate);
}
notnull_attrs = NIL;
if (newrel || tab->new_notnull)
{
/*
* If we are rebuilding the tuples OR if we added any new NOT NULL
* constraints, check all not-null constraints. This is a bit of
2006-10-04 02:30:14 +02:00
* overkill but it minimizes risk of bugs, and heap_attisnull is a
* pretty cheap test anyway.
*/
for (i = 0; i < newTupDesc->natts; i++)
{
if (newTupDesc->attrs[i]->attnotnull &&
!newTupDesc->attrs[i]->attisdropped)
notnull_attrs = lappend_int(notnull_attrs, i);
}
if (notnull_attrs)
needscan = true;
}
if (newrel || needscan)
{
2004-08-29 07:07:03 +02:00
ExprContext *econtext;
Datum *values;
bool *isnull;
TupleTableSlot *oldslot;
TupleTableSlot *newslot;
2004-08-29 07:07:03 +02:00
HeapScanDesc scan;
HeapTuple tuple;
MemoryContext oldCxt;
2005-10-15 04:49:52 +02:00
List *dropped_attrs = NIL;
ListCell *lc;
econtext = GetPerTupleExprContext(estate);
/*
2005-10-15 04:49:52 +02:00
* Make tuple slots for old and new tuples. Note that even when the
* tuples are the same, the tupDescs might not be (consider ADD COLUMN
* without a default).
*/
oldslot = MakeSingleTupleTableSlot(oldTupDesc);
newslot = MakeSingleTupleTableSlot(newTupDesc);
/* Preallocate values/isnull arrays */
i = Max(newTupDesc->natts, oldTupDesc->natts);
values = (Datum *) palloc(i * sizeof(Datum));
isnull = (bool *) palloc(i * sizeof(bool));
memset(values, 0, i * sizeof(Datum));
memset(isnull, true, i * sizeof(bool));
/*
* Any attributes that are dropped according to the new tuple
2005-10-15 04:49:52 +02:00
* descriptor can be set to NULL. We precompute the list of dropped
* attributes to avoid needing to do so in the per-tuple loop.
*/
for (i = 0; i < newTupDesc->natts; i++)
{
if (newTupDesc->attrs[i]->attisdropped)
dropped_attrs = lappend_int(dropped_attrs, i);
}
/*
* Scan through the rows, generating a new row if needed and then
* checking all the constraints.
*/
scan = heap_beginscan(oldrel, SnapshotNow, 0, NULL);
/*
2005-10-15 04:49:52 +02:00
* Switch to per-tuple memory context and reset it for each tuple
* produced, so we don't leak memory.
*/
oldCxt = MemoryContextSwitchTo(GetPerTupleMemoryContext(estate));
while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
{
if (newrel)
{
2005-10-15 04:49:52 +02:00
Oid tupOid = InvalidOid;
/* Extract data from old tuple */
heap_deform_tuple(tuple, oldTupDesc, values, isnull);
if (oldTupDesc->tdhasoid)
tupOid = HeapTupleGetOid(tuple);
/* Set dropped attributes to null in new tuple */
2005-10-15 04:49:52 +02:00
foreach(lc, dropped_attrs)
isnull[lfirst_int(lc)] = true;
/*
2005-10-15 04:49:52 +02:00
* Process supplied expressions to replace selected columns.
* Expression inputs come from the old tuple.
*/
ExecStoreTuple(tuple, oldslot, InvalidBuffer, false);
econtext->ecxt_scantuple = oldslot;
foreach(l, tab->newvals)
{
2004-08-29 07:07:03 +02:00
NewColumnValue *ex = lfirst(l);
values[ex->attnum - 1] = ExecEvalExpr(ex->exprstate,
econtext,
2005-10-15 04:49:52 +02:00
&isnull[ex->attnum - 1],
NULL);
}
/*
2005-10-15 04:49:52 +02:00
* Form the new tuple. Note that we don't explicitly pfree it,
* since the per-tuple memory context will be reset shortly.
*/
tuple = heap_form_tuple(newTupDesc, values, isnull);
/* Preserve OID, if any */
if (newTupDesc->tdhasoid)
HeapTupleSetOid(tuple, tupOid);
}
/* Now check any constraints on the possibly-changed tuple */
ExecStoreTuple(tuple, newslot, InvalidBuffer, false);
econtext->ecxt_scantuple = newslot;
foreach(l, notnull_attrs)
{
2006-10-04 02:30:14 +02:00
int attn = lfirst_int(l);
2006-10-04 02:30:14 +02:00
if (heap_attisnull(tuple, attn + 1))
ereport(ERROR,
(errcode(ERRCODE_NOT_NULL_VIOLATION),
errmsg("column \"%s\" contains null values",
2006-10-04 02:30:14 +02:00
NameStr(newTupDesc->attrs[attn]->attname))));
}
foreach(l, tab->constraints)
{
NewConstraint *con = lfirst(l);
switch (con->contype)
{
case CONSTR_CHECK:
if (!ExecQual(con->qualstate, econtext, true))
ereport(ERROR,
(errcode(ERRCODE_CHECK_VIOLATION),
errmsg("check constraint \"%s\" is violated by some row",
con->name)));
break;
case CONSTR_FOREIGN:
/* Nothing to do here */
break;
default:
elog(ERROR, "unrecognized constraint type: %d",
(int) con->contype);
}
}
/* Write the tuple out to the new relation */
if (newrel)
simple_heap_insert(newrel, tuple);
ResetExprContext(econtext);
CHECK_FOR_INTERRUPTS();
}
MemoryContextSwitchTo(oldCxt);
heap_endscan(scan);
ExecDropSingleTupleTableSlot(oldslot);
ExecDropSingleTupleTableSlot(newslot);
}
FreeExecutorState(estate);
heap_close(oldrel, NoLock);
if (newrel)
heap_close(newrel, NoLock);
}
/*
* ATGetQueueEntry: find or create an entry in the ALTER TABLE work queue
*/
static AlteredTableInfo *
ATGetQueueEntry(List **wqueue, Relation rel)
{
Oid relid = RelationGetRelid(rel);
AlteredTableInfo *tab;
ListCell *ltab;
foreach(ltab, *wqueue)
{
tab = (AlteredTableInfo *) lfirst(ltab);
if (tab->relid == relid)
return tab;
}
/*
* Not there, so add it. Note that we make a copy of the relation's
* existing descriptor before anything interesting can happen to it.
*/
tab = (AlteredTableInfo *) palloc0(sizeof(AlteredTableInfo));
tab->relid = relid;
tab->relkind = rel->rd_rel->relkind;
tab->oldDesc = CreateTupleDescCopy(RelationGetDescr(rel));
*wqueue = lappend(*wqueue, tab);
return tab;
}
/*
* ATSimplePermissions
*
* - Ensure that it is a relation (or possibly a view)
* - Ensure this user is the owner
* - Ensure that it is not a system table
*/
static void
ATSimplePermissions(Relation rel, bool allowView)
{
if (rel->rd_rel->relkind != RELKIND_RELATION)
{
if (allowView)
{
if (rel->rd_rel->relkind != RELKIND_VIEW)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a table or view",
RelationGetRelationName(rel))));
}
else
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a table",
RelationGetRelationName(rel))));
}
/* Permissions checks */
if (!pg_class_ownercheck(RelationGetRelid(rel), GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, ACL_KIND_CLASS,
RelationGetRelationName(rel));
if (!allowSystemTableMods && IsSystemRelation(rel))
ereport(ERROR,
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
errmsg("permission denied: \"%s\" is a system catalog",
RelationGetRelationName(rel))));
}
/*
* ATSimplePermissionsRelationOrIndex
*
* - Ensure that it is a relation or an index
* - Ensure this user is the owner
* - Ensure that it is not a system table
*/
static void
ATSimplePermissionsRelationOrIndex(Relation rel)
{
if (rel->rd_rel->relkind != RELKIND_RELATION &&
rel->rd_rel->relkind != RELKIND_INDEX)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a table or index",
RelationGetRelationName(rel))));
/* Permissions checks */
if (!pg_class_ownercheck(RelationGetRelid(rel), GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, ACL_KIND_CLASS,
RelationGetRelationName(rel));
if (!allowSystemTableMods && IsSystemRelation(rel))
ereport(ERROR,
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
errmsg("permission denied: \"%s\" is a system catalog",
RelationGetRelationName(rel))));
}
/*
* ATSimpleRecursion
*
* Simple table recursion sufficient for most ALTER TABLE operations.
* All direct and indirect children are processed in an unspecified order.
* Note that if a child inherits from the original table via multiple
* inheritance paths, it will be visited just once.
*/
static void
ATSimpleRecursion(List **wqueue, Relation rel,
AlterTableCmd *cmd, bool recurse)
{
/*
* Propagate to children if desired. Non-table relations never have
* children, so no need to search in that case.
*/
if (recurse && rel->rd_rel->relkind == RELKIND_RELATION)
{
Oid relid = RelationGetRelid(rel);
ListCell *child;
List *children;
children = find_all_inheritors(relid, AccessExclusiveLock);
/*
2005-10-15 04:49:52 +02:00
* find_all_inheritors does the recursive search of the inheritance
* hierarchy, so all we have to do is process all of the relids in the
* list that it returns.
*/
foreach(child, children)
{
Oid childrelid = lfirst_oid(child);
Relation childrel;
if (childrelid == relid)
continue;
/* find_all_inheritors already got lock */
childrel = relation_open(childrelid, NoLock);
CheckTableNotInUse(childrel, "ALTER TABLE");
ATPrepCmd(wqueue, childrel, cmd, false, true);
relation_close(childrel, NoLock);
}
}
}
/*
* ATOneLevelRecursion
*
* Here, we visit only direct inheritance children. It is expected that
* the command's prep routine will recurse again to find indirect children.
* When using this technique, a multiply-inheriting child will be visited
* multiple times.
*/
static void
ATOneLevelRecursion(List **wqueue, Relation rel,
AlterTableCmd *cmd)
{
Oid relid = RelationGetRelid(rel);
ListCell *child;
List *children;
children = find_inheritance_children(relid, AccessExclusiveLock);
foreach(child, children)
{
Oid childrelid = lfirst_oid(child);
Relation childrel;
/* find_inheritance_children already got lock */
childrel = relation_open(childrelid, NoLock);
CheckTableNotInUse(childrel, "ALTER TABLE");
ATPrepCmd(wqueue, childrel, cmd, true, true);
relation_close(childrel, NoLock);
}
}
/*
* find_composite_type_dependencies
*
* Check to see if a composite type is being used as a column in some
* other table (possibly nested several levels deep in composite types!).
* Eventually, we'd like to propagate the check or rewrite operation
* into other such tables, but for now, just error out if we find any.
*
* Caller should provide either a table name or a type name (not both) to
* report in the error message, if any.
*
* We assume that functions and views depending on the type are not reasons
* to reject the ALTER. (How safe is this really?)
*/
void
find_composite_type_dependencies(Oid typeOid,
const char *origTblName,
const char *origTypeName)
{
Relation depRel;
ScanKeyData key[2];
SysScanDesc depScan;
HeapTuple depTup;
Oid arrayOid;
/*
2005-10-15 04:49:52 +02:00
* We scan pg_depend to find those things that depend on the rowtype. (We
* assume we can ignore refobjsubid for a rowtype.)
*/
depRel = heap_open(DependRelationId, AccessShareLock);
ScanKeyInit(&key[0],
Anum_pg_depend_refclassid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(TypeRelationId));
ScanKeyInit(&key[1],
Anum_pg_depend_refobjid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(typeOid));
depScan = systable_beginscan(depRel, DependReferenceIndexId, true,
SnapshotNow, 2, key);
while (HeapTupleIsValid(depTup = systable_getnext(depScan)))
{
Form_pg_depend pg_depend = (Form_pg_depend) GETSTRUCT(depTup);
Relation rel;
Form_pg_attribute att;
/* Ignore dependees that aren't user columns of relations */
/* (we assume system columns are never of rowtypes) */
if (pg_depend->classid != RelationRelationId ||
pg_depend->objsubid <= 0)
continue;
rel = relation_open(pg_depend->objid, AccessShareLock);
att = rel->rd_att->attrs[pg_depend->objsubid - 1];
if (rel->rd_rel->relkind == RELKIND_RELATION)
{
if (origTblName)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot alter table \"%s\" because column \"%s\".\"%s\" uses its rowtype",
origTblName,
RelationGetRelationName(rel),
NameStr(att->attname))));
else
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot alter type \"%s\" because column \"%s\".\"%s\" uses it",
origTypeName,
RelationGetRelationName(rel),
NameStr(att->attname))));
}
else if (OidIsValid(rel->rd_rel->reltype))
{
/*
2005-10-15 04:49:52 +02:00
* A view or composite type itself isn't a problem, but we must
* recursively check for indirect dependencies via its rowtype.
*/
find_composite_type_dependencies(rel->rd_rel->reltype,
origTblName, origTypeName);
}
relation_close(rel, AccessShareLock);
}
systable_endscan(depScan);
relation_close(depRel, AccessShareLock);
/*
* If there's an array type for the rowtype, must check for uses of it,
* too.
*/
arrayOid = get_array_type(typeOid);
if (OidIsValid(arrayOid))
find_composite_type_dependencies(arrayOid, origTblName, origTypeName);
}
/*
* ALTER TABLE ADD COLUMN
*
* Adds an additional attribute to a relation making the assumption that
* CHECK, NOT NULL, and FOREIGN KEY constraints will be removed from the
* AT_AddColumn AlterTableCmd by parse_utilcmd.c and added as independent
* AlterTableCmd's.
*/
static void
ATPrepAddColumn(List **wqueue, Relation rel, bool recurse,
AlterTableCmd *cmd)
{
/*
* Recurse to add the column to child classes, if requested.
*
* We must recurse one level at a time, so that multiply-inheriting
* children are visited the right number of times and end up with the
* right attinhcount.
*/
if (recurse)
{
AlterTableCmd *childCmd = copyObject(cmd);
ColumnDef *colDefChild = (ColumnDef *) childCmd->def;
/* Child should see column as singly inherited */
colDefChild->inhcount = 1;
colDefChild->is_local = false;
ATOneLevelRecursion(wqueue, rel, childCmd);
}
else
{
/*
2005-10-15 04:49:52 +02:00
* If we are told not to recurse, there had better not be any child
* tables; else the addition would put them out of step.
*/
if (find_inheritance_children(RelationGetRelid(rel), NoLock) != NIL)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
2004-08-29 07:07:03 +02:00
errmsg("column must be added to child tables too")));
}
}
static void
ATExecAddColumn(AlteredTableInfo *tab, Relation rel,
ColumnDef *colDef, bool isOid)
{
Oid myrelid = RelationGetRelid(rel);
Relation pgclass,
attrdesc;
HeapTuple reltup;
FormData_pg_attribute attribute;
int newattnum;
char relkind;
HeapTuple typeTuple;
Oid typeOid;
int32 typmod;
Form_pg_type tform;
Expr *defval;
attrdesc = heap_open(AttributeRelationId, RowExclusiveLock);
/*
2005-10-15 04:49:52 +02:00
* Are we adding the column to a recursion child? If so, check whether to
* merge with an existing definition for the column.
*/
if (colDef->inhcount > 0)
{
HeapTuple tuple;
/* Does child already have a column by this name? */
tuple = SearchSysCacheCopyAttName(myrelid, colDef->colname);
if (HeapTupleIsValid(tuple))
{
Form_pg_attribute childatt = (Form_pg_attribute) GETSTRUCT(tuple);
2007-11-15 22:14:46 +01:00
Oid ctypeId;
int32 ctypmod;
/* Child column must match by type */
ctypeId = typenameTypeId(NULL, colDef->typeName, &ctypmod);
if (ctypeId != childatt->atttypid ||
ctypmod != childatt->atttypmod)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("child table \"%s\" has different type for column \"%s\"",
2005-10-15 04:49:52 +02:00
RelationGetRelationName(rel), colDef->colname)));
/* If it's OID, child column must actually be OID */
if (isOid && childatt->attnum != ObjectIdAttributeNumber)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("child table \"%s\" has a conflicting \"%s\" column",
RelationGetRelationName(rel), colDef->colname)));
/* Bump the existing child att's inhcount */
childatt->attinhcount++;
simple_heap_update(attrdesc, &tuple->t_self, tuple);
CatalogUpdateIndexes(attrdesc, tuple);
heap_freetuple(tuple);
/* Inform the user about the merge */
ereport(NOTICE,
2005-10-15 04:49:52 +02:00
(errmsg("merging definition of column \"%s\" for child \"%s\"",
colDef->colname, RelationGetRelationName(rel))));
heap_close(attrdesc, RowExclusiveLock);
return;
}
}
pgclass = heap_open(RelationRelationId, RowExclusiveLock);
reltup = SearchSysCacheCopy(RELOID,
ObjectIdGetDatum(myrelid),
0, 0, 0);
if (!HeapTupleIsValid(reltup))
elog(ERROR, "cache lookup failed for relation %u", myrelid);
relkind = ((Form_pg_class) GETSTRUCT(reltup))->relkind;
/*
2005-10-15 04:49:52 +02:00
* this test is deliberately not attisdropped-aware, since if one tries to
* add a column matching a dropped column name, it's gonna fail anyway.
*/
if (SearchSysCacheExists(ATTNAME,
ObjectIdGetDatum(myrelid),
PointerGetDatum(colDef->colname),
0, 0))
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_COLUMN),
2004-08-29 07:07:03 +02:00
errmsg("column \"%s\" of relation \"%s\" already exists",
colDef->colname, RelationGetRelationName(rel))));
/* Determine the new attribute's number */
if (isOid)
newattnum = ObjectIdAttributeNumber;
else
{
newattnum = ((Form_pg_class) GETSTRUCT(reltup))->relnatts + 1;
if (newattnum > MaxHeapAttributeNumber)
ereport(ERROR,
(errcode(ERRCODE_TOO_MANY_COLUMNS),
errmsg("tables can have at most %d columns",
MaxHeapAttributeNumber)));
}
typeTuple = typenameType(NULL, colDef->typeName, &typmod);
tform = (Form_pg_type) GETSTRUCT(typeTuple);
typeOid = HeapTupleGetOid(typeTuple);
/* make sure datatype is legal for a column */
CheckAttributeType(colDef->colname, typeOid);
/* construct new attribute's pg_attribute entry */
attribute.attrelid = myrelid;
namestrcpy(&(attribute.attname), colDef->colname);
attribute.atttypid = typeOid;
attribute.attstattarget = (newattnum > 0) ? -1 : 0;
attribute.attdistinct = 0;
attribute.attlen = tform->typlen;
attribute.attcacheoff = -1;
attribute.atttypmod = typmod;
attribute.attnum = newattnum;
attribute.attbyval = tform->typbyval;
attribute.attndims = list_length(colDef->typeName->arrayBounds);
attribute.attstorage = tform->typstorage;
attribute.attalign = tform->typalign;
attribute.attnotnull = colDef->is_not_null;
attribute.atthasdef = false;
attribute.attisdropped = false;
attribute.attislocal = colDef->is_local;
attribute.attinhcount = colDef->inhcount;
/* attribute.attacl is handled by InsertPgAttributeTuple */
ReleaseSysCache(typeTuple);
InsertPgAttributeTuple(attrdesc, &attribute, NULL);
heap_close(attrdesc, RowExclusiveLock);
/*
* Update pg_class tuple as appropriate
*/
if (isOid)
((Form_pg_class) GETSTRUCT(reltup))->relhasoids = true;
else
((Form_pg_class) GETSTRUCT(reltup))->relnatts = newattnum;
simple_heap_update(pgclass, &reltup->t_self, reltup);
/* keep catalog indexes current */
CatalogUpdateIndexes(pgclass, reltup);
heap_freetuple(reltup);
heap_close(pgclass, RowExclusiveLock);
/* Make the attribute's catalog entry visible */
CommandCounterIncrement();
/*
* Store the DEFAULT, if any, in the catalogs
*/
if (colDef->raw_default)
{
RawColumnDefault *rawEnt;
rawEnt = (RawColumnDefault *) palloc(sizeof(RawColumnDefault));
rawEnt->attnum = attribute.attnum;
rawEnt->raw_default = copyObject(colDef->raw_default);
/*
* This function is intended for CREATE TABLE, so it processes a
* _list_ of defaults, but we just do one.
*/
AddRelationNewConstraints(rel, list_make1(rawEnt), NIL, false, true);
/* Make the additional catalog changes visible */
CommandCounterIncrement();
}
/*
* Tell Phase 3 to fill in the default expression, if there is one.
*
* If there is no default, Phase 3 doesn't have to do anything, because
* that effectively means that the default is NULL. The heap tuple access
2005-10-15 04:49:52 +02:00
* routines always check for attnum > # of attributes in tuple, and return
* NULL if so, so without any modification of the tuple data we will get
* the effect of NULL values in the new column.
*
2005-10-15 04:49:52 +02:00
* An exception occurs when the new column is of a domain type: the domain
* might have a NOT NULL constraint, or a check constraint that indirectly
* rejects nulls. If there are any domain constraints then we construct
* an explicit NULL default value that will be passed through
* CoerceToDomain processing. (This is a tad inefficient, since it causes
* rewriting the table which we really don't have to do, but the present
* design of domain processing doesn't offer any simple way of checking
* the constraints more directly.)
*
* Note: we use build_column_default, and not just the cooked default
* returned by AddRelationNewConstraints, so that the right thing happens
2005-10-15 04:49:52 +02:00
* when a datatype's default applies.
*
* We skip this step completely for views. For a view, we can only get
* here from CREATE OR REPLACE VIEW, which historically doesn't set up
* defaults, not even for domain-typed columns. And in any case we
* mustn't invoke Phase 3 on a view, since it has no storage.
*/
if (relkind != RELKIND_VIEW && attribute.attnum > 0)
{
defval = (Expr *) build_column_default(rel, attribute.attnum);
if (!defval && GetDomainConstraints(typeOid) != NIL)
{
Oid baseTypeId;
int32 baseTypeMod;
baseTypeMod = typmod;
baseTypeId = getBaseTypeAndTypmod(typeOid, &baseTypeMod);
defval = (Expr *) makeNullConst(baseTypeId, baseTypeMod);
defval = (Expr *) coerce_to_target_type(NULL,
(Node *) defval,
baseTypeId,
typeOid,
typmod,
COERCION_ASSIGNMENT,
COERCE_IMPLICIT_CAST,
-1);
if (defval == NULL) /* should not happen */
elog(ERROR, "failed to coerce base type to domain");
}
if (defval)
{
NewColumnValue *newval;
newval = (NewColumnValue *) palloc0(sizeof(NewColumnValue));
newval->attnum = attribute.attnum;
newval->expr = defval;
tab->newvals = lappend(tab->newvals, newval);
}
/*
* If the new column is NOT NULL, tell Phase 3 it needs to test that.
* (Note we don't do this for an OID column. OID will be marked not
* null, but since it's filled specially, there's no need to test
* anything.)
*/
tab->new_notnull |= colDef->is_not_null;
}
/*
* If we are adding an OID column, we have to tell Phase 3 to rewrite the
* table to fix that.
*/
if (isOid)
tab->new_changeoids = true;
/*
* Add needed dependency entries for the new column.
*/
add_column_datatype_dependency(myrelid, newattnum, attribute.atttypid);
}
/*
* Install a column's dependency on its datatype.
*/
static void
add_column_datatype_dependency(Oid relid, int32 attnum, Oid typid)
{
ObjectAddress myself,
referenced;
myself.classId = RelationRelationId;
myself.objectId = relid;
myself.objectSubId = attnum;
referenced.classId = TypeRelationId;
referenced.objectId = typid;
referenced.objectSubId = 0;
recordDependencyOn(&myself, &referenced, DEPENDENCY_NORMAL);
}
/*
* ALTER TABLE SET WITH OIDS
*
* Basically this is an ADD COLUMN for the special OID column. We have
* to cons up a ColumnDef node because the ADD COLUMN code needs one.
*/
static void
ATPrepAddOids(List **wqueue, Relation rel, bool recurse, AlterTableCmd *cmd)
{
/* If we're recursing to a child table, the ColumnDef is already set up */
if (cmd->def == NULL)
{
ColumnDef *cdef = makeNode(ColumnDef);
cdef->colname = pstrdup("oid");
cdef->typeName = makeTypeNameFromOid(OIDOID, -1);
cdef->inhcount = 0;
cdef->is_local = true;
cdef->is_not_null = true;
cdef->storage = 0;
cmd->def = (Node *) cdef;
}
ATPrepAddColumn(wqueue, rel, recurse, cmd);
}
/*
* ALTER TABLE ALTER COLUMN DROP NOT NULL
*/
static void
ATExecDropNotNull(Relation rel, const char *colName)
{
HeapTuple tuple;
AttrNumber attnum;
Relation attr_rel;
List *indexoidlist;
ListCell *indexoidscan;
/*
* lookup the attribute
*/
attr_rel = heap_open(AttributeRelationId, RowExclusiveLock);
tuple = SearchSysCacheCopyAttName(RelationGetRelid(rel), colName);
if (!HeapTupleIsValid(tuple))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("column \"%s\" of relation \"%s\" does not exist",
colName, RelationGetRelationName(rel))));
attnum = ((Form_pg_attribute) GETSTRUCT(tuple))->attnum;
/* Prevent them from altering a system attribute */
if (attnum <= 0)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot alter system column \"%s\"",
colName)));
/*
* Check that the attribute is not in a primary key
*/
/* Loop over all indexes on the relation */
indexoidlist = RelationGetIndexList(rel);
foreach(indexoidscan, indexoidlist)
{
Oid indexoid = lfirst_oid(indexoidscan);
HeapTuple indexTuple;
Form_pg_index indexStruct;
int i;
indexTuple = SearchSysCache(INDEXRELID,
ObjectIdGetDatum(indexoid),
0, 0, 0);
if (!HeapTupleIsValid(indexTuple))
elog(ERROR, "cache lookup failed for index %u", indexoid);
indexStruct = (Form_pg_index) GETSTRUCT(indexTuple);
/* If the index is not a primary key, skip the check */
if (indexStruct->indisprimary)
{
/*
* Loop over each attribute in the primary key and see if it
* matches the to-be-altered attribute
*/
for (i = 0; i < indexStruct->indnatts; i++)
{
if (indexStruct->indkey.values[i] == attnum)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
2004-08-29 07:07:03 +02:00
errmsg("column \"%s\" is in a primary key",
colName)));
}
}
ReleaseSysCache(indexTuple);
}
list_free(indexoidlist);
/*
* Okay, actually perform the catalog change ... if needed
*/
if (((Form_pg_attribute) GETSTRUCT(tuple))->attnotnull)
{
((Form_pg_attribute) GETSTRUCT(tuple))->attnotnull = FALSE;
simple_heap_update(attr_rel, &tuple->t_self, tuple);
/* keep the system catalog indexes current */
CatalogUpdateIndexes(attr_rel, tuple);
}
heap_close(attr_rel, RowExclusiveLock);
}
/*
* ALTER TABLE ALTER COLUMN SET NOT NULL
*/
static void
ATExecSetNotNull(AlteredTableInfo *tab, Relation rel,
const char *colName)
{
HeapTuple tuple;
AttrNumber attnum;
Relation attr_rel;
/*
* lookup the attribute
*/
attr_rel = heap_open(AttributeRelationId, RowExclusiveLock);
tuple = SearchSysCacheCopyAttName(RelationGetRelid(rel), colName);
if (!HeapTupleIsValid(tuple))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("column \"%s\" of relation \"%s\" does not exist",
colName, RelationGetRelationName(rel))));
attnum = ((Form_pg_attribute) GETSTRUCT(tuple))->attnum;
/* Prevent them from altering a system attribute */
if (attnum <= 0)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot alter system column \"%s\"",
colName)));
2002-09-04 22:31:48 +02:00
/*
* Okay, actually perform the catalog change ... if needed
*/
2004-08-29 07:07:03 +02:00
if (!((Form_pg_attribute) GETSTRUCT(tuple))->attnotnull)
{
((Form_pg_attribute) GETSTRUCT(tuple))->attnotnull = TRUE;
simple_heap_update(attr_rel, &tuple->t_self, tuple);
/* keep the system catalog indexes current */
CatalogUpdateIndexes(attr_rel, tuple);
/* Tell Phase 3 it needs to test the constraint */
tab->new_notnull = true;
}
heap_close(attr_rel, RowExclusiveLock);
}
/*
* ALTER TABLE ALTER COLUMN SET/DROP DEFAULT
*/
static void
ATExecColumnDefault(Relation rel, const char *colName,
Node *newDefault)
{
AttrNumber attnum;
/*
* get the number of the attribute
*/
attnum = get_attnum(RelationGetRelid(rel), colName);
if (attnum == InvalidAttrNumber)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
2004-08-29 07:07:03 +02:00
errmsg("column \"%s\" of relation \"%s\" does not exist",
colName, RelationGetRelationName(rel))));
/* Prevent them from altering a system attribute */
if (attnum <= 0)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot alter system column \"%s\"",
colName)));
/*
* Remove any old default for the column. We use RESTRICT here for
* safety, but at present we do not expect anything to depend on the
* default.
*/
RemoveAttrDefault(RelationGetRelid(rel), attnum, DROP_RESTRICT, false);
if (newDefault)
{
/* SET DEFAULT */
RawColumnDefault *rawEnt;
rawEnt = (RawColumnDefault *) palloc(sizeof(RawColumnDefault));
rawEnt->attnum = attnum;
rawEnt->raw_default = newDefault;
/*
* This function is intended for CREATE TABLE, so it processes a
* _list_ of defaults, but we just do one.
*/
AddRelationNewConstraints(rel, list_make1(rawEnt), NIL, false, true);
}
}
/*
* ALTER TABLE ALTER COLUMN SET STATISTICS
*/
static void
ATPrepSetStatistics(Relation rel, const char *colName, Node *newValue)
{
/*
2004-08-29 07:07:03 +02:00
* We do our own permission checking because (a) we want to allow SET
2005-10-15 04:49:52 +02:00
* STATISTICS on indexes (for expressional index columns), and (b) we want
* to allow SET STATISTICS on system catalogs without requiring
2004-08-29 07:07:03 +02:00
* allowSystemTableMods to be turned on.
*/
if (rel->rd_rel->relkind != RELKIND_RELATION &&
rel->rd_rel->relkind != RELKIND_INDEX)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a table or index",
RelationGetRelationName(rel))));
/* Permissions checks */
if (!pg_class_ownercheck(RelationGetRelid(rel), GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, ACL_KIND_CLASS,
RelationGetRelationName(rel));
}
static void
ATExecSetStatistics(Relation rel, const char *colName, Node *newValue)
{
int newtarget;
Relation attrelation;
HeapTuple tuple;
Form_pg_attribute attrtuple;
Assert(IsA(newValue, Integer));
newtarget = intVal(newValue);
/*
* Limit target to a sane range
*/
if (newtarget < -1)
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("statistics target %d is too low",
newtarget)));
}
else if (newtarget > 10000)
{
newtarget = 10000;
ereport(WARNING,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("lowering statistics target to %d",
newtarget)));
}
attrelation = heap_open(AttributeRelationId, RowExclusiveLock);
tuple = SearchSysCacheCopyAttName(RelationGetRelid(rel), colName);
if (!HeapTupleIsValid(tuple))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
2004-08-29 07:07:03 +02:00
errmsg("column \"%s\" of relation \"%s\" does not exist",
colName, RelationGetRelationName(rel))));
attrtuple = (Form_pg_attribute) GETSTRUCT(tuple);
if (attrtuple->attnum <= 0)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot alter system column \"%s\"",
colName)));
attrtuple->attstattarget = newtarget;
simple_heap_update(attrelation, &tuple->t_self, tuple);
/* keep system catalog indexes current */
CatalogUpdateIndexes(attrelation, tuple);
heap_freetuple(tuple);
heap_close(attrelation, RowExclusiveLock);
}
/*
* ALTER TABLE ALTER COLUMN SET STATISTICS DISTINCT
*/
static void
ATPrepSetDistinct(Relation rel, const char *colName, Node *newValue)
{
/*
* We do our own permission checking because (a) we want to allow SET
* DISTINCT on indexes (for expressional index columns), and (b) we want
* to allow SET DISTINCT on system catalogs without requiring
* allowSystemTableMods to be turned on.
*/
if (rel->rd_rel->relkind != RELKIND_RELATION &&
rel->rd_rel->relkind != RELKIND_INDEX)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a table or index",
RelationGetRelationName(rel))));
/* Permissions checks */
if (!pg_class_ownercheck(RelationGetRelid(rel), GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, ACL_KIND_CLASS,
RelationGetRelationName(rel));
}
static void
ATExecSetDistinct(Relation rel, const char *colName, Node *newValue)
{
float4 newdistinct;
Relation attrelation;
HeapTuple tuple;
Form_pg_attribute attrtuple;
switch (nodeTag(newValue))
{
case T_Integer:
newdistinct = intVal(newValue);
break;
case T_Float:
newdistinct = floatVal(newValue);
break;
default:
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(newValue));
newdistinct = 0; /* keep compiler quiet */
break;
}
/*
* Limit ndistinct to sane values
*/
if (newdistinct < -1.0)
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("number of distinct values %g is too low",
newdistinct)));
}
attrelation = heap_open(AttributeRelationId, RowExclusiveLock);
tuple = SearchSysCacheCopyAttName(RelationGetRelid(rel), colName);
if (!HeapTupleIsValid(tuple))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("column \"%s\" of relation \"%s\" does not exist",
colName, RelationGetRelationName(rel))));
attrtuple = (Form_pg_attribute) GETSTRUCT(tuple);
if (attrtuple->attnum <= 0)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot alter system column \"%s\"",
colName)));
attrtuple->attdistinct = newdistinct;
simple_heap_update(attrelation, &tuple->t_self, tuple);
/* keep system catalog indexes current */
CatalogUpdateIndexes(attrelation, tuple);
heap_freetuple(tuple);
heap_close(attrelation, RowExclusiveLock);
}
/*
* ALTER TABLE ALTER COLUMN SET STORAGE
*/
static void
ATExecSetStorage(Relation rel, const char *colName, Node *newValue)
{
char *storagemode;
char newstorage;
Relation attrelation;
HeapTuple tuple;
Form_pg_attribute attrtuple;
Assert(IsA(newValue, String));
storagemode = strVal(newValue);
if (pg_strcasecmp(storagemode, "plain") == 0)
newstorage = 'p';
else if (pg_strcasecmp(storagemode, "external") == 0)
newstorage = 'e';
else if (pg_strcasecmp(storagemode, "extended") == 0)
newstorage = 'x';
else if (pg_strcasecmp(storagemode, "main") == 0)
newstorage = 'm';
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid storage type \"%s\"",
storagemode)));
newstorage = 0; /* keep compiler quiet */
}
attrelation = heap_open(AttributeRelationId, RowExclusiveLock);
tuple = SearchSysCacheCopyAttName(RelationGetRelid(rel), colName);
if (!HeapTupleIsValid(tuple))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
2004-08-29 07:07:03 +02:00
errmsg("column \"%s\" of relation \"%s\" does not exist",
colName, RelationGetRelationName(rel))));
attrtuple = (Form_pg_attribute) GETSTRUCT(tuple);
if (attrtuple->attnum <= 0)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot alter system column \"%s\"",
colName)));
/*
2005-10-15 04:49:52 +02:00
* safety check: do not allow toasted storage modes unless column datatype
* is TOAST-aware.
*/
if (newstorage == 'p' || TypeIsToastable(attrtuple->atttypid))
attrtuple->attstorage = newstorage;
else
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("column data type %s can only have storage PLAIN",
format_type_be(attrtuple->atttypid))));
simple_heap_update(attrelation, &tuple->t_self, tuple);
/* keep system catalog indexes current */
CatalogUpdateIndexes(attrelation, tuple);
heap_freetuple(tuple);
heap_close(attrelation, RowExclusiveLock);
}
/*
* ALTER TABLE DROP COLUMN
*
* DROP COLUMN cannot use the normal ALTER TABLE recursion mechanism,
* because we have to decide at runtime whether to recurse or not depending
2004-08-29 07:07:03 +02:00
* on whether attinhcount goes to zero or not. (We can't check this in a
* static pre-pass because it won't handle multiple inheritance situations
* correctly.)
*/
static void
ATExecDropColumn(List **wqueue, Relation rel, const char *colName,
DropBehavior behavior,
bool recurse, bool recursing,
bool missing_ok)
{
HeapTuple tuple;
Form_pg_attribute targetatt;
AttrNumber attnum;
List *children;
ObjectAddress object;
/* At top level, permission check was done in ATPrepCmd, else do it */
if (recursing)
ATSimplePermissions(rel, false);
/*
* get the number of the attribute
*/
tuple = SearchSysCacheAttName(RelationGetRelid(rel), colName);
if (!HeapTupleIsValid(tuple)){
if (!missing_ok){
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("column \"%s\" of relation \"%s\" does not exist",
colName, RelationGetRelationName(rel))));
}
else
{
ereport(NOTICE,
(errmsg("column \"%s\" of relation \"%s\" does not exist, skipping",
colName, RelationGetRelationName(rel))));
return;
}
}
targetatt = (Form_pg_attribute) GETSTRUCT(tuple);
attnum = targetatt->attnum;
/* Can't drop a system attribute, except OID */
if (attnum <= 0 && attnum != ObjectIdAttributeNumber)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot drop system column \"%s\"",
colName)));
/* Don't drop inherited columns */
if (targetatt->attinhcount > 0 && !recursing)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
errmsg("cannot drop inherited column \"%s\"",
colName)));
ReleaseSysCache(tuple);
/*
* Propagate to children as appropriate. Unlike most other ALTER
2005-10-15 04:49:52 +02:00
* routines, we have to do this one level of recursion at a time; we can't
* use find_all_inheritors to do it in one pass.
*/
children = find_inheritance_children(RelationGetRelid(rel),
AccessExclusiveLock);
if (children)
{
Relation attr_rel;
ListCell *child;
attr_rel = heap_open(AttributeRelationId, RowExclusiveLock);
foreach(child, children)
{
Oid childrelid = lfirst_oid(child);
Relation childrel;
Form_pg_attribute childatt;
/* find_inheritance_children already got lock */
childrel = heap_open(childrelid, NoLock);
CheckTableNotInUse(childrel, "ALTER TABLE");
tuple = SearchSysCacheCopyAttName(childrelid, colName);
if (!HeapTupleIsValid(tuple)) /* shouldn't happen */
elog(ERROR, "cache lookup failed for attribute \"%s\" of relation %u",
colName, childrelid);
childatt = (Form_pg_attribute) GETSTRUCT(tuple);
2003-08-04 02:43:34 +02:00
if (childatt->attinhcount <= 0) /* shouldn't happen */
elog(ERROR, "relation %u has non-inherited attribute \"%s\"",
childrelid, colName);
if (recurse)
{
/*
* If the child column has other definition sources, just
2005-10-15 04:49:52 +02:00
* decrement its inheritance count; if not, recurse to delete
* it.
*/
if (childatt->attinhcount == 1 && !childatt->attislocal)
{
/* Time to delete this child column, too */
ATExecDropColumn(wqueue, childrel, colName,
behavior, true, true,
false);
}
else
{
/* Child column must survive my deletion */
childatt->attinhcount--;
simple_heap_update(attr_rel, &tuple->t_self, tuple);
/* keep the system catalog indexes current */
CatalogUpdateIndexes(attr_rel, tuple);
/* Make update visible */
CommandCounterIncrement();
}
}
else
{
/*
2005-10-15 04:49:52 +02:00
* If we were told to drop ONLY in this table (no recursion),
* we need to mark the inheritors' attributes as locally
2005-10-15 04:49:52 +02:00
* defined rather than inherited.
*/
childatt->attinhcount--;
childatt->attislocal = true;
simple_heap_update(attr_rel, &tuple->t_self, tuple);
/* keep the system catalog indexes current */
CatalogUpdateIndexes(attr_rel, tuple);
/* Make update visible */
CommandCounterIncrement();
}
heap_freetuple(tuple);
heap_close(childrel, NoLock);
}
heap_close(attr_rel, RowExclusiveLock);
}
/*
* Perform the actual column deletion
*/
object.classId = RelationRelationId;
object.objectId = RelationGetRelid(rel);
object.objectSubId = attnum;
performDeletion(&object, behavior);
/*
* If we dropped the OID column, must adjust pg_class.relhasoids and tell
* Phase 3 to physically get rid of the column.
*/
if (attnum == ObjectIdAttributeNumber)
{
Relation class_rel;
Form_pg_class tuple_class;
AlteredTableInfo *tab;
class_rel = heap_open(RelationRelationId, RowExclusiveLock);
tuple = SearchSysCacheCopy(RELOID,
2005-10-15 04:49:52 +02:00
ObjectIdGetDatum(RelationGetRelid(rel)),
0, 0, 0);
if (!HeapTupleIsValid(tuple))
elog(ERROR, "cache lookup failed for relation %u",
RelationGetRelid(rel));
tuple_class = (Form_pg_class) GETSTRUCT(tuple);
tuple_class->relhasoids = false;
simple_heap_update(class_rel, &tuple->t_self, tuple);
/* Keep the catalog indexes up to date */
CatalogUpdateIndexes(class_rel, tuple);
heap_close(class_rel, RowExclusiveLock);
/* Find or create work queue entry for this table */
tab = ATGetQueueEntry(wqueue, rel);
/* Tell Phase 3 to physically remove the OID column */
tab->new_changeoids = true;
}
}
/*
* ALTER TABLE ADD INDEX
*
* There is no such command in the grammar, but parse_utilcmd.c converts
* UNIQUE and PRIMARY KEY constraints into AT_AddIndex subcommands. This lets
* us schedule creation of the index at the appropriate time during ALTER.
*/
static void
ATExecAddIndex(AlteredTableInfo *tab, Relation rel,
IndexStmt *stmt, bool is_rebuild)
{
2004-08-29 07:07:03 +02:00
bool check_rights;
bool skip_build;
bool quiet;
Assert(IsA(stmt, IndexStmt));
/* suppress schema rights check when rebuilding existing index */
check_rights = !is_rebuild;
/* skip index build if phase 3 will have to rewrite table anyway */
skip_build = (tab->newvals != NIL);
/* suppress notices when rebuilding existing index */
quiet = is_rebuild;
/* The IndexStmt has already been through transformIndexStmt */
2004-08-29 07:07:03 +02:00
DefineIndex(stmt->relation, /* relation */
stmt->idxname, /* index name */
InvalidOid, /* no predefined OID */
2004-08-29 07:07:03 +02:00
stmt->accessMethod, /* am name */
stmt->tableSpace,
2004-08-29 07:07:03 +02:00
stmt->indexParams, /* parameters */
(Expr *) stmt->whereClause,
stmt->options,
stmt->unique,
stmt->primary,
stmt->isconstraint,
stmt->deferrable,
stmt->initdeferred,
2004-08-29 07:07:03 +02:00
true, /* is_alter_table */
check_rights,
skip_build,
quiet,
false);
}
/*
* ALTER TABLE ADD CONSTRAINT
*/
static void
ATExecAddConstraint(List **wqueue, AlteredTableInfo *tab, Relation rel,
Constraint *newConstraint, bool recurse)
{
Assert(IsA(newConstraint, Constraint));
/*
* Currently, we only expect to see CONSTR_CHECK and CONSTR_FOREIGN nodes
* arriving here (see the preprocessing done in parse_utilcmd.c). Use a
* switch anyway to make it easier to add more code later.
*/
switch (newConstraint->contype)
{
case CONSTR_CHECK:
ATAddCheckConstraint(wqueue, tab, rel,
newConstraint, recurse, false);
break;
case CONSTR_FOREIGN:
/*
* Note that we currently never recurse for FK constraints, so
* the "recurse" flag is silently ignored.
*
* Assign or validate constraint name
*/
if (newConstraint->conname)
{
if (ConstraintNameIsUsed(CONSTRAINT_RELATION,
RelationGetRelid(rel),
RelationGetNamespace(rel),
newConstraint->conname))
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_OBJECT),
errmsg("constraint \"%s\" for relation \"%s\" already exists",
newConstraint->conname,
RelationGetRelationName(rel))));
2004-08-29 07:07:03 +02:00
}
else
newConstraint->conname =
ChooseConstraintName(RelationGetRelationName(rel),
strVal(linitial(newConstraint->fk_attrs)),
"fkey",
RelationGetNamespace(rel),
NIL);
ATAddForeignKeyConstraint(tab, rel, newConstraint);
break;
default:
elog(ERROR, "unrecognized constraint type: %d",
(int) newConstraint->contype);
}
}
/*
* Add a check constraint to a single table and its children
*
* Subroutine for ATExecAddConstraint.
*
* We must recurse to child tables during execution, rather than using
* ALTER TABLE's normal prep-time recursion. The reason is that all the
* constraints *must* be given the same name, else they won't be seen as
* related later. If the user didn't explicitly specify a name, then
* AddRelationNewConstraints would normally assign different names to the
* child constraints. To fix that, we must capture the name assigned at
* the parent table and pass that down.
*/
static void
ATAddCheckConstraint(List **wqueue, AlteredTableInfo *tab, Relation rel,
Constraint *constr, bool recurse, bool recursing)
{
List *newcons;
ListCell *lcon;
List *children;
ListCell *child;
/* At top level, permission check was done in ATPrepCmd, else do it */
if (recursing)
ATSimplePermissions(rel, false);
/*
* Call AddRelationNewConstraints to do the work, making sure it works on
* a copy of the Constraint so transformExpr can't modify the original. It
* returns a list of cooked constraints.
*
* If the constraint ends up getting merged with a pre-existing one, it's
* omitted from the returned list, which is what we want: we do not need
* to do any validation work. That can only happen at child tables,
* though, since we disallow merging at the top level.
*/
newcons = AddRelationNewConstraints(rel, NIL,
list_make1(copyObject(constr)),
recursing, !recursing);
/* Add each constraint to Phase 3's queue */
foreach(lcon, newcons)
{
CookedConstraint *ccon = (CookedConstraint *) lfirst(lcon);
NewConstraint *newcon;
newcon = (NewConstraint *) palloc0(sizeof(NewConstraint));
newcon->name = ccon->name;
newcon->contype = ccon->contype;
/* ExecQual wants implicit-AND format */
newcon->qual = (Node *) make_ands_implicit((Expr *) ccon->expr);
tab->constraints = lappend(tab->constraints, newcon);
/* Save the actually assigned name if it was defaulted */
if (constr->conname == NULL)
constr->conname = ccon->name;
}
/* At this point we must have a locked-down name to use */
Assert(constr->conname != NULL);
/* Advance command counter in case same table is visited multiple times */
CommandCounterIncrement();
/*
* Propagate to children as appropriate. Unlike most other ALTER
* routines, we have to do this one level of recursion at a time; we can't
* use find_all_inheritors to do it in one pass.
*/
children = find_inheritance_children(RelationGetRelid(rel),
AccessExclusiveLock);
/*
* If we are told not to recurse, there had better not be any child
* tables; else the addition would put them out of step.
*/
if (children && !recurse)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
errmsg("constraint must be added to child tables too")));
foreach(child, children)
{
Oid childrelid = lfirst_oid(child);
Relation childrel;
AlteredTableInfo *childtab;
/* find_inheritance_children already got lock */
childrel = heap_open(childrelid, NoLock);
CheckTableNotInUse(childrel, "ALTER TABLE");
/* Find or create work queue entry for this table */
childtab = ATGetQueueEntry(wqueue, childrel);
/* Recurse to child */
ATAddCheckConstraint(wqueue, childtab, childrel,
constr, recurse, true);
heap_close(childrel, NoLock);
}
}
/*
* Add a foreign-key constraint to a single table
*
* Subroutine for ATExecAddConstraint. Must already hold exclusive
* lock on the rel, and have done appropriate validity checks for it.
* We do permissions checks here, however.
*/
static void
ATAddForeignKeyConstraint(AlteredTableInfo *tab, Relation rel,
Constraint *fkconstraint)
{
Relation pkrel;
int16 pkattnum[INDEX_MAX_KEYS];
int16 fkattnum[INDEX_MAX_KEYS];
Oid pktypoid[INDEX_MAX_KEYS];
Oid fktypoid[INDEX_MAX_KEYS];
Oid opclasses[INDEX_MAX_KEYS];
Oid pfeqoperators[INDEX_MAX_KEYS];
Oid ppeqoperators[INDEX_MAX_KEYS];
Oid ffeqoperators[INDEX_MAX_KEYS];
int i;
int numfks,
numpks;
Oid indexOid;
Oid constrOid;
/*
2005-10-15 04:49:52 +02:00
* Grab an exclusive lock on the pk table, so that someone doesn't delete
* rows out from under us. (Although a lesser lock would do for that
* purpose, we'll need exclusive lock anyway to add triggers to the pk
* table; trying to start with a lesser lock will just create a risk of
* deadlock.)
*/
pkrel = heap_openrv(fkconstraint->pktable, AccessExclusiveLock);
/*
* Validity checks (permission checks wait till we have the column
* numbers)
*/
if (pkrel->rd_rel->relkind != RELKIND_RELATION)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("referenced relation \"%s\" is not a table",
RelationGetRelationName(pkrel))));
if (!allowSystemTableMods && IsSystemRelation(pkrel))
ereport(ERROR,
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
errmsg("permission denied: \"%s\" is a system catalog",
RelationGetRelationName(pkrel))));
/*
2005-10-15 04:49:52 +02:00
* Disallow reference from permanent table to temp table or vice versa.
* (The ban on perm->temp is for fairly obvious reasons. The ban on
* temp->perm is because other backends might need to run the RI triggers
* on the perm table, but they can't reliably see tuples the owning
* backend has created in the temp table, because non-shared buffers are
* used for temp tables.)
*/
if (pkrel->rd_istemp)
{
if (!rel->rd_istemp)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
errmsg("cannot reference temporary table from permanent table constraint")));
}
else
{
if (rel->rd_istemp)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
errmsg("cannot reference permanent table from temporary table constraint")));
}
/*
2005-10-15 04:49:52 +02:00
* Look up the referencing attributes to make sure they exist, and record
* their attnums and type OIDs.
*/
MemSet(pkattnum, 0, sizeof(pkattnum));
MemSet(fkattnum, 0, sizeof(fkattnum));
MemSet(pktypoid, 0, sizeof(pktypoid));
MemSet(fktypoid, 0, sizeof(fktypoid));
MemSet(opclasses, 0, sizeof(opclasses));
MemSet(pfeqoperators, 0, sizeof(pfeqoperators));
MemSet(ppeqoperators, 0, sizeof(ppeqoperators));
MemSet(ffeqoperators, 0, sizeof(ffeqoperators));
numfks = transformColumnNameList(RelationGetRelid(rel),
fkconstraint->fk_attrs,
fkattnum, fktypoid);
/*
2005-10-15 04:49:52 +02:00
* If the attribute list for the referenced table was omitted, lookup the
* definition of the primary key and use it. Otherwise, validate the
* supplied attribute list. In either case, discover the index OID and
* index opclasses, and the attnums and type OIDs of the attributes.
*/
if (fkconstraint->pk_attrs == NIL)
{
numpks = transformFkeyGetPrimaryKey(pkrel, &indexOid,
&fkconstraint->pk_attrs,
pkattnum, pktypoid,
opclasses);
}
else
{
numpks = transformColumnNameList(RelationGetRelid(pkrel),
fkconstraint->pk_attrs,
pkattnum, pktypoid);
/* Look for an index matching the column list */
indexOid = transformFkeyCheckAttrs(pkrel, numpks, pkattnum,
opclasses);
}
/*
* Now we can check permissions.
*/
checkFkeyPermissions(pkrel, pkattnum, numpks);
checkFkeyPermissions(rel, fkattnum, numfks);
/*
* Look up the equality operators to use in the constraint.
*
* Note that we have to be careful about the difference between the actual
* PK column type and the opclass' declared input type, which might be
2007-11-15 22:14:46 +01:00
* only binary-compatible with it. The declared opcintype is the right
* thing to probe pg_amop with.
*/
if (numfks != numpks)
ereport(ERROR,
(errcode(ERRCODE_INVALID_FOREIGN_KEY),
errmsg("number of referencing and referenced columns for foreign key disagree")));
for (i = 0; i < numpks; i++)
{
Oid pktype = pktypoid[i];
Oid fktype = fktypoid[i];
Oid fktyped;
HeapTuple cla_ht;
Form_pg_opclass cla_tup;
Oid amid;
Oid opfamily;
Oid opcintype;
Oid pfeqop;
Oid ppeqop;
Oid ffeqop;
int16 eqstrategy;
/* We need several fields out of the pg_opclass entry */
cla_ht = SearchSysCache(CLAOID,
ObjectIdGetDatum(opclasses[i]),
0, 0, 0);
if (!HeapTupleIsValid(cla_ht))
elog(ERROR, "cache lookup failed for opclass %u", opclasses[i]);
cla_tup = (Form_pg_opclass) GETSTRUCT(cla_ht);
amid = cla_tup->opcmethod;
opfamily = cla_tup->opcfamily;
opcintype = cla_tup->opcintype;
ReleaseSysCache(cla_ht);
/*
* Check it's a btree; currently this can never fail since no other
2007-11-15 22:14:46 +01:00
* index AMs support unique indexes. If we ever did have other types
* of unique indexes, we'd need a way to determine which operator
* strategy number is equality. (Is it reasonable to insist that
* every such index AM use btree's number for equality?)
*/
if (amid != BTREE_AM_OID)
elog(ERROR, "only b-tree indexes are supported for foreign keys");
eqstrategy = BTEqualStrategyNumber;
/*
* There had better be a primary equality operator for the index.
* We'll use it for PK = PK comparisons.
*/
ppeqop = get_opfamily_member(opfamily, opcintype, opcintype,
eqstrategy);
if (!OidIsValid(ppeqop))
elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
eqstrategy, opcintype, opcintype, opfamily);
/*
2007-11-15 22:14:46 +01:00
* Are there equality operators that take exactly the FK type? Assume
* we should look through any domain here.
*/
fktyped = getBaseType(fktype);
pfeqop = get_opfamily_member(opfamily, opcintype, fktyped,
eqstrategy);
if (OidIsValid(pfeqop))
ffeqop = get_opfamily_member(opfamily, fktyped, fktyped,
eqstrategy);
else
2007-11-15 22:14:46 +01:00
ffeqop = InvalidOid; /* keep compiler quiet */
if (!(OidIsValid(pfeqop) && OidIsValid(ffeqop)))
{
/*
2007-11-15 22:14:46 +01:00
* Otherwise, look for an implicit cast from the FK type to the
* opcintype, and if found, use the primary equality operator.
* This is a bit tricky because opcintype might be a polymorphic
* type such as ANYARRAY or ANYENUM; so what we have to test is
* whether the two actual column types can be concurrently cast to
* that type. (Otherwise, we'd fail to reject combinations such
* as int[] and point[].)
*/
2007-11-15 22:14:46 +01:00
Oid input_typeids[2];
Oid target_typeids[2];
input_typeids[0] = pktype;
input_typeids[1] = fktype;
target_typeids[0] = opcintype;
target_typeids[1] = opcintype;
if (can_coerce_type(2, input_typeids, target_typeids,
COERCION_IMPLICIT))
pfeqop = ffeqop = ppeqop;
}
if (!(OidIsValid(pfeqop) && OidIsValid(ffeqop)))
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("foreign key constraint \"%s\" "
"cannot be implemented",
fkconstraint->conname),
errdetail("Key columns \"%s\" and \"%s\" "
"are of incompatible types: %s and %s.",
2005-10-15 04:49:52 +02:00
strVal(list_nth(fkconstraint->fk_attrs, i)),
strVal(list_nth(fkconstraint->pk_attrs, i)),
format_type_be(fktype),
format_type_be(pktype))));
pfeqoperators[i] = pfeqop;
ppeqoperators[i] = ppeqop;
ffeqoperators[i] = ffeqop;
}
/*
* Record the FK constraint in pg_constraint.
*/
constrOid = CreateConstraintEntry(fkconstraint->conname,
RelationGetNamespace(rel),
CONSTRAINT_FOREIGN,
fkconstraint->deferrable,
fkconstraint->initdeferred,
RelationGetRelid(rel),
fkattnum,
numfks,
2003-08-04 02:43:34 +02:00
InvalidOid, /* not a domain
* constraint */
indexOid,
RelationGetRelid(pkrel),
pkattnum,
pfeqoperators,
ppeqoperators,
ffeqoperators,
numpks,
fkconstraint->fk_upd_action,
fkconstraint->fk_del_action,
fkconstraint->fk_matchtype,
2003-08-04 02:43:34 +02:00
NULL, /* no check constraint */
NULL,
NULL,
true, /* islocal */
0); /* inhcount */
/*
* Create the triggers that will enforce the constraint.
*/
createForeignKeyTriggers(rel, fkconstraint, constrOid, indexOid);
/*
* Tell Phase 3 to check that the constraint is satisfied by existing rows
* (we can skip this during table creation).
*/
if (!fkconstraint->skip_validation)
{
NewConstraint *newcon;
newcon = (NewConstraint *) palloc0(sizeof(NewConstraint));
newcon->name = fkconstraint->conname;
newcon->contype = CONSTR_FOREIGN;
newcon->refrelid = RelationGetRelid(pkrel);
newcon->refindid = indexOid;
newcon->conid = constrOid;
newcon->qual = (Node *) fkconstraint;
tab->constraints = lappend(tab->constraints, newcon);
}
/*
* Close pk table, but keep lock until we've committed.
*/
heap_close(pkrel, NoLock);
}
/*
* transformColumnNameList - transform list of column names
*
* Lookup each name and return its attnum and type OID
*/
static int
transformColumnNameList(Oid relId, List *colList,
int16 *attnums, Oid *atttypids)
{
ListCell *l;
int attnum;
attnum = 0;
foreach(l, colList)
{
char *attname = strVal(lfirst(l));
HeapTuple atttuple;
atttuple = SearchSysCacheAttName(relId, attname);
if (!HeapTupleIsValid(atttuple))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("column \"%s\" referenced in foreign key constraint does not exist",
attname)));
if (attnum >= INDEX_MAX_KEYS)
ereport(ERROR,
(errcode(ERRCODE_TOO_MANY_COLUMNS),
2005-10-15 04:49:52 +02:00
errmsg("cannot have more than %d keys in a foreign key",
INDEX_MAX_KEYS)));
attnums[attnum] = ((Form_pg_attribute) GETSTRUCT(atttuple))->attnum;
atttypids[attnum] = ((Form_pg_attribute) GETSTRUCT(atttuple))->atttypid;
ReleaseSysCache(atttuple);
attnum++;
}
return attnum;
}
/*
* transformFkeyGetPrimaryKey -
*
* Look up the names, attnums, and types of the primary key attributes
2004-08-29 07:07:03 +02:00
* for the pkrel. Also return the index OID and index opclasses of the
* index supporting the primary key.
*
2004-08-29 07:07:03 +02:00
* All parameters except pkrel are output parameters. Also, the function
* return value is the number of attributes in the primary key.
*
* Used when the column list in the REFERENCES specification is omitted.
*/
static int
transformFkeyGetPrimaryKey(Relation pkrel, Oid *indexOid,
List **attnamelist,
int16 *attnums, Oid *atttypids,
Oid *opclasses)
{
List *indexoidlist;
ListCell *indexoidscan;
HeapTuple indexTuple = NULL;
Form_pg_index indexStruct = NULL;
Datum indclassDatum;
bool isnull;
oidvector *indclass;
int i;
/*
2005-10-15 04:49:52 +02:00
* Get the list of index OIDs for the table from the relcache, and look up
* each one in the pg_index syscache until we find one marked primary key
* (hopefully there isn't more than one such).
*/
*indexOid = InvalidOid;
indexoidlist = RelationGetIndexList(pkrel);
foreach(indexoidscan, indexoidlist)
{
Oid indexoid = lfirst_oid(indexoidscan);
indexTuple = SearchSysCache(INDEXRELID,
ObjectIdGetDatum(indexoid),
0, 0, 0);
if (!HeapTupleIsValid(indexTuple))
elog(ERROR, "cache lookup failed for index %u", indexoid);
indexStruct = (Form_pg_index) GETSTRUCT(indexTuple);
if (indexStruct->indisprimary)
{
/*
* Refuse to use a deferrable primary key. This is per SQL spec,
* and there would be a lot of interesting semantic problems if
* we tried to allow it.
*/
if (!indexStruct->indimmediate)
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("cannot use a deferrable primary key for referenced table \"%s\"",
RelationGetRelationName(pkrel))));
*indexOid = indexoid;
break;
}
ReleaseSysCache(indexTuple);
}
list_free(indexoidlist);
/*
* Check that we found it
*/
if (!OidIsValid(*indexOid))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
2005-10-15 04:49:52 +02:00
errmsg("there is no primary key for referenced table \"%s\"",
RelationGetRelationName(pkrel))));
/* Must get indclass the hard way */
indclassDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
Anum_pg_index_indclass, &isnull);
Assert(!isnull);
indclass = (oidvector *) DatumGetPointer(indclassDatum);
/*
2003-08-04 02:43:34 +02:00
* Now build the list of PK attributes from the indkey definition (we
* assume a primary key cannot have expressional elements)
*/
*attnamelist = NIL;
for (i = 0; i < indexStruct->indnatts; i++)
{
int pkattno = indexStruct->indkey.values[i];
attnums[i] = pkattno;
atttypids[i] = attnumTypeId(pkrel, pkattno);
opclasses[i] = indclass->values[i];
*attnamelist = lappend(*attnamelist,
2005-10-15 04:49:52 +02:00
makeString(pstrdup(NameStr(*attnumAttName(pkrel, pkattno)))));
}
ReleaseSysCache(indexTuple);
return i;
}
/*
* transformFkeyCheckAttrs -
*
* Make sure that the attributes of a referenced table belong to a unique
* (or primary key) constraint. Return the OID of the index supporting
* the constraint, as well as the opclasses associated with the index
* columns.
*/
static Oid
transformFkeyCheckAttrs(Relation pkrel,
int numattrs, int16 *attnums,
2004-08-29 07:07:03 +02:00
Oid *opclasses) /* output parameter */
{
Oid indexoid = InvalidOid;
bool found = false;
bool found_deferrable = false;
List *indexoidlist;
ListCell *indexoidscan;
/*
2005-10-15 04:49:52 +02:00
* Get the list of index OIDs for the table from the relcache, and look up
* each one in the pg_index syscache, and match unique indexes to the list
* of attnums we are given.
*/
indexoidlist = RelationGetIndexList(pkrel);
foreach(indexoidscan, indexoidlist)
{
HeapTuple indexTuple;
Form_pg_index indexStruct;
2003-08-04 02:43:34 +02:00
int i,
j;
indexoid = lfirst_oid(indexoidscan);
indexTuple = SearchSysCache(INDEXRELID,
ObjectIdGetDatum(indexoid),
0, 0, 0);
if (!HeapTupleIsValid(indexTuple))
elog(ERROR, "cache lookup failed for index %u", indexoid);
indexStruct = (Form_pg_index) GETSTRUCT(indexTuple);
/*
* Must have the right number of columns; must be unique and not a
* partial index; forget it if there are any expressions, too
*/
if (indexStruct->indnatts == numattrs &&
indexStruct->indisunique &&
heap_attisnull(indexTuple, Anum_pg_index_indpred) &&
heap_attisnull(indexTuple, Anum_pg_index_indexprs))
{
/* Must get indclass the hard way */
Datum indclassDatum;
bool isnull;
oidvector *indclass;
indclassDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
Anum_pg_index_indclass, &isnull);
Assert(!isnull);
indclass = (oidvector *) DatumGetPointer(indclassDatum);
/*
2005-10-15 04:49:52 +02:00
* The given attnum list may match the index columns in any order.
* Check that each list is a subset of the other.
*/
for (i = 0; i < numattrs; i++)
{
found = false;
for (j = 0; j < numattrs; j++)
{
if (attnums[i] == indexStruct->indkey.values[j])
{
found = true;
break;
}
}
if (!found)
break;
}
if (found)
{
for (i = 0; i < numattrs; i++)
{
found = false;
for (j = 0; j < numattrs; j++)
{
if (attnums[j] == indexStruct->indkey.values[i])
{
opclasses[j] = indclass->values[i];
found = true;
break;
}
}
if (!found)
break;
}
}
/*
* Refuse to use a deferrable unique/primary key. This is per
* SQL spec, and there would be a lot of interesting semantic
* problems if we tried to allow it.
*/
if (found && !indexStruct->indimmediate)
{
/*
* Remember that we found an otherwise matching index, so
* that we can generate a more appropriate error message.
*/
found_deferrable = true;
found = false;
}
}
ReleaseSysCache(indexTuple);
if (found)
break;
}
if (!found)
{
if (found_deferrable)
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("cannot use a deferrable unique constraint for referenced table \"%s\"",
RelationGetRelationName(pkrel))));
else
ereport(ERROR,
(errcode(ERRCODE_INVALID_FOREIGN_KEY),
errmsg("there is no unique constraint matching given keys for referenced table \"%s\"",
RelationGetRelationName(pkrel))));
}
list_free(indexoidlist);
return indexoid;
}
/* Permissions checks for ADD FOREIGN KEY */
static void
checkFkeyPermissions(Relation rel, int16 *attnums, int natts)
{
Oid roleid = GetUserId();
AclResult aclresult;
int i;
/* Okay if we have relation-level REFERENCES permission */
aclresult = pg_class_aclcheck(RelationGetRelid(rel), roleid,
ACL_REFERENCES);
if (aclresult == ACLCHECK_OK)
return;
/* Else we must have REFERENCES on each column */
for (i = 0; i < natts; i++)
{
aclresult = pg_attribute_aclcheck(RelationGetRelid(rel), attnums[i],
roleid, ACL_REFERENCES);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, ACL_KIND_CLASS,
RelationGetRelationName(rel));
}
}
/*
* Scan the existing rows in a table to verify they meet a proposed FK
* constraint.
*
* Caller must have opened and locked both relations.
*/
static void
validateForeignKeyConstraint(Constraint *fkconstraint,
Relation rel,
Relation pkrel,
Oid pkindOid,
Oid constraintOid)
{
HeapScanDesc scan;
HeapTuple tuple;
Trigger trig;
/*
* Build a trigger call structure; we'll need it either way.
*/
MemSet(&trig, 0, sizeof(trig));
trig.tgoid = InvalidOid;
trig.tgname = fkconstraint->conname;
Changes pg_trigger and extend pg_rewrite in order to allow triggers and rules to be defined with different, per session controllable, behaviors for replication purposes. This will allow replication systems like Slony-I and, as has been stated on pgsql-hackers, other products to control the firing mechanism of triggers and rewrite rules without modifying the system catalog directly. The firing mechanisms are controlled by a new superuser-only GUC variable, session_replication_role, together with a change to pg_trigger.tgenabled and a new column pg_rewrite.ev_enabled. Both columns are a single char data type now (tgenabled was a bool before). The possible values in these attributes are: 'O' - Trigger/Rule fires when session_replication_role is "origin" (default) or "local". This is the default behavior. 'D' - Trigger/Rule is disabled and fires never 'A' - Trigger/Rule fires always regardless of the setting of session_replication_role 'R' - Trigger/Rule fires when session_replication_role is "replica" The GUC variable can only be changed as long as the system does not have any cached query plans. This will prevent changing the session role and accidentally executing stored procedures or functions that have plans cached that expand to the wrong query set due to differences in the rule firing semantics. The SQL syntax for changing a triggers/rules firing semantics is ALTER TABLE <tabname> <when> TRIGGER|RULE <name>; <when> ::= ENABLE | ENABLE ALWAYS | ENABLE REPLICA | DISABLE psql's \d command as well as pg_dump are extended in a backward compatible fashion. Jan
2007-03-20 00:38:32 +01:00
trig.tgenabled = TRIGGER_FIRES_ON_ORIGIN;
trig.tgisconstraint = TRUE;
trig.tgconstrrelid = RelationGetRelid(pkrel);
trig.tgconstrindid = pkindOid;
trig.tgconstraint = constraintOid;
trig.tgdeferrable = FALSE;
trig.tginitdeferred = FALSE;
/* we needn't fill in tgargs */
/*
* See if we can do it with a single LEFT JOIN query. A FALSE result
* indicates we must proceed with the fire-the-trigger method.
*/
if (RI_Initial_Check(&trig, rel, pkrel))
return;
/*
* Scan through each tuple, calling RI_FKey_check_ins (insert trigger) as
* if that tuple had just been inserted. If any of those fail, it should
* ereport(ERROR) and that's that.
*/
scan = heap_beginscan(rel, SnapshotNow, 0, NULL);
while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
{
FunctionCallInfoData fcinfo;
TriggerData trigdata;
/*
* Make a call to the trigger function
*
* No parameters are passed, but we do set a context
*/
MemSet(&fcinfo, 0, sizeof(fcinfo));
/*
* We assume RI_FKey_check_ins won't look at flinfo...
*/
trigdata.type = T_TriggerData;
trigdata.tg_event = TRIGGER_EVENT_INSERT | TRIGGER_EVENT_ROW;
trigdata.tg_relation = rel;
trigdata.tg_trigtuple = tuple;
trigdata.tg_newtuple = NULL;
trigdata.tg_trigger = &trig;
trigdata.tg_trigtuplebuf = scan->rs_cbuf;
trigdata.tg_newtuplebuf = InvalidBuffer;
fcinfo.context = (Node *) &trigdata;
RI_FKey_check_ins(&fcinfo);
}
heap_endscan(scan);
}
static void
CreateFKCheckTrigger(RangeVar *myRel, Constraint *fkconstraint,
Oid constraintOid, Oid indexOid, bool on_insert)
{
CreateTrigStmt *fk_trigger;
fk_trigger = makeNode(CreateTrigStmt);
fk_trigger->trigname = fkconstraint->conname;
fk_trigger->relation = myRel;
fk_trigger->before = false;
fk_trigger->row = true;
/* Either ON INSERT or ON UPDATE */
if (on_insert)
{
fk_trigger->funcname = SystemFuncName("RI_FKey_check_ins");
fk_trigger->events = TRIGGER_TYPE_INSERT;
}
else
{
fk_trigger->funcname = SystemFuncName("RI_FKey_check_upd");
fk_trigger->events = TRIGGER_TYPE_UPDATE;
}
fk_trigger->isconstraint = true;
fk_trigger->deferrable = fkconstraint->deferrable;
fk_trigger->initdeferred = fkconstraint->initdeferred;
fk_trigger->constrrel = fkconstraint->pktable;
fk_trigger->args = NIL;
(void) CreateTrigger(fk_trigger, constraintOid, indexOid,
"RI_ConstraintTrigger", false);
/* Make changes-so-far visible */
CommandCounterIncrement();
}
/*
* Create the triggers that implement an FK constraint.
*/
static void
createForeignKeyTriggers(Relation rel, Constraint *fkconstraint,
Oid constraintOid, Oid indexOid)
{
RangeVar *myRel;
CreateTrigStmt *fk_trigger;
/*
2005-10-15 04:49:52 +02:00
* Reconstruct a RangeVar for my relation (not passed in, unfortunately).
*/
myRel = makeRangeVar(get_namespace_name(RelationGetNamespace(rel)),
pstrdup(RelationGetRelationName(rel)),
-1);
/* Make changes-so-far visible */
CommandCounterIncrement();
/*
2005-10-15 04:49:52 +02:00
* Build and execute a CREATE CONSTRAINT TRIGGER statement for the CHECK
* action for both INSERTs and UPDATEs on the referencing table.
*/
CreateFKCheckTrigger(myRel, fkconstraint, constraintOid, indexOid, true);
CreateFKCheckTrigger(myRel, fkconstraint, constraintOid, indexOid, false);
/*
* Build and execute a CREATE CONSTRAINT TRIGGER statement for the ON
* DELETE action on the referenced table.
*/
fk_trigger = makeNode(CreateTrigStmt);
fk_trigger->trigname = fkconstraint->conname;
fk_trigger->relation = fkconstraint->pktable;
fk_trigger->before = false;
fk_trigger->row = true;
fk_trigger->events = TRIGGER_TYPE_DELETE;
fk_trigger->isconstraint = true;
fk_trigger->constrrel = myRel;
switch (fkconstraint->fk_del_action)
{
case FKCONSTR_ACTION_NOACTION:
fk_trigger->deferrable = fkconstraint->deferrable;
fk_trigger->initdeferred = fkconstraint->initdeferred;
fk_trigger->funcname = SystemFuncName("RI_FKey_noaction_del");
break;
case FKCONSTR_ACTION_RESTRICT:
fk_trigger->deferrable = false;
fk_trigger->initdeferred = false;
fk_trigger->funcname = SystemFuncName("RI_FKey_restrict_del");
break;
case FKCONSTR_ACTION_CASCADE:
fk_trigger->deferrable = false;
fk_trigger->initdeferred = false;
fk_trigger->funcname = SystemFuncName("RI_FKey_cascade_del");
break;
case FKCONSTR_ACTION_SETNULL:
fk_trigger->deferrable = false;
fk_trigger->initdeferred = false;
fk_trigger->funcname = SystemFuncName("RI_FKey_setnull_del");
break;
case FKCONSTR_ACTION_SETDEFAULT:
fk_trigger->deferrable = false;
fk_trigger->initdeferred = false;
fk_trigger->funcname = SystemFuncName("RI_FKey_setdefault_del");
break;
default:
elog(ERROR, "unrecognized FK action type: %d",
(int) fkconstraint->fk_del_action);
break;
}
fk_trigger->args = NIL;
(void) CreateTrigger(fk_trigger, constraintOid, indexOid,
"RI_ConstraintTrigger", false);
/* Make changes-so-far visible */
CommandCounterIncrement();
/*
* Build and execute a CREATE CONSTRAINT TRIGGER statement for the ON
* UPDATE action on the referenced table.
*/
fk_trigger = makeNode(CreateTrigStmt);
fk_trigger->trigname = fkconstraint->conname;
fk_trigger->relation = fkconstraint->pktable;
fk_trigger->before = false;
fk_trigger->row = true;
fk_trigger->events = TRIGGER_TYPE_UPDATE;
fk_trigger->isconstraint = true;
fk_trigger->constrrel = myRel;
switch (fkconstraint->fk_upd_action)
{
case FKCONSTR_ACTION_NOACTION:
fk_trigger->deferrable = fkconstraint->deferrable;
fk_trigger->initdeferred = fkconstraint->initdeferred;
fk_trigger->funcname = SystemFuncName("RI_FKey_noaction_upd");
break;
case FKCONSTR_ACTION_RESTRICT:
fk_trigger->deferrable = false;
fk_trigger->initdeferred = false;
fk_trigger->funcname = SystemFuncName("RI_FKey_restrict_upd");
break;
case FKCONSTR_ACTION_CASCADE:
fk_trigger->deferrable = false;
fk_trigger->initdeferred = false;
fk_trigger->funcname = SystemFuncName("RI_FKey_cascade_upd");
break;
case FKCONSTR_ACTION_SETNULL:
fk_trigger->deferrable = false;
fk_trigger->initdeferred = false;
fk_trigger->funcname = SystemFuncName("RI_FKey_setnull_upd");
break;
case FKCONSTR_ACTION_SETDEFAULT:
fk_trigger->deferrable = false;
fk_trigger->initdeferred = false;
fk_trigger->funcname = SystemFuncName("RI_FKey_setdefault_upd");
break;
default:
elog(ERROR, "unrecognized FK action type: %d",
(int) fkconstraint->fk_upd_action);
break;
}
fk_trigger->args = NIL;
(void) CreateTrigger(fk_trigger, constraintOid, indexOid,
"RI_ConstraintTrigger", false);
}
/*
* ALTER TABLE DROP CONSTRAINT
*
* Like DROP COLUMN, we can't use the normal ALTER TABLE recursion mechanism.
*/
static void
ATExecDropConstraint(Relation rel, const char *constrName,
DropBehavior behavior,
bool recurse, bool recursing,
bool missing_ok)
{
List *children;
ListCell *child;
Relation conrel;
Form_pg_constraint con;
SysScanDesc scan;
ScanKeyData key;
HeapTuple tuple;
bool found = false;
bool is_check_constraint = false;
/* At top level, permission check was done in ATPrepCmd, else do it */
if (recursing)
ATSimplePermissions(rel, false);
conrel = heap_open(ConstraintRelationId, RowExclusiveLock);
/*
* Find and drop the target constraint
*/
ScanKeyInit(&key,
Anum_pg_constraint_conrelid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(RelationGetRelid(rel)));
scan = systable_beginscan(conrel, ConstraintRelidIndexId,
true, SnapshotNow, 1, &key);
while (HeapTupleIsValid(tuple = systable_getnext(scan)))
{
ObjectAddress conobj;
con = (Form_pg_constraint) GETSTRUCT(tuple);
if (strcmp(NameStr(con->conname), constrName) != 0)
continue;
/* Don't drop inherited constraints */
if (con->coninhcount > 0 && !recursing)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
errmsg("cannot drop inherited constraint \"%s\" of relation \"%s\"",
constrName, RelationGetRelationName(rel))));
/* Right now only CHECK constraints can be inherited */
if (con->contype == CONSTRAINT_CHECK)
is_check_constraint = true;
/*
* Perform the actual constraint deletion
*/
conobj.classId = ConstraintRelationId;
conobj.objectId = HeapTupleGetOid(tuple);
conobj.objectSubId = 0;
performDeletion(&conobj, behavior);
found = true;
}
systable_endscan(scan);
if (!found){
if (!missing_ok){
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("constraint \"%s\" of relation \"%s\" does not exist",
constrName, RelationGetRelationName(rel))));
}
else
{
ereport(NOTICE,
(errmsg("constraint \"%s\" of relation \"%s\" does not exist, skipping",
constrName, RelationGetRelationName(rel))));
heap_close(conrel, RowExclusiveLock);
return;
}
}
/*
* Propagate to children as appropriate. Unlike most other ALTER
* routines, we have to do this one level of recursion at a time; we can't
* use find_all_inheritors to do it in one pass.
*/
if (is_check_constraint)
children = find_inheritance_children(RelationGetRelid(rel),
AccessExclusiveLock);
else
children = NIL;
foreach(child, children)
{
Oid childrelid = lfirst_oid(child);
Relation childrel;
/* find_inheritance_children already got lock */
childrel = heap_open(childrelid, NoLock);
CheckTableNotInUse(childrel, "ALTER TABLE");
ScanKeyInit(&key,
Anum_pg_constraint_conrelid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(childrelid));
scan = systable_beginscan(conrel, ConstraintRelidIndexId,
true, SnapshotNow, 1, &key);
found = false;
while (HeapTupleIsValid(tuple = systable_getnext(scan)))
{
HeapTuple copy_tuple;
con = (Form_pg_constraint) GETSTRUCT(tuple);
/* Right now only CHECK constraints can be inherited */
if (con->contype != CONSTRAINT_CHECK)
continue;
if (strcmp(NameStr(con->conname), constrName) != 0)
continue;
found = true;
if (con->coninhcount <= 0) /* shouldn't happen */
elog(ERROR, "relation %u has non-inherited constraint \"%s\"",
childrelid, constrName);
copy_tuple = heap_copytuple(tuple);
con = (Form_pg_constraint) GETSTRUCT(copy_tuple);
if (recurse)
{
/*
* If the child constraint has other definition sources, just
* decrement its inheritance count; if not, recurse to delete
* it.
*/
if (con->coninhcount == 1 && !con->conislocal)
{
/* Time to delete this child constraint, too */
ATExecDropConstraint(childrel, constrName, behavior,
true, true,
false);
}
else
{
/* Child constraint must survive my deletion */
con->coninhcount--;
simple_heap_update(conrel, &copy_tuple->t_self, copy_tuple);
CatalogUpdateIndexes(conrel, copy_tuple);
/* Make update visible */
CommandCounterIncrement();
}
}
else
{
/*
* If we were told to drop ONLY in this table (no recursion),
* we need to mark the inheritors' constraints as locally
* defined rather than inherited.
*/
con->coninhcount--;
con->conislocal = true;
simple_heap_update(conrel, &copy_tuple->t_self, copy_tuple);
CatalogUpdateIndexes(conrel, copy_tuple);
/* Make update visible */
CommandCounterIncrement();
}
heap_freetuple(copy_tuple);
}
systable_endscan(scan);
if (!found)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("constraint \"%s\" of relation \"%s\" does not exist",
constrName,
RelationGetRelationName(childrel))));
heap_close(childrel, NoLock);
}
heap_close(conrel, RowExclusiveLock);
}
/*
* ALTER COLUMN TYPE
*/
static void
ATPrepAlterColumnType(List **wqueue,
AlteredTableInfo *tab, Relation rel,
bool recurse, bool recursing,
AlterTableCmd *cmd)
{
char *colName = cmd->name;
TypeName *typeName = (TypeName *) cmd->def;
HeapTuple tuple;
Form_pg_attribute attTup;
AttrNumber attnum;
Oid targettype;
int32 targettypmod;
Node *transform;
NewColumnValue *newval;
ParseState *pstate = make_parsestate(NULL);
/* lookup the attribute so we can check inheritance status */
tuple = SearchSysCacheAttName(RelationGetRelid(rel), colName);
if (!HeapTupleIsValid(tuple))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("column \"%s\" of relation \"%s\" does not exist",
colName, RelationGetRelationName(rel))));
attTup = (Form_pg_attribute) GETSTRUCT(tuple);
attnum = attTup->attnum;
/* Can't alter a system attribute */
if (attnum <= 0)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot alter system column \"%s\"",
colName)));
/* Don't alter inherited columns */
if (attTup->attinhcount > 0 && !recursing)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
errmsg("cannot alter inherited column \"%s\"",
colName)));
/* Look up the target type */
targettype = typenameTypeId(NULL, typeName, &targettypmod);
/* make sure datatype is legal for a column */
CheckAttributeType(colName, targettype);
/*
2005-10-15 04:49:52 +02:00
* Set up an expression to transform the old data value to the new type.
* If a USING option was given, transform and use that expression, else
* just take the old value and try to coerce it. We do this first so that
* type incompatibility can be detected before we waste effort, and
* because we need the expression to be parsed against the original table
* rowtype.
*/
if (cmd->transform)
{
RangeTblEntry *rte;
/* Expression must be able to access vars of old table */
rte = addRangeTableEntryForRelation(pstate,
rel,
NULL,
false,
true);
addRTEtoQuery(pstate, rte, false, true, true);
transform = transformExpr(pstate, cmd->transform);
/* It can't return a set */
if (expression_returns_set(transform))
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
2005-10-15 04:49:52 +02:00
errmsg("transform expression must not return a set")));
/* No subplans or aggregates, either... */
if (pstate->p_hasSubLinks)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2005-10-15 04:49:52 +02:00
errmsg("cannot use subquery in transform expression")));
if (pstate->p_hasAggs)
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
2005-10-15 04:49:52 +02:00
errmsg("cannot use aggregate function in transform expression")));
if (pstate->p_hasWindowFuncs)
ereport(ERROR,
(errcode(ERRCODE_WINDOWING_ERROR),
errmsg("cannot use window function in transform expression")));
}
else
{
transform = (Node *) makeVar(1, attnum,
attTup->atttypid, attTup->atttypmod,
0);
}
transform = coerce_to_target_type(pstate,
transform, exprType(transform),
targettype, targettypmod,
COERCION_ASSIGNMENT,
COERCE_IMPLICIT_CAST,
-1);
if (transform == NULL)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("column \"%s\" cannot be cast to type %s",
colName, format_type_be(targettype))));
/*
* Add a work queue item to make ATRewriteTable update the column
* contents.
*/
newval = (NewColumnValue *) palloc0(sizeof(NewColumnValue));
newval->attnum = attnum;
newval->expr = (Expr *) transform;
tab->newvals = lappend(tab->newvals, newval);
ReleaseSysCache(tuple);
/*
2005-10-15 04:49:52 +02:00
* The recursion case is handled by ATSimpleRecursion. However, if we are
* told not to recurse, there had better not be any child tables; else the
* alter would put them out of step.
*/
if (recurse)
ATSimpleRecursion(wqueue, rel, cmd, recurse);
else if (!recursing &&
find_inheritance_children(RelationGetRelid(rel), NoLock) != NIL)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
errmsg("type of inherited column \"%s\" must be changed in child tables too",
colName)));
}
static void
ATExecAlterColumnType(AlteredTableInfo *tab, Relation rel,
const char *colName, TypeName *typeName)
{
HeapTuple heapTup;
Form_pg_attribute attTup;
AttrNumber attnum;
HeapTuple typeTuple;
Form_pg_type tform;
Oid targettype;
int32 targettypmod;
Node *defaultexpr;
Relation attrelation;
Relation depRel;
ScanKeyData key[3];
SysScanDesc scan;
HeapTuple depTup;
attrelation = heap_open(AttributeRelationId, RowExclusiveLock);
/* Look up the target column */
heapTup = SearchSysCacheCopyAttName(RelationGetRelid(rel), colName);
if (!HeapTupleIsValid(heapTup)) /* shouldn't happen */
ereport(ERROR,
2004-08-29 07:07:03 +02:00
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("column \"%s\" of relation \"%s\" does not exist",
colName, RelationGetRelationName(rel))));
attTup = (Form_pg_attribute) GETSTRUCT(heapTup);
attnum = attTup->attnum;
/* Check for multiple ALTER TYPE on same column --- can't cope */
2004-08-29 07:07:03 +02:00
if (attTup->atttypid != tab->oldDesc->attrs[attnum - 1]->atttypid ||
attTup->atttypmod != tab->oldDesc->attrs[attnum - 1]->atttypmod)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot alter type of column \"%s\" twice",
colName)));
/* Look up the target type (should not fail, since prep found it) */
typeTuple = typenameType(NULL, typeName, &targettypmod);
tform = (Form_pg_type) GETSTRUCT(typeTuple);
targettype = HeapTupleGetOid(typeTuple);
/*
2005-10-15 04:49:52 +02:00
* If there is a default expression for the column, get it and ensure we
* can coerce it to the new datatype. (We must do this before changing
* the column type, because build_column_default itself will try to
* coerce, and will not issue the error message we want if it fails.)
*
* We remove any implicit coercion steps at the top level of the old
* default expression; this has been agreed to satisfy the principle of
* least surprise. (The conversion to the new column type should act like
* it started from what the user sees as the stored expression, and the
2005-10-15 04:49:52 +02:00
* implicit coercions aren't going to be shown.)
*/
if (attTup->atthasdef)
{
defaultexpr = build_column_default(rel, attnum);
Assert(defaultexpr);
defaultexpr = strip_implicit_coercions(defaultexpr);
2004-08-29 07:07:03 +02:00
defaultexpr = coerce_to_target_type(NULL, /* no UNKNOWN params */
2005-10-15 04:49:52 +02:00
defaultexpr, exprType(defaultexpr),
targettype, targettypmod,
COERCION_ASSIGNMENT,
COERCE_IMPLICIT_CAST,
-1);
if (defaultexpr == NULL)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("default for column \"%s\" cannot be cast to type %s",
colName, format_type_be(targettype))));
}
else
defaultexpr = NULL;
/*
2005-10-15 04:49:52 +02:00
* Find everything that depends on the column (constraints, indexes, etc),
* and record enough information to let us recreate the objects.
*
* The actual recreation does not happen here, but only after we have
2005-10-15 04:49:52 +02:00
* performed all the individual ALTER TYPE operations. We have to save
* the info before executing ALTER TYPE, though, else the deparser will
* get confused.
*
* There could be multiple entries for the same object, so we must check
* to ensure we process each one only once. Note: we assume that an index
2005-10-15 04:49:52 +02:00
* that implements a constraint will not show a direct dependency on the
* column.
*/
depRel = heap_open(DependRelationId, RowExclusiveLock);
ScanKeyInit(&key[0],
Anum_pg_depend_refclassid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(RelationRelationId));
ScanKeyInit(&key[1],
Anum_pg_depend_refobjid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(RelationGetRelid(rel)));
ScanKeyInit(&key[2],
Anum_pg_depend_refobjsubid,
BTEqualStrategyNumber, F_INT4EQ,
Int32GetDatum((int32) attnum));
scan = systable_beginscan(depRel, DependReferenceIndexId, true,
SnapshotNow, 3, key);
while (HeapTupleIsValid(depTup = systable_getnext(scan)))
{
2004-08-29 07:07:03 +02:00
Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(depTup);
ObjectAddress foundObject;
/* We don't expect any PIN dependencies on columns */
if (foundDep->deptype == DEPENDENCY_PIN)
elog(ERROR, "cannot alter type of a pinned column");
foundObject.classId = foundDep->classid;
foundObject.objectId = foundDep->objid;
foundObject.objectSubId = foundDep->objsubid;
switch (getObjectClass(&foundObject))
{
case OCLASS_CLASS:
{
2004-08-29 07:07:03 +02:00
char relKind = get_rel_relkind(foundObject.objectId);
if (relKind == RELKIND_INDEX)
{
2004-08-29 07:07:03 +02:00
Assert(foundObject.objectSubId == 0);
if (!list_member_oid(tab->changedIndexOids, foundObject.objectId))
{
tab->changedIndexOids = lappend_oid(tab->changedIndexOids,
2005-10-15 04:49:52 +02:00
foundObject.objectId);
2004-08-29 07:07:03 +02:00
tab->changedIndexDefs = lappend(tab->changedIndexDefs,
2005-10-15 04:49:52 +02:00
pg_get_indexdef_string(foundObject.objectId));
2004-08-29 07:07:03 +02:00
}
}
2004-08-29 07:07:03 +02:00
else if (relKind == RELKIND_SEQUENCE)
{
/*
2005-10-15 04:49:52 +02:00
* This must be a SERIAL column's sequence. We need
* not do anything to it.
2004-08-29 07:07:03 +02:00
*/
Assert(foundObject.objectSubId == 0);
}
else
{
/* Not expecting any other direct dependencies... */
elog(ERROR, "unexpected object depending on column: %s",
getObjectDescription(&foundObject));
}
break;
}
case OCLASS_CONSTRAINT:
Assert(foundObject.objectSubId == 0);
if (!list_member_oid(tab->changedConstraintOids,
foundObject.objectId))
{
2006-10-04 02:30:14 +02:00
char *defstring = pg_get_constraintdef_string(foundObject.objectId);
/*
* Put NORMAL dependencies at the front of the list and
* AUTO dependencies at the back. This makes sure that
* foreign-key constraints depending on this column will
* be dropped before unique or primary-key constraints of
* the column; which we must have because the FK
* constraints depend on the indexes belonging to the
* unique constraints.
*/
if (foundDep->deptype == DEPENDENCY_NORMAL)
{
tab->changedConstraintOids =
lcons_oid(foundObject.objectId,
tab->changedConstraintOids);
tab->changedConstraintDefs =
lcons(defstring,
tab->changedConstraintDefs);
}
else
{
tab->changedConstraintOids =
lappend_oid(tab->changedConstraintOids,
foundObject.objectId);
tab->changedConstraintDefs =
lappend(tab->changedConstraintDefs,
defstring);
}
}
break;
case OCLASS_REWRITE:
/* XXX someday see if we can cope with revising views */
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot alter type of a column used by a view or rule"),
errdetail("%s depends on column \"%s\"",
getObjectDescription(&foundObject),
colName)));
break;
case OCLASS_DEFAULT:
2004-08-29 07:07:03 +02:00
/*
2005-10-15 04:49:52 +02:00
* Ignore the column's default expression, since we will fix
* it below.
*/
Assert(defaultexpr);
break;
case OCLASS_PROC:
case OCLASS_TYPE:
case OCLASS_CAST:
case OCLASS_CONVERSION:
case OCLASS_LANGUAGE:
case OCLASS_OPERATOR:
case OCLASS_OPCLASS:
case OCLASS_OPFAMILY:
case OCLASS_AMOP:
case OCLASS_AMPROC:
case OCLASS_TRIGGER:
case OCLASS_SCHEMA:
case OCLASS_TSPARSER:
case OCLASS_TSDICT:
case OCLASS_TSTEMPLATE:
case OCLASS_TSCONFIG:
case OCLASS_ROLE:
case OCLASS_DATABASE:
case OCLASS_TBLSPACE:
case OCLASS_FDW:
case OCLASS_FOREIGN_SERVER:
case OCLASS_USER_MAPPING:
case OCLASS_DEFACL:
2004-08-29 07:07:03 +02:00
/*
2005-10-15 04:49:52 +02:00
* We don't expect any of these sorts of objects to depend on
* a column.
*/
elog(ERROR, "unexpected object depending on column: %s",
getObjectDescription(&foundObject));
break;
default:
elog(ERROR, "unrecognized object class: %u",
foundObject.classId);
}
}
systable_endscan(scan);
/*
* Now scan for dependencies of this column on other things. The only
2005-10-15 04:49:52 +02:00
* thing we should find is the dependency on the column datatype, which we
* want to remove.
*/
ScanKeyInit(&key[0],
Anum_pg_depend_classid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(RelationRelationId));
ScanKeyInit(&key[1],
Anum_pg_depend_objid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(RelationGetRelid(rel)));
ScanKeyInit(&key[2],
Anum_pg_depend_objsubid,
BTEqualStrategyNumber, F_INT4EQ,
Int32GetDatum((int32) attnum));
scan = systable_beginscan(depRel, DependDependerIndexId, true,
SnapshotNow, 3, key);
while (HeapTupleIsValid(depTup = systable_getnext(scan)))
{
2004-08-29 07:07:03 +02:00
Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(depTup);
if (foundDep->deptype != DEPENDENCY_NORMAL)
elog(ERROR, "found unexpected dependency type '%c'",
foundDep->deptype);
if (foundDep->refclassid != TypeRelationId ||
foundDep->refobjid != attTup->atttypid)
elog(ERROR, "found unexpected dependency for column");
simple_heap_delete(depRel, &depTup->t_self);
}
systable_endscan(scan);
heap_close(depRel, RowExclusiveLock);
/*
2004-08-29 07:07:03 +02:00
* Here we go --- change the recorded column type. (Note heapTup is a
* copy of the syscache entry, so okay to scribble on.)
*/
attTup->atttypid = targettype;
attTup->atttypmod = targettypmod;
attTup->attndims = list_length(typeName->arrayBounds);
attTup->attlen = tform->typlen;
attTup->attbyval = tform->typbyval;
attTup->attalign = tform->typalign;
attTup->attstorage = tform->typstorage;
ReleaseSysCache(typeTuple);
simple_heap_update(attrelation, &heapTup->t_self, heapTup);
/* keep system catalog indexes current */
CatalogUpdateIndexes(attrelation, heapTup);
heap_close(attrelation, RowExclusiveLock);
/* Install dependency on new datatype */
add_column_datatype_dependency(RelationGetRelid(rel), attnum, targettype);
2004-08-29 07:07:03 +02:00
/*
2005-10-15 04:49:52 +02:00
* Drop any pg_statistic entry for the column, since it's now wrong type
2004-08-29 07:07:03 +02:00
*/
RemoveStatistics(RelationGetRelid(rel), attnum);
/*
2005-10-15 04:49:52 +02:00
* Update the default, if present, by brute force --- remove and re-add
* the default. Probably unsafe to take shortcuts, since the new version
* may well have additional dependencies. (It's okay to do this now,
* rather than after other ALTER TYPE commands, since the default won't
* depend on other column types.)
*/
if (defaultexpr)
{
/* Must make new row visible since it will be updated again */
CommandCounterIncrement();
/*
2005-10-15 04:49:52 +02:00
* We use RESTRICT here for safety, but at present we do not expect
* anything to depend on the default.
*/
RemoveAttrDefault(RelationGetRelid(rel), attnum, DROP_RESTRICT, true);
StoreAttrDefault(rel, attnum, defaultexpr);
}
/* Cleanup */
heap_freetuple(heapTup);
}
/*
* Cleanup after we've finished all the ALTER TYPE operations for a
* particular relation. We have to drop and recreate all the indexes
* and constraints that depend on the altered columns.
*/
static void
ATPostAlterTypeCleanup(List **wqueue, AlteredTableInfo *tab)
{
ObjectAddress obj;
2004-08-29 07:07:03 +02:00
ListCell *l;
/*
2005-10-15 04:49:52 +02:00
* Re-parse the index and constraint definitions, and attach them to the
* appropriate work queue entries. We do this before dropping because in
* the case of a FOREIGN KEY constraint, we might not yet have exclusive
* lock on the table the constraint is attached to, and we need to get
* that before dropping. It's safe because the parser won't actually look
* at the catalogs to detect the existing entry.
*/
foreach(l, tab->changedIndexDefs)
ATPostAlterTypeParse((char *) lfirst(l), wqueue);
foreach(l, tab->changedConstraintDefs)
ATPostAlterTypeParse((char *) lfirst(l), wqueue);
/*
2005-10-15 04:49:52 +02:00
* Now we can drop the existing constraints and indexes --- constraints
* first, since some of them might depend on the indexes. In fact, we
2006-10-04 02:30:14 +02:00
* have to delete FOREIGN KEY constraints before UNIQUE constraints, but
* we already ordered the constraint list to ensure that would happen. It
* should be okay to use DROP_RESTRICT here, since nothing else should be
* depending on these objects.
*/
foreach(l, tab->changedConstraintOids)
{
obj.classId = ConstraintRelationId;
obj.objectId = lfirst_oid(l);
obj.objectSubId = 0;
performDeletion(&obj, DROP_RESTRICT);
}
foreach(l, tab->changedIndexOids)
{
obj.classId = RelationRelationId;
obj.objectId = lfirst_oid(l);
obj.objectSubId = 0;
performDeletion(&obj, DROP_RESTRICT);
}
/*
2005-10-15 04:49:52 +02:00
* The objects will get recreated during subsequent passes over the work
* queue.
*/
}
static void
ATPostAlterTypeParse(char *cmd, List **wqueue)
{
List *raw_parsetree_list;
List *querytree_list;
ListCell *list_item;
/*
2007-11-15 22:14:46 +01:00
* We expect that we will get only ALTER TABLE and CREATE INDEX
* statements. Hence, there is no need to pass them through
* parse_analyze() or the rewriter, but instead we need to pass them
* through parse_utilcmd.c to make them ready for execution.
*/
raw_parsetree_list = raw_parser(cmd);
querytree_list = NIL;
foreach(list_item, raw_parsetree_list)
{
Node *stmt = (Node *) lfirst(list_item);
if (IsA(stmt, IndexStmt))
querytree_list = lappend(querytree_list,
transformIndexStmt((IndexStmt *) stmt,
cmd));
else if (IsA(stmt, AlterTableStmt))
querytree_list = list_concat(querytree_list,
2007-11-15 22:14:46 +01:00
transformAlterTableStmt((AlterTableStmt *) stmt,
cmd));
else
querytree_list = lappend(querytree_list, stmt);
}
/*
2005-10-15 04:49:52 +02:00
* Attach each generated command to the proper place in the work queue.
* Note this could result in creation of entirely new work-queue entries.
*/
foreach(list_item, querytree_list)
{
Node *stm = (Node *) lfirst(list_item);
Relation rel;
AlteredTableInfo *tab;
switch (nodeTag(stm))
{
case T_IndexStmt:
2004-08-29 07:07:03 +02:00
{
IndexStmt *stmt = (IndexStmt *) stm;
2004-08-29 07:07:03 +02:00
AlterTableCmd *newcmd;
rel = relation_openrv(stmt->relation, AccessExclusiveLock);
tab = ATGetQueueEntry(wqueue, rel);
newcmd = makeNode(AlterTableCmd);
newcmd->subtype = AT_ReAddIndex;
newcmd->def = (Node *) stmt;
tab->subcmds[AT_PASS_OLD_INDEX] =
lappend(tab->subcmds[AT_PASS_OLD_INDEX], newcmd);
relation_close(rel, NoLock);
break;
}
case T_AlterTableStmt:
{
AlterTableStmt *stmt = (AlterTableStmt *) stm;
2004-08-29 07:07:03 +02:00
ListCell *lcmd;
2004-08-29 07:07:03 +02:00
rel = relation_openrv(stmt->relation, AccessExclusiveLock);
tab = ATGetQueueEntry(wqueue, rel);
foreach(lcmd, stmt->cmds)
{
2004-08-29 07:07:03 +02:00
AlterTableCmd *cmd = (AlterTableCmd *) lfirst(lcmd);
switch (cmd->subtype)
{
case AT_AddIndex:
cmd->subtype = AT_ReAddIndex;
tab->subcmds[AT_PASS_OLD_INDEX] =
lappend(tab->subcmds[AT_PASS_OLD_INDEX], cmd);
break;
case AT_AddConstraint:
tab->subcmds[AT_PASS_OLD_CONSTR] =
lappend(tab->subcmds[AT_PASS_OLD_CONSTR], cmd);
break;
default:
elog(ERROR, "unexpected statement type: %d",
(int) cmd->subtype);
}
}
2004-08-29 07:07:03 +02:00
relation_close(rel, NoLock);
break;
}
default:
elog(ERROR, "unexpected statement type: %d",
(int) nodeTag(stm));
}
}
}
/*
* ALTER TABLE OWNER
*
* recursing is true if we are recursing from a table to its indexes,
* sequences, or toast table. We don't allow the ownership of those things to
* be changed separately from the parent table. Also, we can skip permission
* checks (this is necessary not just an optimization, else we'd fail to
* handle toast tables properly).
*
* recursing is also true if ALTER TYPE OWNER is calling us to fix up a
* free-standing composite type.
*/
void
ATExecChangeOwner(Oid relationOid, Oid newOwnerId, bool recursing)
{
2002-09-04 22:31:48 +02:00
Relation target_rel;
Relation class_rel;
HeapTuple tuple;
Form_pg_class tuple_class;
/*
2005-10-15 04:49:52 +02:00
* Get exclusive lock till end of transaction on the target table. Use
* relation_open so that we can work on indexes and sequences.
*/
target_rel = relation_open(relationOid, AccessExclusiveLock);
/* Get its pg_class tuple, too */
class_rel = heap_open(RelationRelationId, RowExclusiveLock);
tuple = SearchSysCache(RELOID,
2004-08-29 07:07:03 +02:00
ObjectIdGetDatum(relationOid),
0, 0, 0);
if (!HeapTupleIsValid(tuple))
elog(ERROR, "cache lookup failed for relation %u", relationOid);
tuple_class = (Form_pg_class) GETSTRUCT(tuple);
/* Can we change the ownership of this tuple? */
switch (tuple_class->relkind)
{
case RELKIND_RELATION:
case RELKIND_VIEW:
/* ok to change owner */
break;
case RELKIND_INDEX:
if (!recursing)
{
/*
* Because ALTER INDEX OWNER used to be allowed, and in fact
* is generated by old versions of pg_dump, we give a warning
* and do nothing rather than erroring out. Also, to avoid
* unnecessary chatter while restoring those old dumps, say
* nothing at all if the command would be a no-op anyway.
*/
if (tuple_class->relowner != newOwnerId)
ereport(WARNING,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("cannot change owner of index \"%s\"",
NameStr(tuple_class->relname)),
errhint("Change the ownership of the index's table, instead.")));
/* quick hack to exit via the no-op path */
newOwnerId = tuple_class->relowner;
}
break;
case RELKIND_SEQUENCE:
if (!recursing &&
tuple_class->relowner != newOwnerId)
{
/* if it's an owned sequence, disallow changing it by itself */
2006-10-04 02:30:14 +02:00
Oid tableId;
int32 colId;
if (sequenceIsOwned(relationOid, &tableId, &colId))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot change owner of sequence \"%s\"",
NameStr(tuple_class->relname)),
2006-10-04 02:30:14 +02:00
errdetail("Sequence \"%s\" is linked to table \"%s\".",
NameStr(tuple_class->relname),
get_rel_name(tableId))));
}
break;
case RELKIND_COMPOSITE_TYPE:
if (recursing)
break;
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is a composite type",
NameStr(tuple_class->relname)),
errhint("Use ALTER TYPE instead.")));
break;
case RELKIND_TOASTVALUE:
if (recursing)
break;
/* FALL THRU */
default:
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a table, view, or sequence",
NameStr(tuple_class->relname))));
}
2004-08-29 07:07:03 +02:00
/*
* If the new owner is the same as the existing owner, consider the
* command to have succeeded. This is for dump restoration purposes.
*/
if (tuple_class->relowner != newOwnerId)
{
Datum repl_val[Natts_pg_class];
bool repl_null[Natts_pg_class];
bool repl_repl[Natts_pg_class];
2004-08-29 07:07:03 +02:00
Acl *newAcl;
Datum aclDatum;
bool isNull;
HeapTuple newtuple;
/* skip permission checks when recursing to index or toast table */
if (!recursing)
{
/* Superusers can always do it */
if (!superuser())
{
2005-10-15 04:49:52 +02:00
Oid namespaceOid = tuple_class->relnamespace;
AclResult aclresult;
/* Otherwise, must be owner of the existing object */
2005-10-15 04:49:52 +02:00
if (!pg_class_ownercheck(relationOid, GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, ACL_KIND_CLASS,
RelationGetRelationName(target_rel));
/* Must be able to become new owner */
check_is_member_of_role(GetUserId(), newOwnerId);
/* New owner must have CREATE privilege on namespace */
aclresult = pg_namespace_aclcheck(namespaceOid, newOwnerId,
ACL_CREATE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, ACL_KIND_NAMESPACE,
get_namespace_name(namespaceOid));
}
}
memset(repl_null, false, sizeof(repl_null));
memset(repl_repl, false, sizeof(repl_repl));
repl_repl[Anum_pg_class_relowner - 1] = true;
repl_val[Anum_pg_class_relowner - 1] = ObjectIdGetDatum(newOwnerId);
/*
* Determine the modified ACL for the new owner. This is only
* necessary when the ACL is non-null.
*/
aclDatum = SysCacheGetAttr(RELOID, tuple,
Anum_pg_class_relacl,
&isNull);
if (!isNull)
{
newAcl = aclnewowner(DatumGetAclP(aclDatum),
tuple_class->relowner, newOwnerId);
repl_repl[Anum_pg_class_relacl - 1] = true;
repl_val[Anum_pg_class_relacl - 1] = PointerGetDatum(newAcl);
}
newtuple = heap_modify_tuple(tuple, RelationGetDescr(class_rel), repl_val, repl_null, repl_repl);
simple_heap_update(class_rel, &newtuple->t_self, newtuple);
CatalogUpdateIndexes(class_rel, newtuple);
heap_freetuple(newtuple);
/*
* Update owner dependency reference, if any. A composite type has
* none, because it's tracked for the pg_type entry instead of here;
* indexes and TOAST tables don't have their own entries either.
*/
if (tuple_class->relkind != RELKIND_COMPOSITE_TYPE &&
tuple_class->relkind != RELKIND_INDEX &&
tuple_class->relkind != RELKIND_TOASTVALUE)
changeDependencyOnOwner(RelationRelationId, relationOid,
newOwnerId);
/*
* Also change the ownership of the table's rowtype, if it has one
*/
if (tuple_class->relkind != RELKIND_INDEX)
AlterTypeOwnerInternal(tuple_class->reltype, newOwnerId,
2007-11-15 22:14:46 +01:00
tuple_class->relkind == RELKIND_COMPOSITE_TYPE);
/*
2005-10-15 04:49:52 +02:00
* If we are operating on a table, also change the ownership of any
* indexes and sequences that belong to the table, as well as the
* table's toast table (if it has one)
*/
if (tuple_class->relkind == RELKIND_RELATION ||
tuple_class->relkind == RELKIND_TOASTVALUE)
{
List *index_oid_list;
ListCell *i;
/* Find all the indexes belonging to this relation */
index_oid_list = RelationGetIndexList(target_rel);
/* For each index, recursively change its ownership */
foreach(i, index_oid_list)
ATExecChangeOwner(lfirst_oid(i), newOwnerId, true);
list_free(index_oid_list);
}
if (tuple_class->relkind == RELKIND_RELATION)
{
/* If it has a toast table, recurse to change its ownership */
if (tuple_class->reltoastrelid != InvalidOid)
ATExecChangeOwner(tuple_class->reltoastrelid, newOwnerId,
true);
/* If it has dependent sequences, recurse to change them too */
change_owner_recurse_to_sequences(relationOid, newOwnerId);
}
}
ReleaseSysCache(tuple);
heap_close(class_rel, RowExclusiveLock);
relation_close(target_rel, NoLock);
}
/*
* change_owner_recurse_to_sequences
*
* Helper function for ATExecChangeOwner. Examines pg_depend searching
* for sequences that are dependent on serial columns, and changes their
* ownership.
*/
static void
change_owner_recurse_to_sequences(Oid relationOid, Oid newOwnerId)
{
Relation depRel;
SysScanDesc scan;
2005-10-15 04:49:52 +02:00
ScanKeyData key[2];
HeapTuple tup;
/*
* SERIAL sequences are those having an auto dependency on one of the
2005-10-15 04:49:52 +02:00
* table's columns (we don't care *which* column, exactly).
*/
depRel = heap_open(DependRelationId, AccessShareLock);
ScanKeyInit(&key[0],
2005-10-15 04:49:52 +02:00
Anum_pg_depend_refclassid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(RelationRelationId));
ScanKeyInit(&key[1],
2005-10-15 04:49:52 +02:00
Anum_pg_depend_refobjid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(relationOid));
/* we leave refobjsubid unspecified */
scan = systable_beginscan(depRel, DependReferenceIndexId, true,
SnapshotNow, 2, key);
while (HeapTupleIsValid(tup = systable_getnext(scan)))
{
Form_pg_depend depForm = (Form_pg_depend) GETSTRUCT(tup);
Relation seqRel;
/* skip dependencies other than auto dependencies on columns */
if (depForm->refobjsubid == 0 ||
depForm->classid != RelationRelationId ||
depForm->objsubid != 0 ||
depForm->deptype != DEPENDENCY_AUTO)
continue;
/* Use relation_open just in case it's an index */
seqRel = relation_open(depForm->objid, AccessExclusiveLock);
/* skip non-sequence relations */
if (RelationGetForm(seqRel)->relkind != RELKIND_SEQUENCE)
{
/* No need to keep the lock */
relation_close(seqRel, AccessExclusiveLock);
continue;
}
/* We don't need to close the sequence while we alter it. */
ATExecChangeOwner(depForm->objid, newOwnerId, true);
/* Now we can close it. Keep the lock till end of transaction. */
relation_close(seqRel, NoLock);
}
systable_endscan(scan);
relation_close(depRel, AccessShareLock);
}
/*
* ALTER TABLE CLUSTER ON
*
* The only thing we have to do is to change the indisclustered bits.
*/
static void
ATExecClusterOn(Relation rel, const char *indexName)
{
2003-08-04 02:43:34 +02:00
Oid indexOid;
indexOid = get_relname_relid(indexName, rel->rd_rel->relnamespace);
2003-08-04 02:43:34 +02:00
if (!OidIsValid(indexOid))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("index \"%s\" for table \"%s\" does not exist",
indexName, RelationGetRelationName(rel))));
/* Check index is valid to cluster on */
check_index_is_clusterable(rel, indexOid, false);
/* And do the work */
mark_index_clustered(rel, indexOid);
}
/*
* ALTER TABLE SET WITHOUT CLUSTER
*
* We have to find any indexes on the table that have indisclustered bit
* set and turn it off.
*/
static void
ATExecDropCluster(Relation rel)
{
mark_index_clustered(rel, InvalidOid);
}
/*
* ALTER TABLE SET TABLESPACE
*/
static void
ATPrepSetTableSpace(AlteredTableInfo *tab, Relation rel, char *tablespacename)
{
Oid tablespaceId;
2004-08-29 07:07:03 +02:00
AclResult aclresult;
/* Check that the tablespace exists */
tablespaceId = get_tablespace_oid(tablespacename);
if (!OidIsValid(tablespaceId))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
2005-10-15 04:49:52 +02:00
errmsg("tablespace \"%s\" does not exist", tablespacename)));
/* Check its permissions */
aclresult = pg_tablespace_aclcheck(tablespaceId, GetUserId(), ACL_CREATE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, ACL_KIND_TABLESPACE, tablespacename);
/* Save info for Phase 3 to do the real work */
if (OidIsValid(tab->newTableSpace))
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
2005-10-15 04:49:52 +02:00
errmsg("cannot have multiple SET TABLESPACE subcommands")));
tab->newTableSpace = tablespaceId;
}
/*
* ALTER TABLE/INDEX SET (...) or RESET (...)
*/
static void
ATExecSetRelOptions(Relation rel, List *defList, bool isReset)
{
Oid relid;
Relation pgclass;
HeapTuple tuple;
HeapTuple newtuple;
Datum datum;
bool isnull;
Datum newOptions;
Datum repl_val[Natts_pg_class];
bool repl_null[Natts_pg_class];
bool repl_repl[Natts_pg_class];
static char *validnsps[] = HEAP_RELOPT_NAMESPACES;
if (defList == NIL)
return; /* nothing to do */
pgclass = heap_open(RelationRelationId, RowExclusiveLock);
/* Get the old reloptions */
relid = RelationGetRelid(rel);
tuple = SearchSysCache(RELOID,
ObjectIdGetDatum(relid),
0, 0, 0);
if (!HeapTupleIsValid(tuple))
elog(ERROR, "cache lookup failed for relation %u", relid);
datum = SysCacheGetAttr(RELOID, tuple, Anum_pg_class_reloptions, &isnull);
/* Generate new proposed reloptions (text array) */
newOptions = transformRelOptions(isnull ? (Datum) 0 : datum,
defList, NULL, validnsps, false, isReset);
/* Validate */
switch (rel->rd_rel->relkind)
{
case RELKIND_RELATION:
case RELKIND_TOASTVALUE:
(void) heap_reloptions(rel->rd_rel->relkind, newOptions, true);
break;
case RELKIND_INDEX:
(void) index_reloptions(rel->rd_am->amoptions, newOptions, true);
break;
default:
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a table, index, or TOAST table",
RelationGetRelationName(rel))));
break;
}
/*
* All we need do here is update the pg_class row; the new options will be
* propagated into relcaches during post-commit cache inval.
*/
memset(repl_val, 0, sizeof(repl_val));
memset(repl_null, false, sizeof(repl_null));
memset(repl_repl, false, sizeof(repl_repl));
if (newOptions != (Datum) 0)
repl_val[Anum_pg_class_reloptions - 1] = newOptions;
else
repl_null[Anum_pg_class_reloptions - 1] = true;
repl_repl[Anum_pg_class_reloptions - 1] = true;
newtuple = heap_modify_tuple(tuple, RelationGetDescr(pgclass),
repl_val, repl_null, repl_repl);
simple_heap_update(pgclass, &newtuple->t_self, newtuple);
CatalogUpdateIndexes(pgclass, newtuple);
heap_freetuple(newtuple);
ReleaseSysCache(tuple);
/* repeat the whole exercise for the toast table, if there's one */
if (OidIsValid(rel->rd_rel->reltoastrelid))
{
Relation toastrel;
Oid toastid = rel->rd_rel->reltoastrelid;
toastrel = heap_open(toastid, AccessExclusiveLock);
/* Get the old reloptions */
tuple = SearchSysCache(RELOID,
ObjectIdGetDatum(toastid),
0, 0, 0);
if (!HeapTupleIsValid(tuple))
elog(ERROR, "cache lookup failed for relation %u", toastid);
datum = SysCacheGetAttr(RELOID, tuple, Anum_pg_class_reloptions, &isnull);
newOptions = transformRelOptions(isnull ? (Datum) 0 : datum,
defList, "toast", validnsps, false, isReset);
(void) heap_reloptions(RELKIND_TOASTVALUE, newOptions, true);
memset(repl_val, 0, sizeof(repl_val));
memset(repl_null, false, sizeof(repl_null));
memset(repl_repl, false, sizeof(repl_repl));
if (newOptions != (Datum) 0)
repl_val[Anum_pg_class_reloptions - 1] = newOptions;
else
repl_null[Anum_pg_class_reloptions - 1] = true;
repl_repl[Anum_pg_class_reloptions - 1] = true;
newtuple = heap_modify_tuple(tuple, RelationGetDescr(pgclass),
repl_val, repl_null, repl_repl);
simple_heap_update(pgclass, &newtuple->t_self, newtuple);
CatalogUpdateIndexes(pgclass, newtuple);
heap_freetuple(newtuple);
ReleaseSysCache(tuple);
heap_close(toastrel, NoLock);
}
heap_close(pgclass, RowExclusiveLock);
}
/*
* Execute ALTER TABLE SET TABLESPACE for cases where there is no tuple
* rewriting to be done, so we just want to copy the data as fast as possible.
*/
static void
ATExecSetTableSpace(Oid tableOid, Oid newTableSpace)
{
Relation rel;
Oid oldTableSpace;
Oid reltoastrelid;
Oid reltoastidxid;
Oid newrelfilenode;
RelFileNode newrnode;
SMgrRelation dstrel;
Relation pg_class;
HeapTuple tuple;
Form_pg_class rd_rel;
ForkNumber forkNum;
/*
* Need lock here in case we are recursing to toast table or index
*/
rel = relation_open(tableOid, AccessExclusiveLock);
/*
* We can never allow moving of shared or nailed-in-cache relations,
* because we can't support changing their reltablespace values.
*/
if (rel->rd_rel->relisshared || rel->rd_isnailed)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot move system relation \"%s\"",
RelationGetRelationName(rel))));
/* Can't move a non-shared relation into pg_global */
if (newTableSpace == GLOBALTABLESPACE_OID)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("only shared relations can be placed in pg_global tablespace")));
/*
2005-10-15 04:49:52 +02:00
* Don't allow moving temp tables of other backends ... their local buffer
* manager is not going to cope.
*/
if (RELATION_IS_OTHER_TEMP(rel))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2005-10-15 04:49:52 +02:00
errmsg("cannot move temporary tables of other sessions")));
/*
* No work if no change in tablespace.
*/
oldTableSpace = rel->rd_rel->reltablespace;
if (newTableSpace == oldTableSpace ||
(newTableSpace == MyDatabaseTableSpace && oldTableSpace == 0))
{
relation_close(rel, NoLock);
return;
}
reltoastrelid = rel->rd_rel->reltoastrelid;
reltoastidxid = rel->rd_rel->reltoastidxid;
/* Get a modifiable copy of the relation's pg_class row */
pg_class = heap_open(RelationRelationId, RowExclusiveLock);
tuple = SearchSysCacheCopy(RELOID,
ObjectIdGetDatum(tableOid),
0, 0, 0);
if (!HeapTupleIsValid(tuple))
elog(ERROR, "cache lookup failed for relation %u", tableOid);
rd_rel = (Form_pg_class) GETSTRUCT(tuple);
/*
* Since we copy the file directly without looking at the shared buffers,
* we'd better first flush out any pages of the source relation that are
* in shared buffers. We assume no new changes will be made while we are
* holding exclusive lock on the rel.
*/
FlushRelationBuffers(rel);
/*
* Relfilenodes are not unique across tablespaces, so we need to allocate
* a new one in the new tablespace.
*/
newrelfilenode = GetNewRelFileNode(newTableSpace,
rel->rd_rel->relisshared,
NULL);
/* Open old and new relation */
newrnode = rel->rd_node;
newrnode.relNode = newrelfilenode;
newrnode.spcNode = newTableSpace;
dstrel = smgropen(newrnode);
RelationOpenSmgr(rel);
/*
* Create and copy all forks of the relation, and schedule unlinking of
* old physical files.
*
* NOTE: any conflict in relfilenode value will be caught in
* RelationCreateStorage().
*/
RelationCreateStorage(newrnode, rel->rd_istemp);
/* copy main fork */
copy_relation_data(rel->rd_smgr, dstrel, MAIN_FORKNUM, rel->rd_istemp);
/* copy those extra forks that exist */
for (forkNum = MAIN_FORKNUM + 1; forkNum <= MAX_FORKNUM; forkNum++)
{
if (smgrexists(rel->rd_smgr, forkNum))
{
smgrcreate(dstrel, forkNum, false);
copy_relation_data(rel->rd_smgr, dstrel, forkNum, rel->rd_istemp);
}
}
/* drop old relation, and close new one */
RelationDropStorage(rel);
smgrclose(dstrel);
/* update the pg_class row */
rd_rel->reltablespace = (newTableSpace == MyDatabaseTableSpace) ? InvalidOid : newTableSpace;
rd_rel->relfilenode = newrelfilenode;
simple_heap_update(pg_class, &tuple->t_self, tuple);
CatalogUpdateIndexes(pg_class, tuple);
heap_freetuple(tuple);
heap_close(pg_class, RowExclusiveLock);
relation_close(rel, NoLock);
/* Make sure the reltablespace change is visible */
CommandCounterIncrement();
/* Move associated toast relation and/or index, too */
if (OidIsValid(reltoastrelid))
ATExecSetTableSpace(reltoastrelid, newTableSpace);
if (OidIsValid(reltoastidxid))
ATExecSetTableSpace(reltoastidxid, newTableSpace);
}
/*
* Copy data, block by block
*/
static void
copy_relation_data(SMgrRelation src, SMgrRelation dst,
ForkNumber forkNum, bool istemp)
{
bool use_wal;
BlockNumber nblocks;
BlockNumber blkno;
2004-08-29 07:07:03 +02:00
char buf[BLCKSZ];
Page page = (Page) buf;
/*
2005-10-15 04:49:52 +02:00
* We need to log the copied data in WAL iff WAL archiving is enabled AND
* it's not a temp rel.
*/
use_wal = XLogArchivingActive() && !istemp;
nblocks = smgrnblocks(src, forkNum);
for (blkno = 0; blkno < nblocks; blkno++)
{
smgrread(src, forkNum, blkno, buf);
/* XLOG stuff */
if (use_wal)
log_newpage(&dst->smgr_rnode, forkNum, blkno, page);
/*
2005-10-15 04:49:52 +02:00
* Now write the page. We say isTemp = true even if it's not a temp
* rel, because there's no need for smgr to schedule an fsync for this
* write; we'll do it ourselves below.
*/
smgrextend(dst, forkNum, blkno, buf, true);
}
/*
2005-10-15 04:49:52 +02:00
* If the rel isn't temp, we must fsync it down to disk before it's safe
* to commit the transaction. (For a temp rel we don't care since the rel
* will be uninteresting after a crash anyway.)
*
* It's obvious that we must do this when not WAL-logging the copy. It's
* less obvious that we have to do it even if we did WAL-log the copied
* pages. The reason is that since we're copying outside shared buffers, a
2005-10-15 04:49:52 +02:00
* CHECKPOINT occurring during the copy has no way to flush the previously
* written data to disk (indeed it won't know the new rel even exists). A
* crash later on would replay WAL from the checkpoint, therefore it
* wouldn't replay our earlier WAL entries. If we do not fsync those pages
* here, they might still not be on disk when the crash occurs.
*/
if (!istemp)
smgrimmedsync(dst, forkNum);
}
/*
* ALTER TABLE ENABLE/DISABLE TRIGGER
*
* We just pass this off to trigger.c.
*/
static void
ATExecEnableDisableTrigger(Relation rel, char *trigname,
Changes pg_trigger and extend pg_rewrite in order to allow triggers and rules to be defined with different, per session controllable, behaviors for replication purposes. This will allow replication systems like Slony-I and, as has been stated on pgsql-hackers, other products to control the firing mechanism of triggers and rewrite rules without modifying the system catalog directly. The firing mechanisms are controlled by a new superuser-only GUC variable, session_replication_role, together with a change to pg_trigger.tgenabled and a new column pg_rewrite.ev_enabled. Both columns are a single char data type now (tgenabled was a bool before). The possible values in these attributes are: 'O' - Trigger/Rule fires when session_replication_role is "origin" (default) or "local". This is the default behavior. 'D' - Trigger/Rule is disabled and fires never 'A' - Trigger/Rule fires always regardless of the setting of session_replication_role 'R' - Trigger/Rule fires when session_replication_role is "replica" The GUC variable can only be changed as long as the system does not have any cached query plans. This will prevent changing the session role and accidentally executing stored procedures or functions that have plans cached that expand to the wrong query set due to differences in the rule firing semantics. The SQL syntax for changing a triggers/rules firing semantics is ALTER TABLE <tabname> <when> TRIGGER|RULE <name>; <when> ::= ENABLE | ENABLE ALWAYS | ENABLE REPLICA | DISABLE psql's \d command as well as pg_dump are extended in a backward compatible fashion. Jan
2007-03-20 00:38:32 +01:00
char fires_when, bool skip_system)
{
EnableDisableTrigger(rel, trigname, fires_when, skip_system);
}
/*
* ALTER TABLE ENABLE/DISABLE RULE
*
* We just pass this off to rewriteDefine.c.
*/
static void
ATExecEnableDisableRule(Relation rel, char *trigname,
2007-11-15 22:14:46 +01:00
char fires_when)
{
Changes pg_trigger and extend pg_rewrite in order to allow triggers and rules to be defined with different, per session controllable, behaviors for replication purposes. This will allow replication systems like Slony-I and, as has been stated on pgsql-hackers, other products to control the firing mechanism of triggers and rewrite rules without modifying the system catalog directly. The firing mechanisms are controlled by a new superuser-only GUC variable, session_replication_role, together with a change to pg_trigger.tgenabled and a new column pg_rewrite.ev_enabled. Both columns are a single char data type now (tgenabled was a bool before). The possible values in these attributes are: 'O' - Trigger/Rule fires when session_replication_role is "origin" (default) or "local". This is the default behavior. 'D' - Trigger/Rule is disabled and fires never 'A' - Trigger/Rule fires always regardless of the setting of session_replication_role 'R' - Trigger/Rule fires when session_replication_role is "replica" The GUC variable can only be changed as long as the system does not have any cached query plans. This will prevent changing the session role and accidentally executing stored procedures or functions that have plans cached that expand to the wrong query set due to differences in the rule firing semantics. The SQL syntax for changing a triggers/rules firing semantics is ALTER TABLE <tabname> <when> TRIGGER|RULE <name>; <when> ::= ENABLE | ENABLE ALWAYS | ENABLE REPLICA | DISABLE psql's \d command as well as pg_dump are extended in a backward compatible fashion. Jan
2007-03-20 00:38:32 +01:00
EnableDisableRule(rel, trigname, fires_when);
}
/*
* ALTER TABLE INHERIT
*
* Add a parent to the child's parents. This verifies that all the columns and
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
* check constraints of the parent appear in the child and that they have the
* same data types and expressions.
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
*/
static void
ATExecAddInherit(Relation child_rel, RangeVar *parent)
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
{
Relation parent_rel,
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
catalogRelation;
SysScanDesc scan;
ScanKeyData key;
HeapTuple inheritsTuple;
int32 inhseqno;
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
List *children;
/*
* AccessShareLock on the parent is what's obtained during normal CREATE
* TABLE ... INHERITS ..., so should be enough here.
*/
parent_rel = heap_openrv(parent, AccessShareLock);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
/*
* Must be owner of both parent and child -- child was checked by
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
* ATSimplePermissions call in ATPrepCmd
*/
ATSimplePermissions(parent_rel, false);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
/* Permanent rels cannot inherit from temporary ones */
if (parent_rel->rd_istemp && !child_rel->rd_istemp)
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("cannot inherit from temporary relation \"%s\"",
RelationGetRelationName(parent_rel))));
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
/*
* Check for duplicates in the list of parents, and determine the highest
* inhseqno already present; we'll use the next one for the new parent.
* (Note: get RowExclusiveLock because we will write pg_inherits below.)
*
* Note: we do not reject the case where the child already inherits from
* the parent indirectly; CREATE TABLE doesn't reject comparable cases.
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
*/
catalogRelation = heap_open(InheritsRelationId, RowExclusiveLock);
ScanKeyInit(&key,
Anum_pg_inherits_inhrelid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(RelationGetRelid(child_rel)));
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
scan = systable_beginscan(catalogRelation, InheritsRelidSeqnoIndexId,
true, SnapshotNow, 1, &key);
/* inhseqno sequences start at 1 */
inhseqno = 0;
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
while (HeapTupleIsValid(inheritsTuple = systable_getnext(scan)))
{
Form_pg_inherits inh = (Form_pg_inherits) GETSTRUCT(inheritsTuple);
if (inh->inhparent == RelationGetRelid(parent_rel))
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_TABLE),
2007-11-15 22:14:46 +01:00
errmsg("relation \"%s\" would be inherited from more than once",
RelationGetRelationName(parent_rel))));
if (inh->inhseqno > inhseqno)
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
inhseqno = inh->inhseqno;
}
systable_endscan(scan);
/*
* Prevent circularity by seeing if proposed parent inherits from child.
* (In particular, this disallows making a rel inherit from itself.)
*
* This is not completely bulletproof because of race conditions: in
2007-11-15 22:14:46 +01:00
* multi-level inheritance trees, someone else could concurrently be
* making another inheritance link that closes the loop but does not join
* either of the rels we have locked. Preventing that seems to require
* exclusive locks on the entire inheritance tree, which is a cure worse
* than the disease. find_all_inheritors() will cope with circularity
* anyway, so don't sweat it too much.
*
* We use weakest lock we can on child's children, namely AccessShareLock.
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
*/
children = find_all_inheritors(RelationGetRelid(child_rel),
AccessShareLock);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
if (list_member_oid(children, RelationGetRelid(parent_rel)))
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_TABLE),
errmsg("circular inheritance not allowed"),
errdetail("\"%s\" is already a child of \"%s\".",
parent->relname,
RelationGetRelationName(child_rel))));
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
/* If parent has OIDs then child must have OIDs */
if (parent_rel->rd_rel->relhasoids && !child_rel->rd_rel->relhasoids)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("table \"%s\" without OIDs cannot inherit from table \"%s\" with OIDs",
RelationGetRelationName(child_rel),
RelationGetRelationName(parent_rel))));
/* Match up the columns and bump attinhcount as needed */
MergeAttributesIntoExisting(child_rel, parent_rel);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
/* Match up the constraints and bump coninhcount as needed */
MergeConstraintsIntoExisting(child_rel, parent_rel);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
/*
2007-11-15 22:14:46 +01:00
* OK, it looks valid. Make the catalog entries that show inheritance.
*/
StoreCatalogInheritance1(RelationGetRelid(child_rel),
RelationGetRelid(parent_rel),
inhseqno + 1,
catalogRelation);
/* Now we're done with pg_inherits */
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
heap_close(catalogRelation, RowExclusiveLock);
/* keep our lock on the parent relation until commit */
heap_close(parent_rel, NoLock);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
}
/*
* Obtain the source-text form of the constraint expression for a check
* constraint, given its pg_constraint tuple
*/
static char *
decompile_conbin(HeapTuple contup, TupleDesc tupdesc)
{
Form_pg_constraint con;
bool isnull;
Datum attr;
Datum expr;
con = (Form_pg_constraint) GETSTRUCT(contup);
attr = heap_getattr(contup, Anum_pg_constraint_conbin, tupdesc, &isnull);
if (isnull)
elog(ERROR, "null conbin for constraint %u", HeapTupleGetOid(contup));
expr = DirectFunctionCall2(pg_get_expr, attr,
ObjectIdGetDatum(con->conrelid));
return TextDatumGetCString(expr);
}
/*
* Determine whether two check constraints are functionally equivalent
*
* The test we apply is to see whether they reverse-compile to the same
* source string. This insulates us from issues like whether attributes
* have the same physical column numbers in parent and child relations.
*/
static bool
constraints_equivalent(HeapTuple a, HeapTuple b, TupleDesc tupleDesc)
{
Form_pg_constraint acon = (Form_pg_constraint) GETSTRUCT(a);
Form_pg_constraint bcon = (Form_pg_constraint) GETSTRUCT(b);
if (acon->condeferrable != bcon->condeferrable ||
acon->condeferred != bcon->condeferred ||
strcmp(decompile_conbin(a, tupleDesc),
decompile_conbin(b, tupleDesc)) != 0)
return false;
else
return true;
}
/*
* Check columns in child table match up with columns in parent, and increment
* their attinhcount.
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
*
* Called by ATExecAddInherit
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
*
* Currently all parent columns must be found in child. Missing columns are an
* error. One day we might consider creating new columns like CREATE TABLE
* does. However, that is widely unpopular --- in the common use case of
* partitioned tables it's a foot-gun.
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
*
* The data type must match exactly. If the parent column is NOT NULL then
* the child must be as well. Defaults are not compared, however.
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
*/
static void
MergeAttributesIntoExisting(Relation child_rel, Relation parent_rel)
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
{
Relation attrrel;
2006-10-04 02:30:14 +02:00
AttrNumber parent_attno;
int parent_natts;
TupleDesc tupleDesc;
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
TupleConstr *constr;
2006-10-04 02:30:14 +02:00
HeapTuple tuple;
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
attrrel = heap_open(AttributeRelationId, RowExclusiveLock);
tupleDesc = RelationGetDescr(parent_rel);
parent_natts = tupleDesc->natts;
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
constr = tupleDesc->constr;
for (parent_attno = 1; parent_attno <= parent_natts; parent_attno++)
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
{
Form_pg_attribute attribute = tupleDesc->attrs[parent_attno - 1];
char *attributeName = NameStr(attribute->attname);
/* Ignore dropped columns in the parent. */
if (attribute->attisdropped)
continue;
/* Find same column in child (matching on column name). */
tuple = SearchSysCacheCopyAttName(RelationGetRelid(child_rel),
attributeName);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
if (HeapTupleIsValid(tuple))
{
/* Check they are same type and typmod */
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
Form_pg_attribute childatt = (Form_pg_attribute) GETSTRUCT(tuple);
if (attribute->atttypid != childatt->atttypid ||
attribute->atttypmod != childatt->atttypmod)
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("child table \"%s\" has different type for column \"%s\"",
RelationGetRelationName(child_rel),
attributeName)));
if (attribute->attnotnull && !childatt->attnotnull)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
2007-11-15 22:14:46 +01:00
errmsg("column \"%s\" in child table must be marked NOT NULL",
attributeName)));
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
/*
* OK, bump the child column's inheritance count. (If we fail
* later on, this change will just roll back.)
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
*/
childatt->attinhcount++;
simple_heap_update(attrrel, &tuple->t_self, tuple);
CatalogUpdateIndexes(attrrel, tuple);
heap_freetuple(tuple);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
}
else
{
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
2006-10-06 19:14:01 +02:00
errmsg("child table is missing column \"%s\"",
attributeName)));
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
}
}
heap_close(attrrel, RowExclusiveLock);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
}
/*
* Check constraints in child table match up with constraints in parent,
* and increment their coninhcount.
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
*
* Called by ATExecAddInherit
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
*
* Currently all constraints in parent must be present in the child. One day we
* may consider adding new constraints like CREATE TABLE does. We may also want
* to allow an optional flag on parent table constraints indicating they are
* intended to ONLY apply to the master table, not to the children. That would
* make it possible to ensure no records are mistakenly inserted into the
* master in partitioned tables rather than the appropriate child.
*
* XXX This is O(N^2) which may be an issue with tables with hundreds of
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
* constraints. As long as tables have more like 10 constraints it shouldn't be
* a problem though. Even 100 constraints ought not be the end of the world.
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
*/
static void
MergeConstraintsIntoExisting(Relation child_rel, Relation parent_rel)
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
{
Relation catalog_relation;
TupleDesc tuple_desc;
SysScanDesc parent_scan;
ScanKeyData parent_key;
HeapTuple parent_tuple;
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
catalog_relation = heap_open(ConstraintRelationId, RowExclusiveLock);
tuple_desc = RelationGetDescr(catalog_relation);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
/* Outer loop scans through the parent's constraint definitions */
ScanKeyInit(&parent_key,
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
Anum_pg_constraint_conrelid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(RelationGetRelid(parent_rel)));
parent_scan = systable_beginscan(catalog_relation, ConstraintRelidIndexId,
true, SnapshotNow, 1, &parent_key);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
while (HeapTupleIsValid(parent_tuple = systable_getnext(parent_scan)))
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
{
Form_pg_constraint parent_con = (Form_pg_constraint) GETSTRUCT(parent_tuple);
SysScanDesc child_scan;
ScanKeyData child_key;
HeapTuple child_tuple;
bool found = false;
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
if (parent_con->contype != CONSTRAINT_CHECK)
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
continue;
/* Search for a child constraint matching this one */
ScanKeyInit(&child_key,
Anum_pg_constraint_conrelid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(RelationGetRelid(child_rel)));
child_scan = systable_beginscan(catalog_relation, ConstraintRelidIndexId,
true, SnapshotNow, 1, &child_key);
while (HeapTupleIsValid(child_tuple = systable_getnext(child_scan)))
{
Form_pg_constraint child_con = (Form_pg_constraint) GETSTRUCT(child_tuple);
HeapTuple child_copy;
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
if (child_con->contype != CONSTRAINT_CHECK)
continue;
if (strcmp(NameStr(parent_con->conname),
NameStr(child_con->conname)) != 0)
continue;
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
if (!constraints_equivalent(parent_tuple, child_tuple, tuple_desc))
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("child table \"%s\" has different definition for check constraint \"%s\"",
RelationGetRelationName(child_rel),
NameStr(parent_con->conname))));
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
/*
* OK, bump the child constraint's inheritance count. (If we fail
* later on, this change will just roll back.)
*/
child_copy = heap_copytuple(child_tuple);
child_con = (Form_pg_constraint) GETSTRUCT(child_copy);
child_con->coninhcount++;
simple_heap_update(catalog_relation, &child_copy->t_self, child_copy);
CatalogUpdateIndexes(catalog_relation, child_copy);
heap_freetuple(child_copy);
found = true;
break;
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
}
systable_endscan(child_scan);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
if (!found)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("child table is missing constraint \"%s\"",
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
NameStr(parent_con->conname))));
}
systable_endscan(parent_scan);
heap_close(catalog_relation, RowExclusiveLock);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
}
/*
* ALTER TABLE NO INHERIT
*
* Drop a parent from the child's parents. This just adjusts the attinhcount
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
* and attislocal of the columns and removes the pg_inherit and pg_depend
* entries.
*
* If attinhcount goes to 0 then attislocal gets set to true. If it goes back
* up attislocal stays true, which means if a child is ever removed from a
* parent then its columns will never be automatically dropped which may
* surprise. But at least we'll never surprise by dropping columns someone
* isn't expecting to be dropped which would actually mean data loss.
*
* coninhcount and conislocal for inherited constraints are adjusted in
* exactly the same way.
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
*/
static void
ATExecDropInherit(Relation rel, RangeVar *parent)
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
{
Relation parent_rel;
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
Relation catalogRelation;
SysScanDesc scan;
ScanKeyData key[3];
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
HeapTuple inheritsTuple,
attributeTuple,
constraintTuple,
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
depTuple;
List *connames;
bool found = false;
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
/*
2007-11-15 22:14:46 +01:00
* AccessShareLock on the parent is probably enough, seeing that DROP
* TABLE doesn't lock parent tables at all. We need some lock since we'll
* be inspecting the parent's schema.
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
*/
parent_rel = heap_openrv(parent, AccessShareLock);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
/*
2007-11-15 22:14:46 +01:00
* We don't bother to check ownership of the parent table --- ownership of
* the child is presumed enough rights.
*/
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
/*
2007-11-15 22:14:46 +01:00
* Find and destroy the pg_inherits entry linking the two, or error out if
* there is none.
*/
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
catalogRelation = heap_open(InheritsRelationId, RowExclusiveLock);
ScanKeyInit(&key[0],
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
Anum_pg_inherits_inhrelid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(RelationGetRelid(rel)));
scan = systable_beginscan(catalogRelation, InheritsRelidSeqnoIndexId,
true, SnapshotNow, 1, key);
while (HeapTupleIsValid(inheritsTuple = systable_getnext(scan)))
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
{
Oid inhparent;
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
inhparent = ((Form_pg_inherits) GETSTRUCT(inheritsTuple))->inhparent;
if (inhparent == RelationGetRelid(parent_rel))
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
{
simple_heap_delete(catalogRelation, &inheritsTuple->t_self);
found = true;
break;
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
}
}
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
systable_endscan(scan);
heap_close(catalogRelation, RowExclusiveLock);
if (!found)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_TABLE),
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
errmsg("relation \"%s\" is not a parent of relation \"%s\"",
RelationGetRelationName(parent_rel),
RelationGetRelationName(rel))));
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
/*
* Search through child columns looking for ones matching parent rel
*/
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
catalogRelation = heap_open(AttributeRelationId, RowExclusiveLock);
ScanKeyInit(&key[0],
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
Anum_pg_attribute_attrelid,
BTEqualStrategyNumber, F_OIDEQ,
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
ObjectIdGetDatum(RelationGetRelid(rel)));
scan = systable_beginscan(catalogRelation, AttributeRelidNumIndexId,
true, SnapshotNow, 1, key);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
while (HeapTupleIsValid(attributeTuple = systable_getnext(scan)))
{
Form_pg_attribute att = (Form_pg_attribute) GETSTRUCT(attributeTuple);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
/* Ignore if dropped or not inherited */
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
if (att->attisdropped)
continue;
if (att->attinhcount <= 0)
continue;
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
if (SearchSysCacheExistsAttName(RelationGetRelid(parent_rel),
NameStr(att->attname)))
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
{
/* Decrement inhcount and possibly set islocal to true */
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
HeapTuple copyTuple = heap_copytuple(attributeTuple);
Form_pg_attribute copy_att = (Form_pg_attribute) GETSTRUCT(copyTuple);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
copy_att->attinhcount--;
if (copy_att->attinhcount == 0)
copy_att->attislocal = true;
simple_heap_update(catalogRelation, &copyTuple->t_self, copyTuple);
CatalogUpdateIndexes(catalogRelation, copyTuple);
heap_freetuple(copyTuple);
}
}
systable_endscan(scan);
heap_close(catalogRelation, RowExclusiveLock);
/*
* Likewise, find inherited check constraints and disinherit them. To do
* this, we first need a list of the names of the parent's check
* constraints. (We cheat a bit by only checking for name matches,
* assuming that the expressions will match.)
*/
catalogRelation = heap_open(ConstraintRelationId, RowExclusiveLock);
ScanKeyInit(&key[0],
Anum_pg_constraint_conrelid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(RelationGetRelid(parent_rel)));
scan = systable_beginscan(catalogRelation, ConstraintRelidIndexId,
true, SnapshotNow, 1, key);
connames = NIL;
while (HeapTupleIsValid(constraintTuple = systable_getnext(scan)))
{
Form_pg_constraint con = (Form_pg_constraint) GETSTRUCT(constraintTuple);
if (con->contype == CONSTRAINT_CHECK)
connames = lappend(connames, pstrdup(NameStr(con->conname)));
}
systable_endscan(scan);
/* Now scan the child's constraints */
ScanKeyInit(&key[0],
Anum_pg_constraint_conrelid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(RelationGetRelid(rel)));
scan = systable_beginscan(catalogRelation, ConstraintRelidIndexId,
true, SnapshotNow, 1, key);
while (HeapTupleIsValid(constraintTuple = systable_getnext(scan)))
{
Form_pg_constraint con = (Form_pg_constraint) GETSTRUCT(constraintTuple);
bool match;
ListCell *lc;
if (con->contype != CONSTRAINT_CHECK)
continue;
match = false;
foreach(lc, connames)
{
if (strcmp(NameStr(con->conname), (char *) lfirst(lc)) == 0)
{
match = true;
break;
}
}
if (match)
{
/* Decrement inhcount and possibly set islocal to true */
HeapTuple copyTuple = heap_copytuple(constraintTuple);
Form_pg_constraint copy_con = (Form_pg_constraint) GETSTRUCT(copyTuple);
if (copy_con->coninhcount <= 0) /* shouldn't happen */
elog(ERROR, "relation %u has non-inherited constraint \"%s\"",
RelationGetRelid(rel), NameStr(copy_con->conname));
copy_con->coninhcount--;
if (copy_con->coninhcount == 0)
copy_con->conislocal = true;
simple_heap_update(catalogRelation, &copyTuple->t_self, copyTuple);
CatalogUpdateIndexes(catalogRelation, copyTuple);
heap_freetuple(copyTuple);
}
}
systable_endscan(scan);
heap_close(catalogRelation, RowExclusiveLock);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
/*
* Drop the dependency
*
* There's no convenient way to do this, so go trawling through pg_depend
*/
catalogRelation = heap_open(DependRelationId, RowExclusiveLock);
ScanKeyInit(&key[0],
Anum_pg_depend_classid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(RelationRelationId));
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
ScanKeyInit(&key[1],
Anum_pg_depend_objid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(RelationGetRelid(rel)));
ScanKeyInit(&key[2],
Anum_pg_depend_objsubid,
BTEqualStrategyNumber, F_INT4EQ,
Int32GetDatum(0));
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
scan = systable_beginscan(catalogRelation, DependDependerIndexId, true,
SnapshotNow, 3, key);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
while (HeapTupleIsValid(depTuple = systable_getnext(scan)))
{
Form_pg_depend dep = (Form_pg_depend) GETSTRUCT(depTuple);
if (dep->refclassid == RelationRelationId &&
dep->refobjid == RelationGetRelid(parent_rel) &&
dep->refobjsubid == 0 &&
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
dep->deptype == DEPENDENCY_NORMAL)
simple_heap_delete(catalogRelation, &depTuple->t_self);
}
systable_endscan(scan);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
heap_close(catalogRelation, RowExclusiveLock);
/* keep our lock on the parent relation until commit */
heap_close(parent_rel, NoLock);
ALTER TABLE ... ADD/DROPS INHERIT (actually INHERIT / NO INHERIT) Open items: There were a few tangentially related issues that have come up that I think are TODOs. I'm likely to tackle one or two of these next so I'm interested in hearing feedback on them as well. . Constraints currently do not know anything about inheritance. Tom suggested adding a coninhcount and conislocal like attributes have to track their inheritance status. . Foreign key constraints currently do not get copied to new children (and therefore my code doesn't verify them). I don't think it would be hard to add them and treat them like CHECK constraints. . No constraints at all are copied to tables defined with LIKE. That makes it hard to use LIKE to define new partitions. The standard defines LIKE and specifically says it does not copy constraints. But the standard already has an option called INCLUDING DEFAULTS; we could always define a non-standard extension LIKE table INCLUDING CONSTRAINTS that gives the user the option to request a copy including constraints. . Personally, I think the whole attislocal thing is bunk. The decision about whether to drop a column from children tables or not is something that should be up to the user and trying to DWIM based on whether there was ever a local definition or the column was acquired purely through inheritance is hardly ever going to match up with user expectations. . And of course there's the whole unique and primary key constraint issue. I think to get any traction at all on this you have a prerequisite of a real partitioned table implementation where the system knows what the partition key is so it can recognize when it's a leading part of an index key. Greg Stark
2006-07-02 03:58:36 +02:00
}
/*
* Execute ALTER TABLE SET SCHEMA
*
* Note: caller must have checked ownership of the relation already
*/
void
AlterTableNamespace(RangeVar *relation, const char *newschema,
ObjectType stmttype)
{
Relation rel;
Oid relid;
Oid oldNspOid;
Oid nspOid;
Relation classRel;
rel = relation_openrv(relation, AccessExclusiveLock);
relid = RelationGetRelid(rel);
oldNspOid = RelationGetNamespace(rel);
/* Check relation type against type specified in the ALTER command */
switch (stmttype)
{
case OBJECT_TABLE:
/*
* For mostly-historical reasons, we allow ALTER TABLE to apply to
* all relation types.
*/
break;
case OBJECT_SEQUENCE:
if (rel->rd_rel->relkind != RELKIND_SEQUENCE)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a sequence",
RelationGetRelationName(rel))));
break;
case OBJECT_VIEW:
if (rel->rd_rel->relkind != RELKIND_VIEW)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a view",
RelationGetRelationName(rel))));
break;
default:
elog(ERROR, "unrecognized object type: %d", (int) stmttype);
}
/* Can we change the schema of this tuple? */
switch (rel->rd_rel->relkind)
{
case RELKIND_RELATION:
case RELKIND_VIEW:
/* ok to change schema */
break;
case RELKIND_SEQUENCE:
{
/* if it's an owned sequence, disallow moving it by itself */
Oid tableId;
int32 colId;
if (sequenceIsOwned(relid, &tableId, &colId))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot move an owned sequence into another schema"),
2007-11-15 22:14:46 +01:00
errdetail("Sequence \"%s\" is linked to table \"%s\".",
RelationGetRelationName(rel),
get_rel_name(tableId))));
}
break;
case RELKIND_COMPOSITE_TYPE:
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is a composite type",
RelationGetRelationName(rel)),
errhint("Use ALTER TYPE instead.")));
break;
case RELKIND_INDEX:
case RELKIND_TOASTVALUE:
/* FALL THRU */
default:
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a table, view, or sequence",
RelationGetRelationName(rel))));
}
/* get schema OID and check its permissions */
nspOid = LookupCreationNamespace(newschema);
if (oldNspOid == nspOid)
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_TABLE),
errmsg("relation \"%s\" is already in schema \"%s\"",
RelationGetRelationName(rel),
newschema)));
/* disallow renaming into or out of temp schemas */
if (isAnyTempNamespace(nspOid) || isAnyTempNamespace(oldNspOid))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2005-10-15 04:49:52 +02:00
errmsg("cannot move objects into or out of temporary schemas")));
/* same for TOAST schema */
if (nspOid == PG_TOAST_NAMESPACE || oldNspOid == PG_TOAST_NAMESPACE)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot move objects into or out of TOAST schema")));
/* OK, modify the pg_class row and pg_depend entry */
classRel = heap_open(RelationRelationId, RowExclusiveLock);
AlterRelationNamespaceInternal(classRel, relid, oldNspOid, nspOid, true);
/* Fix the table's rowtype too */
AlterTypeNamespaceInternal(rel->rd_rel->reltype, nspOid, false, false);
/* Fix other dependent stuff */
if (rel->rd_rel->relkind == RELKIND_RELATION)
{
AlterIndexNamespaces(classRel, rel, oldNspOid, nspOid);
AlterSeqNamespaces(classRel, rel, oldNspOid, nspOid, newschema);
AlterConstraintNamespaces(relid, oldNspOid, nspOid, false);
}
heap_close(classRel, RowExclusiveLock);
/* close rel, but keep lock until commit */
relation_close(rel, NoLock);
}
/*
* The guts of relocating a relation to another namespace: fix the pg_class
* entry, and the pg_depend entry if any. Caller must already have
* opened and write-locked pg_class.
*/
void
AlterRelationNamespaceInternal(Relation classRel, Oid relOid,
Oid oldNspOid, Oid newNspOid,
bool hasDependEntry)
{
2005-10-15 04:49:52 +02:00
HeapTuple classTup;
Form_pg_class classForm;
classTup = SearchSysCacheCopy(RELOID,
ObjectIdGetDatum(relOid),
0, 0, 0);
if (!HeapTupleIsValid(classTup))
elog(ERROR, "cache lookup failed for relation %u", relOid);
classForm = (Form_pg_class) GETSTRUCT(classTup);
Assert(classForm->relnamespace == oldNspOid);
/* check for duplicate name (more friendly than unique-index failure) */
if (get_relname_relid(NameStr(classForm->relname),
newNspOid) != InvalidOid)
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_TABLE),
errmsg("relation \"%s\" already exists in schema \"%s\"",
NameStr(classForm->relname),
get_namespace_name(newNspOid))));
/* classTup is a copy, so OK to scribble on */
classForm->relnamespace = newNspOid;
simple_heap_update(classRel, &classTup->t_self, classTup);
CatalogUpdateIndexes(classRel, classTup);
/* Update dependency on schema if caller said so */
if (hasDependEntry &&
changeDependencyFor(RelationRelationId, relOid,
NamespaceRelationId, oldNspOid, newNspOid) != 1)
elog(ERROR, "failed to change schema dependency for relation \"%s\"",
NameStr(classForm->relname));
heap_freetuple(classTup);
}
/*
* Move all indexes for the specified relation to another namespace.
*
* Note: we assume adequate permission checking was done by the caller,
* and that the caller has a suitable lock on the owning relation.
*/
static void
AlterIndexNamespaces(Relation classRel, Relation rel,
Oid oldNspOid, Oid newNspOid)
{
List *indexList;
ListCell *l;
indexList = RelationGetIndexList(rel);
foreach(l, indexList)
{
2005-10-15 04:49:52 +02:00
Oid indexOid = lfirst_oid(l);
/*
2005-10-15 04:49:52 +02:00
* Note: currently, the index will not have its own dependency on the
* namespace, so we don't need to do changeDependencyFor(). There's no
* rowtype in pg_type, either.
*/
AlterRelationNamespaceInternal(classRel, indexOid,
oldNspOid, newNspOid,
false);
}
list_free(indexList);
}
/*
* Move all SERIAL-column sequences of the specified relation to another
* namespace.
*
* Note: we assume adequate permission checking was done by the caller,
* and that the caller has a suitable lock on the owning relation.
*/
static void
AlterSeqNamespaces(Relation classRel, Relation rel,
Oid oldNspOid, Oid newNspOid, const char *newNspName)
{
Relation depRel;
SysScanDesc scan;
2005-10-15 04:49:52 +02:00
ScanKeyData key[2];
HeapTuple tup;
/*
* SERIAL sequences are those having an auto dependency on one of the
2005-10-15 04:49:52 +02:00
* table's columns (we don't care *which* column, exactly).
*/
depRel = heap_open(DependRelationId, AccessShareLock);
ScanKeyInit(&key[0],
Anum_pg_depend_refclassid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(RelationRelationId));
ScanKeyInit(&key[1],
Anum_pg_depend_refobjid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(RelationGetRelid(rel)));
/* we leave refobjsubid unspecified */
scan = systable_beginscan(depRel, DependReferenceIndexId, true,
SnapshotNow, 2, key);
while (HeapTupleIsValid(tup = systable_getnext(scan)))
{
Form_pg_depend depForm = (Form_pg_depend) GETSTRUCT(tup);
Relation seqRel;
/* skip dependencies other than auto dependencies on columns */
if (depForm->refobjsubid == 0 ||
depForm->classid != RelationRelationId ||
depForm->objsubid != 0 ||
depForm->deptype != DEPENDENCY_AUTO)
continue;
/* Use relation_open just in case it's an index */
seqRel = relation_open(depForm->objid, AccessExclusiveLock);
/* skip non-sequence relations */
if (RelationGetForm(seqRel)->relkind != RELKIND_SEQUENCE)
{
/* No need to keep the lock */
relation_close(seqRel, AccessExclusiveLock);
continue;
}
/* Fix the pg_class and pg_depend entries */
AlterRelationNamespaceInternal(classRel, depForm->objid,
oldNspOid, newNspOid,
true);
2005-10-15 04:49:52 +02:00
/*
2005-10-15 04:49:52 +02:00
* Sequences have entries in pg_type. We need to be careful to move
* them to the new namespace, too.
*/
AlterTypeNamespaceInternal(RelationGetForm(seqRel)->reltype,
newNspOid, false, false);
/* Now we can close it. Keep the lock till end of transaction. */
relation_close(seqRel, NoLock);
}
systable_endscan(scan);
relation_close(depRel, AccessShareLock);
}
/*
* This code supports
* CREATE TEMP TABLE ... ON COMMIT { DROP | PRESERVE ROWS | DELETE ROWS }
*
* Because we only support this for TEMP tables, it's sufficient to remember
* the state in a backend-local data structure.
*/
/*
* Register a newly-created relation's ON COMMIT action.
*/
void
register_on_commit_action(Oid relid, OnCommitAction action)
{
2003-08-04 02:43:34 +02:00
OnCommitItem *oc;
MemoryContext oldcxt;
/*
2005-10-15 04:49:52 +02:00
* We needn't bother registering the relation unless there is an ON COMMIT
* action we need to take.
*/
if (action == ONCOMMIT_NOOP || action == ONCOMMIT_PRESERVE_ROWS)
return;
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
oc = (OnCommitItem *) palloc(sizeof(OnCommitItem));
oc->relid = relid;
oc->oncommit = action;
oc->creating_subid = GetCurrentSubTransactionId();
oc->deleting_subid = InvalidSubTransactionId;
on_commits = lcons(oc, on_commits);
MemoryContextSwitchTo(oldcxt);
}
/*
* Unregister any ON COMMIT action when a relation is deleted.
*
* Actually, we only mark the OnCommitItem entry as to be deleted after commit.
*/
void
remove_on_commit_action(Oid relid)
{
ListCell *l;
foreach(l, on_commits)
{
2003-08-04 02:43:34 +02:00
OnCommitItem *oc = (OnCommitItem *) lfirst(l);
if (oc->relid == relid)
{
oc->deleting_subid = GetCurrentSubTransactionId();
break;
}
}
}
/*
* Perform ON COMMIT actions.
*
* This is invoked just before actually committing, since it's possible
* to encounter errors.
*/
void
PreCommit_on_commit_actions(void)
{
ListCell *l;
List *oids_to_truncate = NIL;
foreach(l, on_commits)
{
2003-08-04 02:43:34 +02:00
OnCommitItem *oc = (OnCommitItem *) lfirst(l);
/* Ignore entry if already dropped in this xact */
if (oc->deleting_subid != InvalidSubTransactionId)
continue;
switch (oc->oncommit)
{
case ONCOMMIT_NOOP:
case ONCOMMIT_PRESERVE_ROWS:
/* Do nothing (there shouldn't be such entries, actually) */
break;
case ONCOMMIT_DELETE_ROWS:
oids_to_truncate = lappend_oid(oids_to_truncate, oc->relid);
break;
case ONCOMMIT_DROP:
2003-08-04 02:43:34 +02:00
{
ObjectAddress object;
object.classId = RelationRelationId;
2003-08-04 02:43:34 +02:00
object.objectId = oc->relid;
object.objectSubId = 0;
performDeletion(&object, DROP_CASCADE);
/*
* Note that table deletion will call
2005-10-15 04:49:52 +02:00
* remove_on_commit_action, so the entry should get marked
* as deleted.
2003-08-04 02:43:34 +02:00
*/
Assert(oc->deleting_subid != InvalidSubTransactionId);
2003-08-04 02:43:34 +02:00
break;
}
}
}
if (oids_to_truncate != NIL)
{
heap_truncate(oids_to_truncate);
2005-10-15 04:49:52 +02:00
CommandCounterIncrement(); /* XXX needed? */
}
}
/*
* Post-commit or post-abort cleanup for ON COMMIT management.
*
* All we do here is remove no-longer-needed OnCommitItem entries.
*
* During commit, remove entries that were deleted during this transaction;
* during abort, remove those created during this transaction.
*/
void
AtEOXact_on_commit_actions(bool isCommit)
{
2004-08-29 07:07:03 +02:00
ListCell *cur_item;
ListCell *prev_item;
prev_item = NULL;
cur_item = list_head(on_commits);
while (cur_item != NULL)
{
OnCommitItem *oc = (OnCommitItem *) lfirst(cur_item);
if (isCommit ? oc->deleting_subid != InvalidSubTransactionId :
oc->creating_subid != InvalidSubTransactionId)
{
/* cur_item must be removed */
on_commits = list_delete_cell(on_commits, cur_item, prev_item);
pfree(oc);
if (prev_item)
cur_item = lnext(prev_item);
else
cur_item = list_head(on_commits);
}
else
{
/* cur_item must be preserved */
oc->creating_subid = InvalidSubTransactionId;
oc->deleting_subid = InvalidSubTransactionId;
prev_item = cur_item;
cur_item = lnext(prev_item);
}
}
}
/*
* Post-subcommit or post-subabort cleanup for ON COMMIT management.
*
* During subabort, we can immediately remove entries created during this
2004-08-29 07:07:03 +02:00
* subtransaction. During subcommit, just relabel entries marked during
* this subtransaction as being the parent's responsibility.
*/
void
AtEOSubXact_on_commit_actions(bool isCommit, SubTransactionId mySubid,
SubTransactionId parentSubid)
{
2004-08-29 07:07:03 +02:00
ListCell *cur_item;
ListCell *prev_item;
prev_item = NULL;
cur_item = list_head(on_commits);
while (cur_item != NULL)
{
OnCommitItem *oc = (OnCommitItem *) lfirst(cur_item);
if (!isCommit && oc->creating_subid == mySubid)
{
/* cur_item must be removed */
on_commits = list_delete_cell(on_commits, cur_item, prev_item);
pfree(oc);
if (prev_item)
cur_item = lnext(prev_item);
else
cur_item = list_head(on_commits);
}
else
{
/* cur_item must be preserved */
if (oc->creating_subid == mySubid)
oc->creating_subid = parentSubid;
if (oc->deleting_subid == mySubid)
oc->deleting_subid = isCommit ? parentSubid : InvalidSubTransactionId;
prev_item = cur_item;
cur_item = lnext(prev_item);
}
}
}