postgresql/src/common/cryptohash_openssl.c

230 lines
4.7 KiB
C
Raw Normal View History

Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
/*-------------------------------------------------------------------------
*
* cryptohash_openssl.c
* Set of wrapper routines on top of OpenSSL to support cryptographic
* hash functions.
*
* This should only be used if code is compiled with OpenSSL support.
*
* Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/common/cryptohash_openssl.c
*
*-------------------------------------------------------------------------
*/
#ifndef FRONTEND
#include "postgres.h"
#else
#include "postgres_fe.h"
#endif
#include <openssl/evp.h>
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
#include "common/cryptohash.h"
#ifndef FRONTEND
#include "utils/memutils.h"
#include "utils/resowner.h"
#include "utils/resowner_private.h"
#endif
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
/*
* In backend, use palloc/pfree to ease the error handling. In frontend,
* use malloc to be able to return a failure status back to the caller.
*/
#ifndef FRONTEND
#define ALLOC(size) palloc(size)
#define FREE(ptr) pfree(ptr)
#else
#define ALLOC(size) malloc(size)
#define FREE(ptr) free(ptr)
#endif
/*
* Internal structure for pg_cryptohash_ctx->data.
*
* This tracks the resource owner associated to each EVP context data
* for the backend.
*/
typedef struct pg_cryptohash_state
{
EVP_MD_CTX *evpctx;
#ifndef FRONTEND
ResourceOwner resowner;
#endif
} pg_cryptohash_state;
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
/*
* pg_cryptohash_create
*
* Allocate a hash context. Returns NULL on failure for an OOM. The
* backend issues an error, without returning.
*/
pg_cryptohash_ctx *
pg_cryptohash_create(pg_cryptohash_type type)
{
pg_cryptohash_ctx *ctx;
pg_cryptohash_state *state;
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
ctx = ALLOC(sizeof(pg_cryptohash_ctx));
if (ctx == NULL)
return NULL;
state = ALLOC(sizeof(pg_cryptohash_state));
if (state == NULL)
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
{
explicit_bzero(ctx, sizeof(pg_cryptohash_ctx));
FREE(ctx);
return NULL;
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
}
ctx->data = state;
ctx->type = type;
#ifndef FRONTEND
ResourceOwnerEnlargeCryptoHash(CurrentResourceOwner);
#endif
/*
* Initialization takes care of assigning the correct type for OpenSSL.
*/
state->evpctx = EVP_MD_CTX_create();
if (state->evpctx == NULL)
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
{
explicit_bzero(state, sizeof(pg_cryptohash_state));
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
explicit_bzero(ctx, sizeof(pg_cryptohash_ctx));
#ifndef FRONTEND
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory")));
#else
FREE(state);
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
FREE(ctx);
return NULL;
#endif
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
}
#ifndef FRONTEND
state->resowner = CurrentResourceOwner;
ResourceOwnerRememberCryptoHash(CurrentResourceOwner,
PointerGetDatum(ctx));
#endif
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
return ctx;
}
/*
* pg_cryptohash_init
*
* Initialize a hash context. Returns 0 on success, and -1 on failure.
*/
int
pg_cryptohash_init(pg_cryptohash_ctx *ctx)
{
int status = 0;
pg_cryptohash_state *state;
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
if (ctx == NULL)
return 0;
state = (pg_cryptohash_state *) ctx->data;
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
switch (ctx->type)
{
case PG_SHA224:
status = EVP_DigestInit_ex(state->evpctx, EVP_sha224(), NULL);
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
break;
case PG_SHA256:
status = EVP_DigestInit_ex(state->evpctx, EVP_sha256(), NULL);
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
break;
case PG_SHA384:
status = EVP_DigestInit_ex(state->evpctx, EVP_sha384(), NULL);
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
break;
case PG_SHA512:
status = EVP_DigestInit_ex(state->evpctx, EVP_sha512(), NULL);
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
break;
}
/* OpenSSL internals return 1 on success, 0 on failure */
if (status <= 0)
return -1;
return 0;
}
/*
* pg_cryptohash_update
*
* Update a hash context. Returns 0 on success, and -1 on failure.
*/
int
pg_cryptohash_update(pg_cryptohash_ctx *ctx, const uint8 *data, size_t len)
{
int status = 0;
pg_cryptohash_state *state;
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
if (ctx == NULL)
return 0;
state = (pg_cryptohash_state *) ctx->data;
status = EVP_DigestUpdate(state->evpctx, data, len);
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
/* OpenSSL internals return 1 on success, 0 on failure */
if (status <= 0)
return -1;
return 0;
}
/*
* pg_cryptohash_final
*
* Finalize a hash context. Returns 0 on success, and -1 on failure.
*/
int
pg_cryptohash_final(pg_cryptohash_ctx *ctx, uint8 *dest)
{
int status = 0;
pg_cryptohash_state *state;
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
if (ctx == NULL)
return 0;
state = (pg_cryptohash_state *) ctx->data;
status = EVP_DigestFinal_ex(state->evpctx, dest, 0);
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
/* OpenSSL internals return 1 on success, 0 on failure */
if (status <= 0)
return -1;
return 0;
}
/*
* pg_cryptohash_free
*
* Free a hash context.
*/
void
pg_cryptohash_free(pg_cryptohash_ctx *ctx)
{
pg_cryptohash_state *state;
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
if (ctx == NULL)
return;
state = (pg_cryptohash_state *) ctx->data;
EVP_MD_CTX_destroy(state->evpctx);
#ifndef FRONTEND
ResourceOwnerForgetCryptoHash(state->resowner,
PointerGetDatum(ctx));
#endif
explicit_bzero(state, sizeof(pg_cryptohash_state));
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
explicit_bzero(ctx, sizeof(pg_cryptohash_ctx));
FREE(state);
Move SHA2 routines to a new generic API layer for crypto hashes Two new routines to allocate a hash context and to free it are created, as these become necessary for the goal behind this refactoring: switch the all cryptohash implementations for OpenSSL to use EVP (for FIPS and also because upstream does not recommend the use of low-level cryptohash functions for 20 years). Note that OpenSSL hides the internals of cryptohash contexts since 1.1.0, so it is necessary to leave the allocation to OpenSSL itself, explaining the need for those two new routines. This part is going to require more work to properly track hash contexts with resource owners, but this not introduced here. Still, this refactoring makes the move possible. This reduces the number of routines for all SHA2 implementations from twelve (SHA{224,256,386,512} with init, update and final calls) to five (create, free, init, update and final calls) by incorporating the hash type directly into the hash context data. The new cryptohash routines are moved to a new file, called cryptohash.c for the fallback implementations, with SHA2 specifics becoming a part internal to src/common/. OpenSSL specifics are part of cryptohash_openssl.c. This infrastructure is usable for more hash types, like MD5 or HMAC. Any code paths using the internal SHA2 routines are adapted to report correctly errors, which are most of the changes of this commit. The zones mostly impacted are checksum manifests, libpq and SCRAM. Note that e21cbb4 was a first attempt to switch SHA2 to EVP, but it lacked the refactoring needed for libpq, as done here. This patch has been tested on Linux and Windows, with and without OpenSSL, and down to 1.0.1, the oldest version supported on HEAD. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20200924025314.GE7405@paquier.xyz
2020-12-02 02:37:20 +01:00
FREE(ctx);
}