postgresql/src/backend/utils/cache/inval.c

895 lines
28 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* inval.c
* POSTGRES cache invalidation dispatcher code.
*
* This is subtle stuff, so pay attention:
*
* When a tuple is updated or deleted, our standard time qualification rules
* consider that it is *still valid* so long as we are in the same command,
* ie, until the next CommandCounterIncrement() or transaction commit.
* (See utils/time/tqual.c, and note that system catalogs are generally
* scanned under SnapshotNow rules by the system, or plain user snapshots
2002-09-04 22:31:48 +02:00
* for user queries.) At the command boundary, the old tuple stops
* being valid and the new version, if any, becomes valid. Therefore,
* we cannot simply flush a tuple from the system caches during heap_update()
* or heap_delete(). The tuple is still good at that point; what's more,
* even if we did flush it, it might be reloaded into the caches by a later
* request in the same command. So the correct behavior is to keep a list
* of outdated (updated/deleted) tuples and then do the required cache
* flushes at the next command boundary. We must also keep track of
* inserted tuples so that we can flush "negative" cache entries that match
* the new tuples; again, that mustn't happen until end of command.
*
* Once we have finished the command, we still need to remember inserted
* tuples (including new versions of updated tuples), so that we can flush
* them from the caches if we abort the transaction. Similarly, we'd better
* be able to flush "negative" cache entries that may have been loaded in
* place of deleted tuples, so we still need the deleted ones too.
*
* If we successfully complete the transaction, we have to broadcast all
* these invalidation events to other backends (via the SI message queue)
2002-09-04 22:31:48 +02:00
* so that they can flush obsolete entries from their caches. Note we have
* to record the transaction commit before sending SI messages, otherwise
* the other backends won't see our updated tuples as good.
*
* When a subtransaction aborts, we can process and discard any events
* it has queued. When a subtransaction commits, we just add its events
* to the pending lists of the parent transaction.
*
* In short, we need to remember until xact end every insert or delete
2002-09-04 22:31:48 +02:00
* of a tuple that might be in the system caches. Updates are treated as
* two events, delete + insert, for simplicity. (There are cases where
* it'd be possible to record just one event, but we don't currently try.)
*
* We do not need to register EVERY tuple operation in this way, just those
* on tuples in relations that have associated catcaches. We do, however,
* have to register every operation on every tuple that *could* be in a
* catcache, whether or not it currently is in our cache. Also, if the
* tuple is in a relation that has multiple catcaches, we need to register
* an invalidation message for each such catcache. catcache.c's
* PrepareToInvalidateCacheTuple() routine provides the knowledge of which
* catcaches may need invalidation for a given tuple.
*
* Also, whenever we see an operation on a pg_class or pg_attribute tuple,
* we register a relcache flush operation for the relation described by that
* tuple.
*
* We keep the relcache flush requests in lists separate from the catcache
* tuple flush requests. This allows us to issue all the pending catcache
* flushes before we issue relcache flushes, which saves us from loading
* a catcache tuple during relcache load only to flush it again right away.
* Also, we avoid queuing multiple relcache flush requests for the same
* relation, since a relcache flush is relatively expensive to do.
* (XXX is it worth testing likewise for duplicate catcache flush entries?
* Probably not.)
*
* If a relcache flush is issued for a system relation that we preload
* from the relcache init file, we must also delete the init file so that
* it will be rebuilt during the next backend restart. The actual work of
* manipulating the init file is in relcache.c, but we keep track of the
* need for it here.
*
* The request lists proper are kept in CurTransactionContext of their
* creating (sub)transaction, since they can be forgotten on abort of that
* transaction but must be kept till top-level commit otherwise. For
* simplicity we keep the controlling list-of-lists in TopTransactionContext.
*
*
2003-08-04 04:40:20 +02:00
* Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/utils/cache/inval.c,v 1.63 2004/07/01 00:51:17 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "catalog/catalog.h"
1999-07-16 07:00:38 +02:00
#include "miscadmin.h"
#include "storage/sinval.h"
#include "storage/smgr.h"
#include "utils/catcache.h"
#include "utils/inval.h"
#include "utils/memutils.h"
#include "utils/relcache.h"
#include "utils/syscache.h"
/*
* To minimize palloc traffic, we keep pending requests in successively-
* larger chunks (a slightly more sophisticated version of an expansible
* array). All request types can be stored as SharedInvalidationMessage
* records. The ordering of requests within a list is never significant.
*/
typedef struct InvalidationChunk
{
struct InvalidationChunk *next; /* list link */
int nitems; /* # items currently stored in chunk */
int maxitems; /* size of allocated array in this chunk */
SharedInvalidationMessage msgs[1]; /* VARIABLE LENGTH ARRAY */
} InvalidationChunk; /* VARIABLE LENGTH STRUCTURE */
typedef struct InvalidationListHeader
{
InvalidationChunk *cclist; /* list of chunks holding catcache msgs */
InvalidationChunk *rclist; /* list of chunks holding relcache msgs */
} InvalidationListHeader;
2002-04-30 00:14:34 +02:00
/*----------------
* Invalidation info is divided into two lists:
* 1) events so far in current command, not yet reflected to caches.
* 2) events in previous commands of current transaction; these have
* been reflected to local caches, and must be either broadcast to
* other backends or rolled back from local cache when we commit
* or abort the transaction.
* Actually, we need two such lists for each level of nested transaction,
* so that we can discard events from an aborted subtransaction. When
* a subtransaction commits, we append its lists to the parent's lists.
*
* The relcache-file-invalidated flag can just be a simple boolean,
* since we only act on it at transaction commit; we don't care which
* command of the transaction set it.
2002-04-30 00:14:34 +02:00
*----------------
*/
typedef struct TransInvalidationInfo
{
/* Back link to parent transaction's info */
struct TransInvalidationInfo *parent;
/* head of current-command event list */
InvalidationListHeader CurrentCmdInvalidMsgs;
/* head of previous-commands event list */
InvalidationListHeader PriorCmdInvalidMsgs;
/* init file must be invalidated? */
bool RelcacheInitFileInval;
} TransInvalidationInfo;
static TransInvalidationInfo *transInvalInfo = NULL;
2002-04-30 00:14:34 +02:00
/*
* Dynamically-registered callback functions. Current implementation
* assumes there won't be very many of these at once; could improve if needed.
*/
#define MAX_CACHE_CALLBACKS 20
static struct CACHECALLBACK
{
int16 id; /* cache number or SHAREDINVALRELCACHE_ID */
CacheCallbackFunction function;
Datum arg;
} cache_callback_list[MAX_CACHE_CALLBACKS];
static int cache_callback_count = 0;
/* ----------------------------------------------------------------
* Invalidation list support functions
*
* These three routines encapsulate processing of the "chunked"
* representation of what is logically just a list of messages.
* ----------------------------------------------------------------
*/
/*
* AddInvalidationMessage
* Add an invalidation message to a list (of chunks).
*
* Note that we do not pay any great attention to maintaining the original
* ordering of the messages.
*/
static void
AddInvalidationMessage(InvalidationChunk **listHdr,
SharedInvalidationMessage *msg)
{
InvalidationChunk *chunk = *listHdr;
if (chunk == NULL)
{
/* First time through; create initial chunk */
#define FIRSTCHUNKSIZE 16
chunk = (InvalidationChunk *)
MemoryContextAlloc(CurTransactionContext,
sizeof(InvalidationChunk) +
(FIRSTCHUNKSIZE - 1) *sizeof(SharedInvalidationMessage));
chunk->nitems = 0;
chunk->maxitems = FIRSTCHUNKSIZE;
chunk->next = *listHdr;
*listHdr = chunk;
}
else if (chunk->nitems >= chunk->maxitems)
{
/* Need another chunk; double size of last chunk */
int chunksize = 2 * chunk->maxitems;
chunk = (InvalidationChunk *)
MemoryContextAlloc(CurTransactionContext,
sizeof(InvalidationChunk) +
(chunksize - 1) *sizeof(SharedInvalidationMessage));
chunk->nitems = 0;
chunk->maxitems = chunksize;
chunk->next = *listHdr;
*listHdr = chunk;
}
/* Okay, add message to current chunk */
chunk->msgs[chunk->nitems] = *msg;
chunk->nitems++;
}
/*
* Append one list of invalidation message chunks to another, resetting
* the source chunk-list pointer to NULL.
*/
static void
AppendInvalidationMessageList(InvalidationChunk **destHdr,
InvalidationChunk **srcHdr)
{
InvalidationChunk *chunk = *srcHdr;
if (chunk == NULL)
return; /* nothing to do */
while (chunk->next != NULL)
chunk = chunk->next;
chunk->next = *destHdr;
*destHdr = *srcHdr;
*srcHdr = NULL;
}
/*
* Process a list of invalidation messages.
*
* This is a macro that executes the given code fragment for each message in
* a message chunk list. The fragment should refer to the message as *msg.
*/
#define ProcessMessageList(listHdr, codeFragment) \
do { \
InvalidationChunk *_chunk; \
for (_chunk = (listHdr); _chunk != NULL; _chunk = _chunk->next) \
{ \
int _cindex; \
for (_cindex = 0; _cindex < _chunk->nitems; _cindex++) \
{ \
SharedInvalidationMessage *msg = &_chunk->msgs[_cindex]; \
codeFragment; \
} \
} \
} while (0)
/* ----------------------------------------------------------------
* Invalidation set support functions
*
* These routines understand about the division of a logical invalidation
* list into separate physical lists for catcache and relcache entries.
* ----------------------------------------------------------------
*/
/*
* Add a catcache inval entry
*/
static void
AddCatcacheInvalidationMessage(InvalidationListHeader *hdr,
int id, uint32 hashValue,
ItemPointer tuplePtr, Oid dbId)
{
SharedInvalidationMessage msg;
msg.cc.id = (int16) id;
msg.cc.tuplePtr = *tuplePtr;
msg.cc.dbId = dbId;
msg.cc.hashValue = hashValue;
AddInvalidationMessage(&hdr->cclist, &msg);
}
/*
* Add a relcache inval entry
*/
static void
AddRelcacheInvalidationMessage(InvalidationListHeader *hdr,
Oid dbId, Oid relId, RelFileNode physId)
{
SharedInvalidationMessage msg;
/* Don't add a duplicate item */
/* We assume dbId need not be checked because it will never change */
/* relfilenode fields must be checked to support reassignment */
ProcessMessageList(hdr->rclist,
if (msg->rc.relId == relId &&
RelFileNodeEquals(msg->rc.physId, physId)) return);
/* OK, add the item */
msg.rc.id = SHAREDINVALRELCACHE_ID;
msg.rc.dbId = dbId;
msg.rc.relId = relId;
msg.rc.physId = physId;
AddInvalidationMessage(&hdr->rclist, &msg);
}
/*
* Append one list of invalidation messages to another, resetting
* the source list to empty.
*/
static void
AppendInvalidationMessages(InvalidationListHeader *dest,
InvalidationListHeader *src)
{
AppendInvalidationMessageList(&dest->cclist, &src->cclist);
AppendInvalidationMessageList(&dest->rclist, &src->rclist);
}
/*
* Execute the given function for all the messages in an invalidation list.
* The list is not altered.
*
* catcache entries are processed first, for reasons mentioned above.
*/
static void
ProcessInvalidationMessages(InvalidationListHeader *hdr,
void (*func) (SharedInvalidationMessage *msg))
{
ProcessMessageList(hdr->cclist, func(msg));
ProcessMessageList(hdr->rclist, func(msg));
}
/* ----------------------------------------------------------------
* private support functions
* ----------------------------------------------------------------
*/
/*
* RegisterCatcacheInvalidation
*
* Register an invalidation event for a catcache tuple entry.
*/
static void
RegisterCatcacheInvalidation(int cacheId,
uint32 hashValue,
ItemPointer tuplePtr,
Oid dbId)
{
AddCatcacheInvalidationMessage(&transInvalInfo->CurrentCmdInvalidMsgs,
cacheId, hashValue, tuplePtr, dbId);
}
/*
* RegisterRelcacheInvalidation
*
* As above, but register a relcache invalidation event.
*/
static void
RegisterRelcacheInvalidation(Oid dbId, Oid relId, RelFileNode physId)
{
AddRelcacheInvalidationMessage(&transInvalInfo->CurrentCmdInvalidMsgs,
dbId, relId, physId);
2002-09-04 22:31:48 +02:00
/*
* If the relation being invalidated is one of those cached in the
* relcache init file, mark that we need to zap that file at commit.
*/
if (RelationIdIsInInitFile(relId))
transInvalInfo->RelcacheInitFileInval = true;
}
/*
* LocalExecuteInvalidationMessage
*
* Process a single invalidation message (which could be either type).
* Only the local caches are flushed; this does not transmit the message
* to other backends.
*/
static void
LocalExecuteInvalidationMessage(SharedInvalidationMessage *msg)
{
2002-04-30 00:14:34 +02:00
int i;
if (msg->id >= 0)
{
if (msg->cc.dbId == MyDatabaseId || msg->cc.dbId == 0)
2002-04-30 00:14:34 +02:00
{
CatalogCacheIdInvalidate(msg->cc.id,
msg->cc.hashValue,
&msg->cc.tuplePtr);
2002-04-30 00:14:34 +02:00
for (i = 0; i < cache_callback_count; i++)
{
struct CACHECALLBACK *ccitem = cache_callback_list + i;
if (ccitem->id == msg->cc.id)
(*ccitem->function) (ccitem->arg, InvalidOid);
}
}
}
else if (msg->id == SHAREDINVALRELCACHE_ID)
{
/*
* If the message includes a valid relfilenode, we must ensure that
* smgr cache entry gets zapped. The relcache will handle this if
* called, otherwise we must do it directly.
*/
if (msg->rc.dbId == MyDatabaseId || msg->rc.dbId == InvalidOid)
2002-04-30 00:14:34 +02:00
{
if (OidIsValid(msg->rc.physId.relNode))
RelationCacheInvalidateEntry(msg->rc.relId, &msg->rc.physId);
else
RelationCacheInvalidateEntry(msg->rc.relId, NULL);
2002-04-30 00:14:34 +02:00
for (i = 0; i < cache_callback_count; i++)
{
struct CACHECALLBACK *ccitem = cache_callback_list + i;
if (ccitem->id == SHAREDINVALRELCACHE_ID)
(*ccitem->function) (ccitem->arg, msg->rc.relId);
}
}
else
{
/* might have smgr entry even if not in our database */
if (OidIsValid(msg->rc.physId.relNode))
smgrclosenode(msg->rc.physId);
}
}
else
elog(FATAL, "unrecognized SI message id: %d", msg->id);
}
/*
* InvalidateSystemCaches
*
* This blows away all tuples in the system catalog caches and
* all the cached relation descriptors and smgr cache entries.
* Relation descriptors that have positive refcounts are then rebuilt.
*
* We call this when we see a shared-inval-queue overflow signal,
* since that tells us we've lost some shared-inval messages and hence
* don't know what needs to be invalidated.
*/
static void
InvalidateSystemCaches(void)
{
2002-04-30 00:14:34 +02:00
int i;
ResetCatalogCaches();
RelationCacheInvalidate(); /* gets smgr cache too */
2002-04-30 00:14:34 +02:00
for (i = 0; i < cache_callback_count; i++)
{
struct CACHECALLBACK *ccitem = cache_callback_list + i;
(*ccitem->function) (ccitem->arg, InvalidOid);
}
}
/*
* PrepareForTupleInvalidation
* Detect whether invalidation of this tuple implies invalidation
* of catalog/relation cache entries; if so, register inval events.
*/
static void
PrepareForTupleInvalidation(Relation relation, HeapTuple tuple,
void (*CacheIdRegisterFunc) (int, uint32,
ItemPointer, Oid),
void (*RelationIdRegisterFunc) (Oid, Oid,
RelFileNode))
{
Oid tupleRelId;
Oid databaseId;
Oid relationId;
RelFileNode rnode;
/* Do nothing during bootstrap */
if (IsBootstrapProcessingMode())
return;
/*
* We only need to worry about invalidation for tuples that are in
* system relations; user-relation tuples are never in catcaches and
* can't affect the relcache either.
*/
if (!IsSystemRelation(relation))
return;
2002-09-04 22:31:48 +02:00
/*
* TOAST tuples can likewise be ignored here. Note that TOAST tables
* are considered system relations so they are not filtered by the
* above test.
*/
if (IsToastRelation(relation))
return;
/*
* First let the catcache do its thing
*/
PrepareToInvalidateCacheTuple(relation, tuple,
CacheIdRegisterFunc);
/*
* Now, is this tuple one of the primary definers of a relcache entry?
*/
tupleRelId = RelationGetRelid(relation);
if (tupleRelId == RelOid_pg_class)
{
Form_pg_class classtup = (Form_pg_class) GETSTRUCT(tuple);
relationId = HeapTupleGetOid(tuple);
if (classtup->relisshared)
databaseId = InvalidOid;
else
databaseId = MyDatabaseId;
if (classtup->reltablespace)
rnode.spcNode = classtup->reltablespace;
else
rnode.spcNode = MyDatabaseTableSpace;
rnode.dbNode = databaseId;
rnode.relNode = classtup->relfilenode;
/*
* Note: during a pg_class row update that assigns a new relfilenode
* or reltablespace value, we will be called on both the old and new
* tuples, and thus will broadcast invalidation messages showing both
* the old and new RelFileNode values. This ensures that other
* backends will close smgr references to the old file.
*/
}
else if (tupleRelId == RelOid_pg_attribute)
{
Form_pg_attribute atttup = (Form_pg_attribute) GETSTRUCT(tuple);
relationId = atttup->attrelid;
/*
* KLUGE ALERT: we always send the relcache event with MyDatabaseId,
* even if the rel in question is shared (which we can't easily tell).
* This essentially means that only backends in this same database
* will react to the relcache flush request. This is in fact
* appropriate, since only those backends could see our pg_attribute
* change anyway. It looks a bit ugly though.
*/
databaseId = MyDatabaseId;
/* We assume no smgr cache flush is needed, either */
rnode.spcNode = InvalidOid;
rnode.dbNode = InvalidOid;
rnode.relNode = InvalidOid;
}
else
return;
/*
* Yes. We need to register a relcache invalidation event.
*/
(*RelationIdRegisterFunc) (databaseId, relationId, rnode);
}
/* ----------------------------------------------------------------
* public functions
* ----------------------------------------------------------------
*/
/*
* AcceptInvalidationMessages
* Read and process invalidation messages from the shared invalidation
* message queue.
*
* Note:
* This should be called as the first step in processing a transaction.
*/
void
AcceptInvalidationMessages(void)
{
ReceiveSharedInvalidMessages(LocalExecuteInvalidationMessage,
InvalidateSystemCaches);
}
/*
* AtStart_Inval
* Initialize inval lists at start of a main transaction.
*/
void
AtStart_Inval(void)
{
Assert(transInvalInfo == NULL);
transInvalInfo = (TransInvalidationInfo *)
MemoryContextAllocZero(TopTransactionContext,
sizeof(TransInvalidationInfo));
}
/*
* AtSubStart_Inval
* Initialize inval lists at start of a subtransaction.
*/
void
AtSubStart_Inval(void)
{
TransInvalidationInfo *myInfo;
Assert(transInvalInfo != NULL);
myInfo = (TransInvalidationInfo *)
MemoryContextAllocZero(TopTransactionContext,
sizeof(TransInvalidationInfo));
myInfo->parent = transInvalInfo;
transInvalInfo = myInfo;
}
/*
* AtEOXact_Inval
* Process queued-up invalidation messages at end of main transaction.
*
* If isCommit, we must send out the messages in our PriorCmdInvalidMsgs list
* to the shared invalidation message queue. Note that these will be read
* not only by other backends, but also by our own backend at the next
2002-09-04 22:31:48 +02:00
* transaction start (via AcceptInvalidationMessages). This means that
* we can skip immediate local processing of anything that's still in
* CurrentCmdInvalidMsgs, and just send that list out too.
*
* If not isCommit, we are aborting, and must locally process the messages
2002-09-04 22:31:48 +02:00
* in PriorCmdInvalidMsgs. No messages need be sent to other backends,
* since they'll not have seen our changed tuples anyway. We can forget
* about CurrentCmdInvalidMsgs too, since those changes haven't touched
* the caches yet.
*
* In any case, reset the various lists to empty. We need not physically
* free memory here, since TopTransactionContext is about to be emptied
* anyway.
*
* Note:
* This should be called as the last step in processing a transaction.
*/
void
AtEOXact_Inval(bool isCommit)
{
/* Must be at top of stack */
Assert(transInvalInfo != NULL && transInvalInfo->parent == NULL);
if (isCommit)
{
/*
2002-09-04 22:31:48 +02:00
* Relcache init file invalidation requires processing both before
* and after we send the SI messages. However, we need not do
* anything unless we committed.
*/
if (transInvalInfo->RelcacheInitFileInval)
RelationCacheInitFileInvalidate(true);
AppendInvalidationMessages(&transInvalInfo->PriorCmdInvalidMsgs,
&transInvalInfo->CurrentCmdInvalidMsgs);
ProcessInvalidationMessages(&transInvalInfo->PriorCmdInvalidMsgs,
SendSharedInvalidMessage);
if (transInvalInfo->RelcacheInitFileInval)
RelationCacheInitFileInvalidate(false);
}
else
{
ProcessInvalidationMessages(&transInvalInfo->PriorCmdInvalidMsgs,
LocalExecuteInvalidationMessage);
}
/* Need not free anything explicitly */
transInvalInfo = NULL;
}
/*
* AtSubEOXact_Inval
* Process queued-up invalidation messages at end of subtransaction.
*
* If isCommit, process CurrentCmdInvalidMsgs if any (there probably aren't),
* and then attach both CurrentCmdInvalidMsgs and PriorCmdInvalidMsgs to the
* parent's PriorCmdInvalidMsgs list.
*
* If not isCommit, we are aborting, and must locally process the messages
* in PriorCmdInvalidMsgs. No messages need be sent to other backends.
* We can forget about CurrentCmdInvalidMsgs too, since those changes haven't
* touched the caches yet.
*
* In any case, pop the transaction stack. We need not physically free memory
* here, since CurTransactionContext is about to be emptied anyway
* (if aborting).
*/
void
AtSubEOXact_Inval(bool isCommit)
{
TransInvalidationInfo *myInfo = transInvalInfo;
/* Must be at non-top of stack */
Assert(myInfo != NULL && myInfo->parent != NULL);
if (isCommit)
{
/* If CurrentCmdInvalidMsgs still has anything, fix it */
CommandEndInvalidationMessages();
/* Pass up my inval messages to parent */
AppendInvalidationMessages(&myInfo->parent->PriorCmdInvalidMsgs,
&myInfo->PriorCmdInvalidMsgs);
/* Pending relcache inval becomes parent's problem too */
if (myInfo->RelcacheInitFileInval)
myInfo->parent->RelcacheInitFileInval = true;
}
else
{
ProcessInvalidationMessages(&myInfo->PriorCmdInvalidMsgs,
LocalExecuteInvalidationMessage);
}
/* Pop the transaction state stack */
transInvalInfo = myInfo->parent;
/* Need not free anything else explicitly */
pfree(myInfo);
}
/*
* CommandEndInvalidationMessages
* Process queued-up invalidation messages at end of one command
* in a transaction.
*
* Here, we send no messages to the shared queue, since we don't know yet if
* we will commit. We do need to locally process the CurrentCmdInvalidMsgs
* list, so as to flush our caches of any entries we have outdated in the
* current command. We then move the current-cmd list over to become part
* of the prior-cmds list.
*
* Note:
* This should be called during CommandCounterIncrement(),
* after we have advanced the command ID.
*/
void
CommandEndInvalidationMessages(void)
{
/*
* You might think this shouldn't be called outside any transaction,
* but bootstrap does it, and also ABORT issued when not in a transaction.
* So just quietly return if no state to work on.
*/
if (transInvalInfo == NULL)
return;
ProcessInvalidationMessages(&transInvalInfo->CurrentCmdInvalidMsgs,
LocalExecuteInvalidationMessage);
AppendInvalidationMessages(&transInvalInfo->PriorCmdInvalidMsgs,
&transInvalInfo->CurrentCmdInvalidMsgs);
}
/*
* CacheInvalidateHeapTuple
* Register the given tuple for invalidation at end of command
* (ie, current command is creating or outdating this tuple).
*/
void
CacheInvalidateHeapTuple(Relation relation, HeapTuple tuple)
{
PrepareForTupleInvalidation(relation, tuple,
RegisterCatcacheInvalidation,
RegisterRelcacheInvalidation);
}
/*
* CacheInvalidateRelcache
* Register invalidation of the specified relation's relcache entry
* at end of command.
*
* This is used in places that need to force relcache rebuild but aren't
* changing any of the tuples recognized as contributors to the relcache
* entry by PrepareForTupleInvalidation. (An example is dropping an index.)
* We assume in particular that relfilenode isn't changing.
*/
void
CacheInvalidateRelcache(Relation relation)
{
Oid databaseId;
Oid relationId;
relationId = RelationGetRelid(relation);
if (relation->rd_rel->relisshared)
databaseId = InvalidOid;
else
databaseId = MyDatabaseId;
RegisterRelcacheInvalidation(databaseId, relationId, relation->rd_node);
}
/*
* CacheInvalidateRelcacheByTuple
* As above, but relation is identified by passing its pg_class tuple.
*/
void
CacheInvalidateRelcacheByTuple(HeapTuple classTuple)
{
Form_pg_class classtup = (Form_pg_class) GETSTRUCT(classTuple);
Oid databaseId;
Oid relationId;
RelFileNode rnode;
relationId = HeapTupleGetOid(classTuple);
if (classtup->relisshared)
databaseId = InvalidOid;
else
databaseId = MyDatabaseId;
if (classtup->reltablespace)
rnode.spcNode = classtup->reltablespace;
else
rnode.spcNode = MyDatabaseTableSpace;
rnode.dbNode = databaseId;
rnode.relNode = classtup->relfilenode;
RegisterRelcacheInvalidation(databaseId, relationId, rnode);
}
2002-04-30 00:14:34 +02:00
/*
* CacheInvalidateRelcacheByRelid
* As above, but relation is identified by passing its OID.
* This is the least efficient of the three options; use one of
* the above routines if you have a Relation or pg_class tuple.
*/
void
CacheInvalidateRelcacheByRelid(Oid relid)
{
HeapTuple tup;
tup = SearchSysCache(RELOID,
ObjectIdGetDatum(relid),
0, 0, 0);
if (!HeapTupleIsValid(tup))
elog(ERROR, "cache lookup failed for relation %u", relid);
CacheInvalidateRelcacheByTuple(tup);
ReleaseSysCache(tup);
}
2002-04-30 00:14:34 +02:00
/*
* CacheRegisterSyscacheCallback
* Register the specified function to be called for all future
* invalidation events in the specified cache.
*
* NOTE: currently, the OID argument to the callback routine is not
* provided for syscache callbacks; the routine doesn't really get any
2002-09-04 22:31:48 +02:00
* useful info as to exactly what changed. It should treat every call
2002-04-30 00:14:34 +02:00
* as a "cache flush" request.
*/
void
CacheRegisterSyscacheCallback(int cacheid,
CacheCallbackFunction func,
Datum arg)
{
if (cache_callback_count >= MAX_CACHE_CALLBACKS)
elog(FATAL, "out of cache_callback_list slots");
2002-04-30 00:14:34 +02:00
cache_callback_list[cache_callback_count].id = cacheid;
cache_callback_list[cache_callback_count].function = func;
cache_callback_list[cache_callback_count].arg = arg;
++cache_callback_count;
}
/*
* CacheRegisterRelcacheCallback
* Register the specified function to be called for all future
* relcache invalidation events. The OID of the relation being
* invalidated will be passed to the function.
*
* NOTE: InvalidOid will be passed if a cache reset request is received.
* In this case the called routines should flush all cached state.
*/
void
CacheRegisterRelcacheCallback(CacheCallbackFunction func,
Datum arg)
{
if (cache_callback_count >= MAX_CACHE_CALLBACKS)
elog(FATAL, "out of cache_callback_list slots");
2002-04-30 00:14:34 +02:00
cache_callback_list[cache_callback_count].id = SHAREDINVALRELCACHE_ID;
cache_callback_list[cache_callback_count].function = func;
cache_callback_list[cache_callback_count].arg = arg;
++cache_callback_count;
}