postgresql/src/backend/access/nbtree/nbtinsert.c

930 lines
29 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* btinsert.c--
* Item insertion in Lehman and Yao btrees for Postgres.
*
* Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/access/nbtree/nbtinsert.c,v 1.7 1996/11/13 20:47:11 scrappy Exp $
*
*-------------------------------------------------------------------------
*/
1996-11-05 11:35:38 +01:00
#include <postgres.h>
1996-11-05 11:35:38 +01:00
#include <utils/memutils.h>
#include <storage/bufpage.h>
#include <access/nbtree.h>
#include <storage/bufmgr.h>
1996-10-20 12:53:18 +02:00
#ifndef HAVE_MEMMOVE
1996-11-05 11:35:38 +01:00
# include <regex/utils.h>
#else
# include <string.h>
#endif
static InsertIndexResult _bt_insertonpg(Relation rel, Buffer buf, BTStack stack, int keysz, ScanKey scankey, BTItem btitem, BTItem afteritem);
static Buffer _bt_split(Relation rel, Buffer buf);
static OffsetNumber _bt_findsplitloc(Relation rel, Page page, OffsetNumber start, OffsetNumber maxoff, Size llimit);
static void _bt_newroot(Relation rel, Buffer lbuf, Buffer rbuf);
static OffsetNumber _bt_pgaddtup(Relation rel, Buffer buf, int keysz, ScanKey itup_scankey, Size itemsize, BTItem btitem, BTItem afteritem);
static bool _bt_goesonpg(Relation rel, Buffer buf, Size keysz, ScanKey scankey, BTItem afteritem);
#if 0
static void _bt_updateitem(Relation rel, Size keysz, Buffer buf, Oid bti_oid, BTItem newItem);
#endif
/*
* _bt_doinsert() -- Handle insertion of a single btitem in the tree.
*
* This routine is called by the public interface routines, btbuild
* and btinsert. By here, btitem is filled in, and has a unique
* (xid, seqno) pair.
*/
InsertIndexResult
_bt_doinsert(Relation rel, BTItem btitem, bool index_is_unique, bool is_update)
{
ScanKey itup_scankey;
IndexTuple itup;
BTStack stack;
Buffer buf;
BlockNumber blkno;
int natts;
InsertIndexResult res;
itup = &(btitem->bti_itup);
/* we need a scan key to do our search, so build one */
itup_scankey = _bt_mkscankey(rel, itup);
natts = rel->rd_rel->relnatts;
/* find the page containing this key */
stack = _bt_search(rel, natts, itup_scankey, &buf);
/* if we're not allowing duplicates, make sure the key isn't */
/* already in the node */
if(index_is_unique && !is_update) {
OffsetNumber offset;
TupleDesc itupdesc;
Page page;
itupdesc = RelationGetTupleDescriptor(rel);
page = BufferGetPage(buf);
offset = _bt_binsrch(rel, buf, natts, itup_scankey, BT_DESCENT);
/* make sure the offset we're given points to an actual */
/* key on the page before trying to compare it */
if(!PageIsEmpty(page) &&
offset <= PageGetMaxOffsetNumber(page)) {
if(!_bt_compare(rel, itupdesc, page,
natts, itup_scankey, offset)) {
/* it is a duplicate */
elog(WARN, "Cannot insert a duplicate key into a unique index.");
}
}
}
blkno = BufferGetBlockNumber(buf);
/* trade in our read lock for a write lock */
_bt_relbuf(rel, buf, BT_READ);
buf = _bt_getbuf(rel, blkno, BT_WRITE);
/*
* If the page was split between the time that we surrendered our
* read lock and acquired our write lock, then this page may no
* longer be the right place for the key we want to insert. In this
* case, we need to move right in the tree. See Lehman and Yao for
* an excruciatingly precise description.
*/
buf = _bt_moveright(rel, buf, natts, itup_scankey, BT_WRITE);
/* do the insertion */
res = _bt_insertonpg(rel, buf, stack, natts, itup_scankey,
btitem, (BTItem) NULL);
/* be tidy */
_bt_freestack(stack);
_bt_freeskey(itup_scankey);
return (res);
}
/*
* _bt_insertonpg() -- Insert a tuple on a particular page in the index.
*
* This recursive procedure does the following things:
*
* + if necessary, splits the target page.
* + finds the right place to insert the tuple (taking into
* account any changes induced by a split).
* + inserts the tuple.
* + if the page was split, pops the parent stack, and finds the
* right place to insert the new child pointer (by walking
* right using information stored in the parent stack).
* + invoking itself with the appropriate tuple for the right
* child page on the parent.
*
* On entry, we must have the right buffer on which to do the
* insertion, and the buffer must be pinned and locked. On return,
* we will have dropped both the pin and the write lock on the buffer.
*
* The locking interactions in this code are critical. You should
* grok Lehman and Yao's paper before making any changes. In addition,
* you need to understand how we disambiguate duplicate keys in this
* implementation, in order to be able to find our location using
* L&Y "move right" operations. Since we may insert duplicate user
* keys, and since these dups may propogate up the tree, we use the
* 'afteritem' parameter to position ourselves correctly for the
* insertion on internal pages.
*/
static InsertIndexResult
_bt_insertonpg(Relation rel,
Buffer buf,
BTStack stack,
int keysz,
ScanKey scankey,
BTItem btitem,
BTItem afteritem)
{
InsertIndexResult res;
Page page;
Buffer rbuf;
Buffer pbuf;
Page rpage;
ScanKey newskey;
BTItem ritem;
BTPageOpaque rpageop;
BlockNumber rbknum, itup_blkno;
OffsetNumber itup_off;
int itemsz;
InsertIndexResult newres;
BTItem new_item = (BTItem) NULL;
BTItem lowLeftItem;
OffsetNumber leftmost_offset;
Page ppage;
BTPageOpaque ppageop;
BlockNumber bknum;
page = BufferGetPage(buf);
itemsz = IndexTupleDSize(btitem->bti_itup)
+ (sizeof(BTItemData) - sizeof(IndexTupleData));
itemsz = DOUBLEALIGN(itemsz); /* be safe, PageAddItem will do this
but we need to be consistent */
if (PageGetFreeSpace(page) < itemsz) {
/* split the buffer into left and right halves */
rbuf = _bt_split(rel, buf);
/* which new page (left half or right half) gets the tuple? */
if (_bt_goesonpg(rel, buf, keysz, scankey, afteritem)) {
/* left page */
itup_off = _bt_pgaddtup(rel, buf, keysz, scankey,
itemsz, btitem, afteritem);
itup_blkno = BufferGetBlockNumber(buf);
} else {
/* right page */
itup_off = _bt_pgaddtup(rel, rbuf, keysz, scankey,
itemsz, btitem, afteritem);
itup_blkno = BufferGetBlockNumber(rbuf);
}
/*
* By here,
*
* + our target page has been split;
* + the original tuple has been inserted;
* + we have write locks on both the old (left half) and new
* (right half) buffers, after the split; and
* + we have the key we want to insert into the parent.
*
* Do the parent insertion. We need to hold onto the locks for
* the child pages until we locate the parent, but we can release
* them before doing the actual insertion (see Lehman and Yao for
* the reasoning).
*/
if (stack == (BTStack) NULL) {
/* create a new root node and release the split buffers */
_bt_newroot(rel, buf, rbuf);
_bt_relbuf(rel, buf, BT_WRITE);
_bt_relbuf(rel, rbuf, BT_WRITE);
} else {
/* form a index tuple that points at the new right page */
rbknum = BufferGetBlockNumber(rbuf);
rpage = BufferGetPage(rbuf);
rpageop = (BTPageOpaque) PageGetSpecialPointer(rpage);
/*
* By convention, the first entry (0) on every
* non-rightmost page is the high key for that page. In
* order to get the lowest key on the new right page, we
* actually look at its second (1) entry.
*/
if (! P_RIGHTMOST(rpageop)) {
ritem = (BTItem) PageGetItem(rpage,
PageGetItemId(rpage, P_FIRSTKEY));
} else {
ritem = (BTItem) PageGetItem(rpage,
PageGetItemId(rpage, P_HIKEY));
}
/* get a unique btitem for this key */
new_item = _bt_formitem(&(ritem->bti_itup));
ItemPointerSet(&(new_item->bti_itup.t_tid), rbknum, P_HIKEY);
/* find the parent buffer */
pbuf = _bt_getstackbuf(rel, stack, BT_WRITE);
/*
* If the key of new_item is < than the key of the item
* in the parent page pointing to the left page
* (stack->bts_btitem), we have to update the latter key;
* otherwise the keys on the parent page wouldn't be
* monotonically increasing after we inserted the new
* pointer to the right page (new_item). This only
* happens if our left page is the leftmost page and a
* new minimum key had been inserted before, which is not
* reflected in the parent page but didn't matter so
* far. If there are duplicate keys and this new minimum
* key spills over to our new right page, we get an
* inconsistency if we don't update the left key in the
* parent page.
*/
if (_bt_itemcmp(rel, keysz, stack->bts_btitem, new_item,
BTGreaterStrategyNumber)) {
lowLeftItem =
(BTItem) PageGetItem(page,
PageGetItemId(page, P_FIRSTKEY));
/* this method does not work--_bt_updateitem tries to */
/* overwrite an entry with another entry that might be */
/* bigger. if lowLeftItem is bigger, it corrupts the */
/* parent page. instead, we have to delete the original */
/* leftmost item from the parent, and insert the new one */
/* with a regular _bt_insertonpg (it could cause a split */
/* because it's bigger than what was there before). */
/* --djm 8/21/96 */
/* _bt_updateitem(rel, keysz, pbuf, stack->bts_btitem->bti_oid,
lowLeftItem); */
/* get the parent page */
ppage = BufferGetPage(pbuf);
ppageop = (BTPageOpaque) PageGetSpecialPointer(ppage);
/* figure out which key is leftmost (if the parent page */
/* is rightmost, too, it must be the root) */
if(P_RIGHTMOST(ppageop)) {
leftmost_offset = P_HIKEY;
} else {
leftmost_offset = P_FIRSTKEY;
}
PageIndexTupleDelete(ppage, leftmost_offset);
/* don't write anything out yet--we still have the write */
/* lock, and now we call another _bt_insertonpg to */
/* insert the correct leftmost key */
/* make a new leftmost item, using the tuple data from */
/* lowLeftItem. point it to the left child. */
/* update it on the stack at the same time. */
bknum = BufferGetBlockNumber(buf);
pfree(stack->bts_btitem);
stack->bts_btitem = _bt_formitem(&(lowLeftItem->bti_itup));
ItemPointerSet(&(stack->bts_btitem->bti_itup.t_tid),
bknum, P_HIKEY);
/* unlock the children before doing this */
_bt_relbuf(rel, buf, BT_WRITE);
_bt_relbuf(rel, rbuf, BT_WRITE);
/* a regular _bt_binsrch should find the right place to */
/* put the new entry, since it should be lower than any */
/* other key on the page, therefore set afteritem to NULL */
newskey = _bt_mkscankey(rel, &(stack->bts_btitem->bti_itup));
newres = _bt_insertonpg(rel, pbuf, stack->bts_parent,
keysz, newskey, stack->bts_btitem,
NULL);
pfree(newres);
pfree(newskey);
/* we have now lost our lock on the parent buffer, and */
/* need to get it back. */
pbuf = _bt_getstackbuf(rel, stack, BT_WRITE);
} else {
_bt_relbuf(rel, buf, BT_WRITE);
_bt_relbuf(rel, rbuf, BT_WRITE);
}
newskey = _bt_mkscankey(rel, &(new_item->bti_itup));
newres = _bt_insertonpg(rel, pbuf, stack->bts_parent,
keysz, newskey, new_item,
stack->bts_btitem);
/* be tidy */
pfree(newres);
pfree(newskey);
pfree(new_item);
}
} else {
itup_off = _bt_pgaddtup(rel, buf, keysz, scankey,
itemsz, btitem, afteritem);
itup_blkno = BufferGetBlockNumber(buf);
_bt_relbuf(rel, buf, BT_WRITE);
}
/* by here, the new tuple is inserted */
res = (InsertIndexResult) palloc(sizeof(InsertIndexResultData));
ItemPointerSet(&(res->pointerData), itup_blkno, itup_off);
return (res);
}
/*
* _bt_split() -- split a page in the btree.
*
* On entry, buf is the page to split, and is write-locked and pinned.
* Returns the new right sibling of buf, pinned and write-locked. The
* pin and lock on buf are maintained.
*/
static Buffer
_bt_split(Relation rel, Buffer buf)
{
Buffer rbuf;
Page origpage;
Page leftpage, rightpage;
BTPageOpaque ropaque, lopaque, oopaque;
Buffer sbuf;
Page spage;
BTPageOpaque sopaque;
Size itemsz;
ItemId itemid;
BTItem item;
OffsetNumber leftoff, rightoff;
OffsetNumber start;
OffsetNumber maxoff;
OffsetNumber firstright;
OffsetNumber i;
Size llimit;
rbuf = _bt_getbuf(rel, P_NEW, BT_WRITE);
origpage = BufferGetPage(buf);
leftpage = PageGetTempPage(origpage, sizeof(BTPageOpaqueData));
rightpage = BufferGetPage(rbuf);
_bt_pageinit(rightpage, BufferGetPageSize(rbuf));
_bt_pageinit(leftpage, BufferGetPageSize(buf));
/* init btree private data */
oopaque = (BTPageOpaque) PageGetSpecialPointer(origpage);
lopaque = (BTPageOpaque) PageGetSpecialPointer(leftpage);
ropaque = (BTPageOpaque) PageGetSpecialPointer(rightpage);
/* if we're splitting this page, it won't be the root when we're done */
oopaque->btpo_flags &= ~BTP_ROOT;
lopaque->btpo_flags = ropaque->btpo_flags = oopaque->btpo_flags;
lopaque->btpo_prev = oopaque->btpo_prev;
ropaque->btpo_prev = BufferGetBlockNumber(buf);
lopaque->btpo_next = BufferGetBlockNumber(rbuf);
ropaque->btpo_next = oopaque->btpo_next;
/*
* If the page we're splitting is not the rightmost page at its
* level in the tree, then the first (0) entry on the page is the
* high key for the page. We need to copy that to the right
* half. Otherwise (meaning the rightmost page case), we should
* treat the line pointers beginning at zero as user data.
*
* We leave a blank space at the start of the line table for the
* left page. We'll come back later and fill it in with the high
* key item we get from the right key.
*/
leftoff = P_FIRSTKEY;
ropaque->btpo_next = oopaque->btpo_next;
if (! P_RIGHTMOST(oopaque)) {
/* splitting a non-rightmost page, start at the first data item */
start = P_FIRSTKEY;
/* copy the original high key to the new page */
itemid = PageGetItemId(origpage, P_HIKEY);
itemsz = ItemIdGetLength(itemid);
item = (BTItem) PageGetItem(origpage, itemid);
(void) PageAddItem(rightpage, (Item) item, itemsz, P_HIKEY, LP_USED);
rightoff = P_FIRSTKEY;
} else {
/* splitting a rightmost page, "high key" is the first data item */
start = P_HIKEY;
/* the new rightmost page will not have a high key */
rightoff = P_HIKEY;
}
maxoff = PageGetMaxOffsetNumber(origpage);
llimit = PageGetFreeSpace(leftpage) / 2;
firstright = _bt_findsplitloc(rel, origpage, start, maxoff, llimit);
for (i = start; i <= maxoff; i = OffsetNumberNext(i)) {
itemid = PageGetItemId(origpage, i);
itemsz = ItemIdGetLength(itemid);
item = (BTItem) PageGetItem(origpage, itemid);
/* decide which page to put it on */
if (i < firstright) {
(void) PageAddItem(leftpage, (Item) item, itemsz, leftoff,
LP_USED);
leftoff = OffsetNumberNext(leftoff);
} else {
(void) PageAddItem(rightpage, (Item) item, itemsz, rightoff,
LP_USED);
rightoff = OffsetNumberNext(rightoff);
}
}
/*
* Okay, page has been split, high key on right page is correct. Now
* set the high key on the left page to be the min key on the right
* page.
*/
if (P_RIGHTMOST(ropaque)) {
itemid = PageGetItemId(rightpage, P_HIKEY);
} else {
itemid = PageGetItemId(rightpage, P_FIRSTKEY);
}
itemsz = ItemIdGetLength(itemid);
item = (BTItem) PageGetItem(rightpage, itemid);
/*
* We left a hole for the high key on the left page; fill it. The
* modal crap is to tell the page manager to put the new item on the
* page and not screw around with anything else. Whoever designed
* this interface has presumably crawled back into the dung heap they
* came from. No one here will admit to it.
*/
PageManagerModeSet(OverwritePageManagerMode);
(void) PageAddItem(leftpage, (Item) item, itemsz, P_HIKEY, LP_USED);
PageManagerModeSet(ShufflePageManagerMode);
/*
* By here, the original data page has been split into two new halves,
* and these are correct. The algorithm requires that the left page
* never move during a split, so we copy the new left page back on top
* of the original. Note that this is not a waste of time, since we
* also require (in the page management code) that the center of a
* page always be clean, and the most efficient way to guarantee this
* is just to compact the data by reinserting it into a new left page.
*/
PageRestoreTempPage(leftpage, origpage);
/* write these guys out */
_bt_wrtnorelbuf(rel, rbuf);
_bt_wrtnorelbuf(rel, buf);
/*
* Finally, we need to grab the right sibling (if any) and fix the
* prev pointer there. We are guaranteed that this is deadlock-free
* since no other writer will be moving holding a lock on that page
* and trying to move left, and all readers release locks on a page
* before trying to fetch its neighbors.
*/
if (! P_RIGHTMOST(ropaque)) {
sbuf = _bt_getbuf(rel, ropaque->btpo_next, BT_WRITE);
spage = BufferGetPage(sbuf);
sopaque = (BTPageOpaque) PageGetSpecialPointer(spage);
sopaque->btpo_prev = BufferGetBlockNumber(rbuf);
/* write and release the old right sibling */
_bt_wrtbuf(rel, sbuf);
}
/* split's done */
return (rbuf);
}
/*
* _bt_findsplitloc() -- find a safe place to split a page.
*
* In order to guarantee the proper handling of searches for duplicate
* keys, the first duplicate in the chain must either be the first
* item on the page after the split, or the entire chain must be on
* one of the two pages. That is,
* [1 2 2 2 3 4 5]
* must become
* [1] [2 2 2 3 4 5]
* or
* [1 2 2 2] [3 4 5]
* but not
* [1 2 2] [2 3 4 5].
* However,
* [2 2 2 2 2 3 4]
* may be split as
* [2 2 2 2] [2 3 4].
*/
static OffsetNumber
_bt_findsplitloc(Relation rel,
Page page,
OffsetNumber start,
OffsetNumber maxoff,
Size llimit)
{
OffsetNumber i;
OffsetNumber saferight;
ItemId nxtitemid, safeitemid;
BTItem safeitem, nxtitem;
IndexTuple safetup, nxttup;
Size nbytes;
TupleDesc itupdesc;
int natts;
int attno;
Datum attsafe;
Datum attnext;
bool null;
itupdesc = RelationGetTupleDescriptor(rel);
natts = rel->rd_rel->relnatts;
saferight = start;
safeitemid = PageGetItemId(page, saferight);
nbytes = ItemIdGetLength(safeitemid) + sizeof(ItemIdData);
safeitem = (BTItem) PageGetItem(page, safeitemid);
safetup = &(safeitem->bti_itup);
i = OffsetNumberNext(start);
while (nbytes < llimit) {
/* check the next item on the page */
nxtitemid = PageGetItemId(page, i);
nbytes += (ItemIdGetLength(nxtitemid) + sizeof(ItemIdData));
nxtitem = (BTItem) PageGetItem(page, nxtitemid);
nxttup = &(nxtitem->bti_itup);
/* test against last known safe item */
for (attno = 1; attno <= natts; attno++) {
attsafe = index_getattr(safetup, attno, itupdesc, &null);
attnext = index_getattr(nxttup, attno, itupdesc, &null);
/*
* If the tuple we're looking at isn't equal to the last safe one
* we saw, then it's our new safe tuple.
*/
if (!_bt_invokestrat(rel, attno, BTEqualStrategyNumber,
attsafe, attnext)) {
safetup = nxttup;
saferight = i;
/* break is for the attno for loop */
break;
}
}
i = OffsetNumberNext(i);
}
/*
* If the chain of dups starts at the beginning of the page and extends
* past the halfway mark, we can split it in the middle.
*/
if (saferight == start)
saferight = i;
return (saferight);
}
/*
* _bt_newroot() -- Create a new root page for the index.
*
* We've just split the old root page and need to create a new one.
* In order to do this, we add a new root page to the file, then lock
* the metadata page and update it. This is guaranteed to be deadlock-
* free, because all readers release their locks on the metadata page
* before trying to lock the root, and all writers lock the root before
* trying to lock the metadata page. We have a write lock on the old
* root page, so we have not introduced any cycles into the waits-for
* graph.
*
* On entry, lbuf (the old root) and rbuf (its new peer) are write-
* locked. We don't drop the locks in this routine; that's done by
* the caller. On exit, a new root page exists with entries for the
* two new children. The new root page is neither pinned nor locked.
*/
static void
_bt_newroot(Relation rel, Buffer lbuf, Buffer rbuf)
{
Buffer rootbuf;
Page lpage, rpage, rootpage;
BlockNumber lbkno, rbkno;
BlockNumber rootbknum;
BTPageOpaque rootopaque;
ItemId itemid;
BTItem item;
Size itemsz;
BTItem new_item;
/* get a new root page */
rootbuf = _bt_getbuf(rel, P_NEW, BT_WRITE);
rootpage = BufferGetPage(rootbuf);
_bt_pageinit(rootpage, BufferGetPageSize(rootbuf));
/* set btree special data */
rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage);
rootopaque->btpo_prev = rootopaque->btpo_next = P_NONE;
rootopaque->btpo_flags |= BTP_ROOT;
/*
* Insert the internal tuple pointers.
*/
lbkno = BufferGetBlockNumber(lbuf);
rbkno = BufferGetBlockNumber(rbuf);
lpage = BufferGetPage(lbuf);
rpage = BufferGetPage(rbuf);
/*
* step over the high key on the left page while building the
* left page pointer.
*/
itemid = PageGetItemId(lpage, P_FIRSTKEY);
itemsz = ItemIdGetLength(itemid);
item = (BTItem) PageGetItem(lpage, itemid);
new_item = _bt_formitem(&(item->bti_itup));
ItemPointerSet(&(new_item->bti_itup.t_tid), lbkno, P_FIRSTKEY);
/*
* insert the left page pointer into the new root page. the root
* page is the rightmost page on its level so the "high key" item
* is the first data item.
*/
(void) PageAddItem(rootpage, (Item) new_item, itemsz, P_HIKEY, LP_USED);
pfree(new_item);
/*
* the right page is the rightmost page on the second level, so
* the "high key" item is the first data item on that page as well.
*/
itemid = PageGetItemId(rpage, P_HIKEY);
itemsz = ItemIdGetLength(itemid);
item = (BTItem) PageGetItem(rpage, itemid);
new_item = _bt_formitem(&(item->bti_itup));
ItemPointerSet(&(new_item->bti_itup.t_tid), rbkno, P_HIKEY);
/*
* insert the right page pointer into the new root page.
*/
(void) PageAddItem(rootpage, (Item) new_item, itemsz, P_FIRSTKEY, LP_USED);
pfree(new_item);
/* write and let go of the root buffer */
rootbknum = BufferGetBlockNumber(rootbuf);
_bt_wrtbuf(rel, rootbuf);
/* update metadata page with new root block number */
_bt_metaproot(rel, rootbknum);
}
/*
* _bt_pgaddtup() -- add a tuple to a particular page in the index.
*
* This routine adds the tuple to the page as requested, and keeps the
* write lock and reference associated with the page's buffer. It is
* an error to call pgaddtup() without a write lock and reference. If
* afteritem is non-null, it's the item that we expect our new item
* to follow. Otherwise, we do a binary search for the correct place
* and insert the new item there.
*/
static OffsetNumber
_bt_pgaddtup(Relation rel,
Buffer buf,
int keysz,
ScanKey itup_scankey,
Size itemsize,
BTItem btitem,
BTItem afteritem)
{
OffsetNumber itup_off;
OffsetNumber first;
Page page;
BTPageOpaque opaque;
BTItem chkitem;
Oid afteroid;
page = BufferGetPage(buf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
first = P_RIGHTMOST(opaque) ? P_HIKEY : P_FIRSTKEY;
if (afteritem == (BTItem) NULL) {
itup_off = _bt_binsrch(rel, buf, keysz, itup_scankey, BT_INSERTION);
} else {
afteroid = afteritem->bti_oid;
itup_off = first;
do {
chkitem =
(BTItem) PageGetItem(page, PageGetItemId(page, itup_off));
itup_off = OffsetNumberNext(itup_off);
} while (chkitem->bti_oid != afteroid);
}
(void) PageAddItem(page, (Item) btitem, itemsize, itup_off, LP_USED);
/* write the buffer, but hold our lock */
_bt_wrtnorelbuf(rel, buf);
return (itup_off);
}
/*
* _bt_goesonpg() -- Does a new tuple belong on this page?
*
* This is part of the complexity introduced by allowing duplicate
* keys into the index. The tuple belongs on this page if:
*
* + there is no page to the right of this one; or
* + it is less than the high key on the page; or
* + the item it is to follow ("afteritem") appears on this
* page.
*/
static bool
_bt_goesonpg(Relation rel,
Buffer buf,
Size keysz,
ScanKey scankey,
BTItem afteritem)
{
Page page;
ItemId hikey;
BTPageOpaque opaque;
BTItem chkitem;
OffsetNumber offnum, maxoff;
Oid afteroid;
bool found;
page = BufferGetPage(buf);
/* no right neighbor? */
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
if (P_RIGHTMOST(opaque))
return (true);
/*
* this is a non-rightmost page, so it must have a high key item.
*
* If the scan key is < the high key (the min key on the next page),
* then it for sure belongs here.
*/
hikey = PageGetItemId(page, P_HIKEY);
if (_bt_skeycmp(rel, keysz, scankey, page, hikey, BTLessStrategyNumber))
return (true);
/*
* If the scan key is > the high key, then it for sure doesn't belong
* here.
*/
if (_bt_skeycmp(rel, keysz, scankey, page, hikey, BTGreaterStrategyNumber))
return (false);
/*
* If we have no adjacency information, and the item is equal to the
* high key on the page (by here it is), then the item does not belong
* on this page.
*/
if (afteritem == (BTItem) NULL)
return (false);
/* damn, have to work for it. i hate that. */
afteroid = afteritem->bti_oid;
maxoff = PageGetMaxOffsetNumber(page);
/*
* Search the entire page for the afteroid. We need to do this, rather
* than doing a binary search and starting from there, because if the
* key we're searching for is the leftmost key in the tree at this
* level, then a binary search will do the wrong thing. Splits are
* pretty infrequent, so the cost isn't as bad as it could be.
*/
found = false;
for (offnum = P_FIRSTKEY;
offnum <= maxoff;
offnum = OffsetNumberNext(offnum)) {
chkitem = (BTItem) PageGetItem(page, PageGetItemId(page, offnum));
if (chkitem->bti_oid == afteroid) {
found = true;
break;
}
}
return (found);
}
/*
* _bt_itemcmp() -- compare item1 to item2 using a requested
* strategy (<, <=, =, >=, >)
*
*/
bool
_bt_itemcmp(Relation rel,
Size keysz,
BTItem item1,
BTItem item2,
StrategyNumber strat)
{
TupleDesc tupDes;
IndexTuple indexTuple1, indexTuple2;
Datum attrDatum1, attrDatum2;
int i;
bool isNull;
bool compare;
tupDes = RelationGetTupleDescriptor(rel);
indexTuple1 = &(item1->bti_itup);
indexTuple2 = &(item2->bti_itup);
for (i = 1; i <= keysz; i++) {
attrDatum1 = index_getattr(indexTuple1, i, tupDes, &isNull);
attrDatum2 = index_getattr(indexTuple2, i, tupDes, &isNull);
compare = _bt_invokestrat(rel, i, strat, attrDatum1, attrDatum2);
if (!compare) {
return (false);
}
}
return (true);
}
#if 0
/* gone since updating in place doesn't work in general --djm 11/13/96 */
/*
* _bt_updateitem() -- updates the key of the item identified by the
* oid with the key of newItem (done in place if
* possible)
*
*/
static void
_bt_updateitem(Relation rel,
Size keysz,
Buffer buf,
Oid bti_oid,
BTItem newItem)
{
Page page;
OffsetNumber maxoff;
OffsetNumber i;
ItemPointerData itemPtrData;
BTItem item;
IndexTuple oldIndexTuple, newIndexTuple;
int first;
page = BufferGetPage(buf);
maxoff = PageGetMaxOffsetNumber(page);
/* locate item on the page */
first = P_RIGHTMOST((BTPageOpaque) PageGetSpecialPointer(page)) \
? P_HIKEY : P_FIRSTKEY;
i = first;
do {
item = (BTItem) PageGetItem(page, PageGetItemId(page, i));
i = OffsetNumberNext(i);
} while (i <= maxoff && item->bti_oid != bti_oid);
/* this should never happen (in theory) */
if (item->bti_oid != bti_oid) {
elog(FATAL, "_bt_getstackbuf was lying!!");
}
if(IndexTupleDSize(newItem->bti_itup) >
IndexTupleDSize(item->bti_itup)) {
elog(NOTICE, "trying to overwrite a smaller value with a bigger one in _bt_updateitem");
elog(WARN, "this is not good.");
}
oldIndexTuple = &(item->bti_itup);
newIndexTuple = &(newItem->bti_itup);
/* keep the original item pointer */
ItemPointerCopy(&(oldIndexTuple->t_tid), &itemPtrData);
CopyIndexTuple(newIndexTuple, &oldIndexTuple);
ItemPointerCopy(&itemPtrData, &(oldIndexTuple->t_tid));
}
#endif