postgresql/src/backend/commands/lockcmds.c

303 lines
8.5 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* lockcmds.c
* LOCK command support code
*
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
2010-09-20 22:08:53 +02:00
* src/backend/commands/lockcmds.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "catalog/namespace.h"
#include "catalog/pg_inherits.h"
#include "commands/lockcmds.h"
#include "miscadmin.h"
#include "parser/parse_clause.h"
#include "storage/lmgr.h"
#include "utils/acl.h"
#include "utils/lsyscache.h"
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
#include "utils/syscache.h"
#include "rewrite/rewriteHandler.h"
#include "access/heapam.h"
#include "nodes/nodeFuncs.h"
static void LockTableRecurse(Oid reloid, LOCKMODE lockmode, bool nowait, Oid userid);
static AclResult LockTableAclCheck(Oid relid, LOCKMODE lockmode, Oid userid);
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
static void RangeVarCallbackForLockTable(const RangeVar *rv, Oid relid,
Oid oldrelid, void *arg);
static void LockViewRecurse(Oid reloid, LOCKMODE lockmode, bool nowait, List *ancestor_views);
/*
* LOCK TABLE
*/
void
LockTableCommand(LockStmt *lockstmt)
{
ListCell *p;
/*---------
* During recovery we only accept these variations:
* LOCK TABLE foo IN ACCESS SHARE MODE
* LOCK TABLE foo IN ROW SHARE MODE
* LOCK TABLE foo IN ROW EXCLUSIVE MODE
* This test must match the restrictions defined in LockAcquireExtended()
*---------
*/
if (lockstmt->mode > RowExclusiveLock)
PreventCommandDuringRecovery("LOCK TABLE");
/*
* Iterate over the list and process the named relations one at a time
*/
foreach(p, lockstmt->relations)
{
RangeVar *rv = (RangeVar *) lfirst(p);
bool recurse = rv->inh;
Oid reloid;
reloid = RangeVarGetRelidExtended(rv, lockstmt->mode,
lockstmt->nowait ? RVR_NOWAIT : 0,
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
RangeVarCallbackForLockTable,
(void *) &lockstmt->mode);
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
if (get_rel_relkind(reloid) == RELKIND_VIEW)
LockViewRecurse(reloid, lockstmt->mode, lockstmt->nowait, NIL);
else if (recurse)
LockTableRecurse(reloid, lockstmt->mode, lockstmt->nowait, GetUserId());
}
}
/*
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
* Before acquiring a table lock on the named table, check whether we have
* permission to do so.
*/
static void
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
RangeVarCallbackForLockTable(const RangeVar *rv, Oid relid, Oid oldrelid,
void *arg)
{
LOCKMODE lockmode = *(LOCKMODE *) arg;
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
char relkind;
AclResult aclresult;
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
if (!OidIsValid(relid))
return; /* doesn't exist, so no permissions check */
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
relkind = get_rel_relkind(relid);
if (!relkind)
return; /* woops, concurrently dropped; no permissions
* check */
/* Currently, we only allow plain tables or views to be locked */
if (relkind != RELKIND_RELATION && relkind != RELKIND_PARTITIONED_TABLE &&
relkind != RELKIND_VIEW)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a table or a view",
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
rv->relname)));
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
/* Check permissions. */
aclresult = LockTableAclCheck(relid, lockmode, GetUserId());
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, get_relkind_objtype(get_rel_relkind(relid)), rv->relname);
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
}
/*
* Apply LOCK TABLE recursively over an inheritance tree
*
* We use find_inheritance_children not find_all_inheritors to avoid taking
* locks far in advance of checking privileges. This means we'll visit
* multiply-inheriting children more than once, but that's no problem.
*/
static void
LockTableRecurse(Oid reloid, LOCKMODE lockmode, bool nowait, Oid userid)
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
{
List *children;
ListCell *lc;
children = find_inheritance_children(reloid, NoLock);
foreach(lc, children)
{
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
Oid childreloid = lfirst_oid(lc);
AclResult aclresult;
/* Check permissions before acquiring the lock. */
aclresult = LockTableAclCheck(childreloid, lockmode, userid);
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
if (aclresult != ACLCHECK_OK)
{
char *relname = get_rel_name(childreloid);
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
if (!relname)
continue; /* child concurrently dropped, just skip it */
aclcheck_error(aclresult, get_relkind_objtype(get_rel_relkind(childreloid)), relname);
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
}
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
/* We have enough rights to lock the relation; do so. */
if (!nowait)
LockRelationOid(childreloid, lockmode);
else if (!ConditionalLockRelationOid(childreloid, lockmode))
{
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
/* try to throw error by name; relation could be deleted... */
char *relname = get_rel_name(childreloid);
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
if (!relname)
continue; /* child concurrently dropped, just skip it */
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
ereport(ERROR,
(errcode(ERRCODE_LOCK_NOT_AVAILABLE),
errmsg("could not obtain lock on relation \"%s\"",
relname)));
}
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
/*
* Even if we got the lock, child might have been concurrently
* dropped. If so, we can skip it.
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
*/
if (!SearchSysCacheExists1(RELOID, ObjectIdGetDatum(childreloid)))
{
/* Release useless lock */
UnlockRelationOid(childreloid, lockmode);
continue;
}
LockTableRecurse(childreloid, lockmode, nowait, userid);
}
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
}
/*
* Apply LOCK TABLE recursively over a view
*
* All tables and views appearing in the view definition query are locked
* recursively with the same lock mode.
*/
typedef struct
{
LOCKMODE lockmode; /* lock mode to use */
bool nowait; /* no wait mode */
Oid viewowner; /* view owner for checking the privilege */
Oid viewoid; /* OID of the view to be locked */
List *ancestor_views; /* OIDs of ancestor views */
} LockViewRecurse_context;
static bool
LockViewRecurse_walker(Node *node, LockViewRecurse_context *context)
{
if (node == NULL)
return false;
if (IsA(node, Query))
{
Query *query = (Query *) node;
ListCell *rtable;
foreach(rtable, query->rtable)
{
RangeTblEntry *rte = lfirst(rtable);
AclResult aclresult;
Oid relid = rte->relid;
char relkind = rte->relkind;
char *relname = get_rel_name(relid);
/*
* The OLD and NEW placeholder entries in the view's rtable are
* skipped.
*/
if (relid == context->viewoid &&
(!strcmp(rte->eref->aliasname, "old") || !strcmp(rte->eref->aliasname, "new")))
continue;
/* Currently, we only allow plain tables or views to be locked. */
if (relkind != RELKIND_RELATION && relkind != RELKIND_PARTITIONED_TABLE &&
relkind != RELKIND_VIEW)
continue;
/* Check infinite recursion in the view definition. */
if (list_member_oid(context->ancestor_views, relid))
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("infinite recursion detected in rules for relation \"%s\"",
get_rel_name(relid))));
/* Check permissions with the view owner's privilege. */
aclresult = LockTableAclCheck(relid, context->lockmode, context->viewowner);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, get_relkind_objtype(relkind), relname);
/* We have enough rights to lock the relation; do so. */
if (!context->nowait)
LockRelationOid(relid, context->lockmode);
else if (!ConditionalLockRelationOid(relid, context->lockmode))
ereport(ERROR,
(errcode(ERRCODE_LOCK_NOT_AVAILABLE),
errmsg("could not obtain lock on relation \"%s\"",
relname)));
if (relkind == RELKIND_VIEW)
LockViewRecurse(relid, context->lockmode, context->nowait, context->ancestor_views);
else if (rte->inh)
LockTableRecurse(relid, context->lockmode, context->nowait, context->viewowner);
}
return query_tree_walker(query,
LockViewRecurse_walker,
context,
QTW_IGNORE_JOINALIASES);
}
return expression_tree_walker(node,
LockViewRecurse_walker,
context);
}
static void
LockViewRecurse(Oid reloid, LOCKMODE lockmode, bool nowait, List *ancestor_views)
{
LockViewRecurse_context context;
Relation view;
Query *viewquery;
view = heap_open(reloid, NoLock);
viewquery = get_view_query(view);
context.lockmode = lockmode;
context.nowait = nowait;
context.viewowner = view->rd_rel->relowner;
context.viewoid = reloid;
context.ancestor_views = lcons_oid(reloid, ancestor_views);
LockViewRecurse_walker((Node *) viewquery, &context);
ancestor_views = list_delete_oid(ancestor_views, reloid);
heap_close(view, NoLock);
}
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
/*
* Check whether the current user is permitted to lock this relation.
*/
static AclResult
LockTableAclCheck(Oid reloid, LOCKMODE lockmode, Oid userid)
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
{
AclResult aclresult;
AclMode aclmask;
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
/* Verify adequate privilege */
if (lockmode == AccessShareLock)
aclmask = ACL_SELECT;
else if (lockmode == RowExclusiveLock)
aclmask = ACL_INSERT | ACL_UPDATE | ACL_DELETE | ACL_TRUNCATE;
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
else
aclmask = ACL_UPDATE | ACL_DELETE | ACL_TRUNCATE;
aclresult = pg_class_aclcheck(reloid, userid, aclmask);
Improve table locking behavior in the face of current DDL. In the previous coding, callers were faced with an awkward choice: look up the name, do permissions checks, and then lock the table; or look up the name, lock the table, and then do permissions checks. The first choice was wrong because the results of the name lookup and permissions checks might be out-of-date by the time the table lock was acquired, while the second allowed a user with no privileges to interfere with access to a table by users who do have privileges (e.g. if a malicious backend queues up for an AccessExclusiveLock on a table on which AccessShareLock is already held, further attempts to access the table will be blocked until the AccessExclusiveLock is obtained and the malicious backend's transaction rolls back). To fix, allow callers of RangeVarGetRelid() to pass a callback which gets executed after performing the name lookup but before acquiring the relation lock. If the name lookup is retried (because invalidation messages are received), the callback will be re-executed as well, so we get the best of both worlds. RangeVarGetRelid() is renamed to RangeVarGetRelidExtended(); callers not wishing to supply a callback can continue to invoke it as RangeVarGetRelid(), which is now a macro. Since the only one caller that uses nowait = true now passes a callback anyway, the RangeVarGetRelid() macro defaults nowait as well. The callback can also be used for supplemental locking - for example, REINDEX INDEX needs to acquire the table lock before the index lock to reduce deadlock possibilities. There's a lot more work to be done here to fix all the cases where this can be a problem, but this commit provides the general infrastructure and fixes the following specific cases: REINDEX INDEX, REINDEX TABLE, LOCK TABLE, and and DROP TABLE/INDEX/SEQUENCE/VIEW/FOREIGN TABLE. Per discussion with Noah Misch and Alvaro Herrera.
2011-11-30 16:12:27 +01:00
return aclresult;
}