postgresql/src/include/access/xlogreader.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

341 lines
11 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* xlogreader.h
* Definitions for the generic XLog reading facility
*
* Portions Copyright (c) 2013-2021, PostgreSQL Global Development Group
*
* IDENTIFICATION
* src/include/access/xlogreader.h
*
* NOTES
* See the definition of the XLogReaderState struct for instructions on
* how to use the XLogReader infrastructure.
*
* The basic idea is to allocate an XLogReaderState via
* XLogReaderAllocate(), position the reader to the first record with
* XLogBeginRead() or XLogFindNextRecord(), and call XLogReadRecord()
* until it returns NULL.
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
*
* Callers supply a page_read callback if they want to call
* XLogReadRecord or XLogFindNextRecord; it can be passed in as NULL
* otherwise. The WALRead function can be used as a helper to write
* page_read callbacks, but it is not mandatory; callers that use it,
* must supply segment_open callbacks. The segment_close callback
* must always be supplied.
*
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
* After reading a record with XLogReadRecord(), it's decomposed into
* the per-block and main data parts, and the parts can be accessed
* with the XLogRec* macros and functions. You can also decode a
* record that's already constructed in memory, without reading from
* disk, by calling the DecodeXLogRecord() function.
*-------------------------------------------------------------------------
*/
#ifndef XLOGREADER_H
#define XLOGREADER_H
#ifndef FRONTEND
#include "access/transam.h"
#endif
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
#include "access/xlogrecord.h"
/* WALOpenSegment represents a WAL segment being read. */
typedef struct WALOpenSegment
{
int ws_file; /* segment file descriptor */
XLogSegNo ws_segno; /* segment number */
TimeLineID ws_tli; /* timeline ID of the currently open file */
} WALOpenSegment;
/* WALSegmentContext carries context information about WAL segments to read */
typedef struct WALSegmentContext
{
char ws_dir[MAXPGPATH];
int ws_segsize;
} WALSegmentContext;
typedef struct XLogReaderState XLogReaderState;
/* Function type definitions for various xlogreader interactions */
typedef int (*XLogPageReadCB) (XLogReaderState *xlogreader,
XLogRecPtr targetPagePtr,
int reqLen,
XLogRecPtr targetRecPtr,
char *readBuf);
typedef void (*WALSegmentOpenCB) (XLogReaderState *xlogreader,
XLogSegNo nextSegNo,
TimeLineID *tli_p);
typedef void (*WALSegmentCloseCB) (XLogReaderState *xlogreader);
typedef struct XLogReaderRoutine
{
/*
* Data input callback
*
* This callback shall read at least reqLen valid bytes of the xlog page
* starting at targetPagePtr, and store them in readBuf. The callback
* shall return the number of bytes read (never more than XLOG_BLCKSZ), or
* -1 on failure. The callback shall sleep, if necessary, to wait for the
* requested bytes to become available. The callback will not be invoked
* again for the same page unless more than the returned number of bytes
* are needed.
*
* targetRecPtr is the position of the WAL record we're reading. Usually
* it is equal to targetPagePtr + reqLen, but sometimes xlogreader needs
* to read and verify the page or segment header, before it reads the
* actual WAL record it's interested in. In that case, targetRecPtr can
* be used to determine which timeline to read the page from.
*
* The callback shall set ->seg.ws_tli to the TLI of the file the page was
* read from.
*/
XLogPageReadCB page_read;
/*
* Callback to open the specified WAL segment for reading. ->seg.ws_file
* shall be set to the file descriptor of the opened segment. In case of
* failure, an error shall be raised by the callback and it shall not
* return.
*
* "nextSegNo" is the number of the segment to be opened.
*
* "tli_p" is an input/output argument. WALRead() uses it to pass the
* timeline in which the new segment should be found, but the callback can
* use it to return the TLI that it actually opened.
*/
WALSegmentOpenCB segment_open;
/*
* WAL segment close callback. ->seg.ws_file shall be set to a negative
* number.
*/
WALSegmentCloseCB segment_close;
} XLogReaderRoutine;
#define XL_ROUTINE(...) &(XLogReaderRoutine){__VA_ARGS__}
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
typedef struct
{
/* Is this block ref in use? */
bool in_use;
/* Identify the block this refers to */
RelFileNode rnode;
ForkNumber forknum;
BlockNumber blkno;
/* copy of the fork_flags field from the XLogRecordBlockHeader */
uint8 flags;
/* Information on full-page image, if any */
bool has_image; /* has image, even for consistency checking */
bool apply_image; /* has image that should be restored */
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
char *bkp_image;
uint16 hole_offset;
uint16 hole_length;
Add GUC to enable compression of full page images stored in WAL. When newly-added GUC parameter, wal_compression, is on, the PostgreSQL server compresses a full page image written to WAL when full_page_writes is on or during a base backup. A compressed page image will be decompressed during WAL replay. Turning this parameter on can reduce the WAL volume without increasing the risk of unrecoverable data corruption, but at the cost of some extra CPU spent on the compression during WAL logging and on the decompression during WAL replay. This commit changes the WAL format (so bumping WAL version number) so that the one-byte flag indicating whether a full page image is compressed or not is included in its header information. This means that the commit increases the WAL volume one-byte per a full page image even if WAL compression is not used at all. We can save that one-byte by borrowing one-bit from the existing field like hole_offset in the header and using it as the flag, for example. But which would reduce the code readability and the extensibility of the feature. Per discussion, it's not worth paying those prices to save only one-byte, so we decided to add the one-byte flag to the header. This commit doesn't introduce any new compression algorithm like lz4. Currently a full page image is compressed using the existing PGLZ algorithm. Per discussion, we decided to use it at least in the first version of the feature because there were no performance reports showing that its compression ratio is unacceptably lower than that of other algorithm. Of course, in the future, it's worth considering the support of other compression algorithm for the better compression. Rahila Syed and Michael Paquier, reviewed in various versions by myself, Andres Freund, Robert Haas, Abhijit Menon-Sen and many others.
2015-03-11 07:52:24 +01:00
uint16 bimg_len;
uint8 bimg_info;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
/* Buffer holding the rmgr-specific data associated with this block */
bool has_data;
char *data;
uint16 data_len;
uint16 data_bufsz;
} DecodedBkpBlock;
struct XLogReaderState
{
/*
* Operational callbacks
*/
XLogReaderRoutine routine;
/* ----------------------------------------
* Public parameters
* ----------------------------------------
*/
/*
* System identifier of the xlog files we're about to read. Set to zero
* (the default value) if unknown or unimportant.
*/
uint64 system_identifier;
/*
* Opaque data for callbacks to use. Not used by XLogReader.
*/
void *private_data;
/*
* Start and end point of last record read. EndRecPtr is also used as the
* position to read next. Calling XLogBeginRead() sets EndRecPtr to the
* starting position and ReadRecPtr to invalid.
*/
XLogRecPtr ReadRecPtr; /* start of last record read */
XLogRecPtr EndRecPtr; /* end+1 of last record read */
Fix WAL replay in presence of an incomplete record Physical replication always ships WAL segment files to replicas once they are complete. This is a problem if one WAL record is split across a segment boundary and the primary server crashes before writing down the segment with the next portion of the WAL record: WAL writing after crash recovery would happily resume at the point where the broken record started, overwriting that record ... but any standby or backup may have already received a copy of that segment, and they are not rewinding. This causes standbys to stop following the primary after the latter crashes: LOG: invalid contrecord length 7262 at A8/D9FFFBC8 because the standby is still trying to read the continuation record (contrecord) for the original long WAL record, but it is not there and it will never be. A workaround is to stop the replica, delete the WAL file, and restart it -- at which point a fresh copy is brought over from the primary. But that's pretty labor intensive, and I bet many users would just give up and re-clone the standby instead. A fix for this problem was already attempted in commit 515e3d84a0b5, but it only addressed the case for the scenario of WAL archiving, so streaming replication would still be a problem (as well as other things such as taking a filesystem-level backup while the server is down after having crashed), and it had performance scalability problems too; so it had to be reverted. This commit fixes the problem using an approach suggested by Andres Freund, whereby the initial portion(s) of the split-up WAL record are kept, and a special type of WAL record is written where the contrecord was lost, so that WAL replay in the replica knows to skip the broken parts. With this approach, we can continue to stream/archive segment files as soon as they are complete, and replay of the broken records will proceed across the crash point without a hitch. Because a new type of WAL record is added, users should be careful to upgrade standbys first, primaries later. Otherwise they risk the standby being unable to start if the primary happens to write such a record. A new TAP test that exercises this is added, but the portability of it is yet to be seen. This has been wrong since the introduction of physical replication, so backpatch all the way back. In stable branches, keep the new XLogReaderState members at the end of the struct, to avoid an ABI break. Author: Álvaro Herrera <alvherre@alvh.no-ip.org> Reviewed-by: Kyotaro Horiguchi <horikyota.ntt@gmail.com> Reviewed-by: Nathan Bossart <bossartn@amazon.com> Discussion: https://postgr.es/m/202108232252.dh7uxf6oxwcy@alvherre.pgsql
2021-09-29 16:21:51 +02:00
/*
* Set at the end of recovery: the start point of a partial record at the
* end of WAL (InvalidXLogRecPtr if there wasn't one), and the start
* location of its first contrecord that went missing.
*/
XLogRecPtr abortedRecPtr;
XLogRecPtr missingContrecPtr;
/* Set when XLP_FIRST_IS_OVERWRITE_CONTRECORD is found */
XLogRecPtr overwrittenRecPtr;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
/* ----------------------------------------
* Decoded representation of current record
*
* Use XLogRecGet* functions to investigate the record; these fields
* should not be accessed directly.
* ----------------------------------------
*/
XLogRecord *decoded_record; /* currently decoded record */
char *main_data; /* record's main data portion */
uint32 main_data_len; /* main data portion's length */
uint32 main_data_bufsz; /* allocated size of the buffer */
RepOriginId record_origin;
TransactionId toplevel_xid; /* XID of top-level transaction */
/* information about blocks referenced by the record. */
DecodedBkpBlock blocks[XLR_MAX_BLOCK_ID + 1];
Introduce replication progress tracking infrastructure. When implementing a replication solution ontop of logical decoding, two related problems exist: * How to safely keep track of replication progress * How to change replication behavior, based on the origin of a row; e.g. to avoid loops in bi-directional replication setups The solution to these problems, as implemented here, consist out of three parts: 1) 'replication origins', which identify nodes in a replication setup. 2) 'replication progress tracking', which remembers, for each replication origin, how far replay has progressed in a efficient and crash safe manner. 3) The ability to filter out changes performed on the behest of a replication origin during logical decoding; this allows complex replication topologies. E.g. by filtering all replayed changes out. Most of this could also be implemented in "userspace", e.g. by inserting additional rows contain origin information, but that ends up being much less efficient and more complicated. We don't want to require various replication solutions to reimplement logic for this independently. The infrastructure is intended to be generic enough to be reusable. This infrastructure also replaces the 'nodeid' infrastructure of commit timestamps. It is intended to provide all the former capabilities, except that there's only 2^16 different origins; but now they integrate with logical decoding. Additionally more functionality is accessible via SQL. Since the commit timestamp infrastructure has also been introduced in 9.5 (commit 73c986add) changing the API is not a problem. For now the number of origins for which the replication progress can be tracked simultaneously is determined by the max_replication_slots GUC. That GUC is not a perfect match to configure this, but there doesn't seem to be sufficient reason to introduce a separate new one. Bumps both catversion and wal page magic. Author: Andres Freund, with contributions from Petr Jelinek and Craig Ringer Reviewed-By: Heikki Linnakangas, Petr Jelinek, Robert Haas, Steve Singer Discussion: 20150216002155.GI15326@awork2.anarazel.de, 20140923182422.GA15776@alap3.anarazel.de, 20131114172632.GE7522@alap2.anarazel.de
2015-04-29 19:30:53 +02:00
int max_block_id; /* highest block_id in use (-1 if none) */
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
/* ----------------------------------------
* private/internal state
* ----------------------------------------
*/
/*
* Buffer for currently read page (XLOG_BLCKSZ bytes, valid up to at least
* readLen bytes)
*/
char *readBuf;
uint32 readLen;
/* last read XLOG position for data currently in readBuf */
WALSegmentContext segcxt;
WALOpenSegment seg;
uint32 segoff;
/*
* beginning of prior page read, and its TLI. Doesn't necessarily
* correspond to what's in readBuf; used for timeline sanity checks.
*/
XLogRecPtr latestPagePtr;
TimeLineID latestPageTLI;
/* beginning of the WAL record being read. */
XLogRecPtr currRecPtr;
/* timeline to read it from, 0 if a lookup is required */
TimeLineID currTLI;
/*
* Safe point to read to in currTLI if current TLI is historical
* (tliSwitchPoint) or InvalidXLogRecPtr if on current timeline.
*
* Actually set to the start of the segment containing the timeline switch
* that ends currTLI's validity, not the LSN of the switch its self, since
* we can't assume the old segment will be present.
*/
XLogRecPtr currTLIValidUntil;
/*
* If currTLI is not the most recent known timeline, the next timeline to
* read from when currTLIValidUntil is reached.
*/
TimeLineID nextTLI;
/*
* Buffer for current ReadRecord result (expandable), used when a record
* crosses a page boundary.
*/
char *readRecordBuf;
uint32 readRecordBufSize;
/* Buffer to hold error message */
char *errormsg_buf;
};
/* Get a new XLogReader */
extern XLogReaderState *XLogReaderAllocate(int wal_segment_size,
const char *waldir,
XLogReaderRoutine *routine,
void *private_data);
extern XLogReaderRoutine *LocalXLogReaderRoutine(void);
/* Free an XLogReader */
extern void XLogReaderFree(XLogReaderState *state);
/* Position the XLogReader to given record */
extern void XLogBeginRead(XLogReaderState *state, XLogRecPtr RecPtr);
#ifdef FRONTEND
extern XLogRecPtr XLogFindNextRecord(XLogReaderState *state, XLogRecPtr RecPtr);
#endif /* FRONTEND */
/* Read the next XLog record. Returns NULL on end-of-WAL or failure */
extern struct XLogRecord *XLogReadRecord(XLogReaderState *state,
char **errormsg);
/* Validate a page */
extern bool XLogReaderValidatePageHeader(XLogReaderState *state,
XLogRecPtr recptr, char *phdr);
/*
* Error information from WALRead that both backend and frontend caller can
* process. Currently only errors from pg_pread can be reported.
*/
typedef struct WALReadError
{
int wre_errno; /* errno set by the last pg_pread() */
int wre_off; /* Offset we tried to read from. */
int wre_req; /* Bytes requested to be read. */
int wre_read; /* Bytes read by the last read(). */
WALOpenSegment wre_seg; /* Segment we tried to read from. */
} WALReadError;
extern bool WALRead(XLogReaderState *state,
char *buf, XLogRecPtr startptr, Size count,
TimeLineID tli, WALReadError *errinfo);
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
/* Functions for decoding an XLogRecord */
extern bool DecodeXLogRecord(XLogReaderState *state, XLogRecord *record,
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
char **errmsg);
#define XLogRecGetTotalLen(decoder) ((decoder)->decoded_record->xl_tot_len)
#define XLogRecGetPrev(decoder) ((decoder)->decoded_record->xl_prev)
#define XLogRecGetInfo(decoder) ((decoder)->decoded_record->xl_info)
#define XLogRecGetRmid(decoder) ((decoder)->decoded_record->xl_rmid)
#define XLogRecGetXid(decoder) ((decoder)->decoded_record->xl_xid)
#define XLogRecGetOrigin(decoder) ((decoder)->record_origin)
#define XLogRecGetTopXid(decoder) ((decoder)->toplevel_xid)
#define XLogRecGetData(decoder) ((decoder)->main_data)
#define XLogRecGetDataLen(decoder) ((decoder)->main_data_len)
#define XLogRecHasAnyBlockRefs(decoder) ((decoder)->max_block_id >= 0)
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
#define XLogRecHasBlockRef(decoder, block_id) \
((decoder)->blocks[block_id].in_use)
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
#define XLogRecHasBlockImage(decoder, block_id) \
((decoder)->blocks[block_id].has_image)
#define XLogRecBlockImageApply(decoder, block_id) \
((decoder)->blocks[block_id].apply_image)
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
#ifndef FRONTEND
extern FullTransactionId XLogRecGetFullXid(XLogReaderState *record);
#endif
extern bool RestoreBlockImage(XLogReaderState *record, uint8 block_id, char *page);
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
extern char *XLogRecGetBlockData(XLogReaderState *record, uint8 block_id, Size *len);
extern bool XLogRecGetBlockTag(XLogReaderState *record, uint8 block_id,
RelFileNode *rnode, ForkNumber *forknum,
BlockNumber *blknum);
#endif /* XLOGREADER_H */