postgresql/src/backend/access/index/indexam.c

852 lines
24 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* indexam.c
* general index access method routines
*
2010-01-02 17:58:17 +01:00
* Portions Copyright (c) 1996-2010, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
2010-02-26 03:01:40 +01:00
* $PostgreSQL: pgsql/src/backend/access/index/indexam.c,v 1.118 2010/02/26 02:00:34 momjian Exp $
*
* INTERFACE ROUTINES
* index_open - open an index relation by relation OID
* index_close - close an index relation
* index_beginscan - start a scan of an index with amgettuple
* index_beginscan_bitmap - start a scan of an index with amgetbitmap
* index_rescan - restart a scan of an index
* index_endscan - end a scan
* index_insert - insert an index tuple into a relation
* index_markpos - mark a scan position
* index_restrpos - restore a scan position
* index_getnext - get the next tuple from a scan
* index_getbitmap - get all tuples from a scan
* index_bulk_delete - bulk deletion of index tuples
* index_vacuum_cleanup - post-deletion cleanup of an index
* index_getprocid - get a support procedure OID
* index_getprocinfo - get a support procedure's lookup info
*
* NOTES
* This file contains the index_ routines which used
* to be a scattered collection of stuff in access/genam.
*
*
* old comments
* Scans are implemented as follows:
*
* `0' represents an invalid item pointer.
* `-' represents an unknown item pointer.
* `X' represents a known item pointers.
* `+' represents known or invalid item pointers.
* `*' represents any item pointers.
*
* State is represented by a triple of these symbols in the order of
* previous, current, next. Note that the case of reverse scans works
* identically.
*
* State Result
* (1) + + - + 0 0 (if the next item pointer is invalid)
* (2) + X - (otherwise)
* (3) * 0 0 * 0 0 (no change)
* (4) + X 0 X 0 0 (shift)
* (5) * + X + X - (shift, add unknown)
*
* All other states cannot occur.
*
* Note: It would be possible to cache the status of the previous and
* next item pointer using the flags.
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/relscan.h"
#include "access/transam.h"
#include "pgstat.h"
#include "storage/bufmgr.h"
#include "storage/lmgr.h"
1999-07-16 07:00:38 +02:00
#include "utils/relcache.h"
#include "utils/snapmgr.h"
#include "utils/tqual.h"
/* ----------------------------------------------------------------
* macros used in index_ routines
* ----------------------------------------------------------------
*/
#define RELATION_CHECKS \
( \
AssertMacro(RelationIsValid(indexRelation)), \
AssertMacro(PointerIsValid(indexRelation->rd_am)) \
)
#define SCAN_CHECKS \
( \
AssertMacro(IndexScanIsValid(scan)), \
AssertMacro(RelationIsValid(scan->indexRelation)), \
AssertMacro(PointerIsValid(scan->indexRelation->rd_am)) \
)
#define GET_REL_PROCEDURE(pname) \
do { \
procedure = &indexRelation->rd_aminfo->pname; \
if (!OidIsValid(procedure->fn_oid)) \
{ \
RegProcedure procOid = indexRelation->rd_am->pname; \
if (!RegProcedureIsValid(procOid)) \
elog(ERROR, "invalid %s regproc", CppAsString(pname)); \
fmgr_info_cxt(procOid, procedure, indexRelation->rd_indexcxt); \
} \
} while(0)
#define GET_SCAN_PROCEDURE(pname) \
do { \
procedure = &scan->indexRelation->rd_aminfo->pname; \
if (!OidIsValid(procedure->fn_oid)) \
{ \
RegProcedure procOid = scan->indexRelation->rd_am->pname; \
if (!RegProcedureIsValid(procOid)) \
elog(ERROR, "invalid %s regproc", CppAsString(pname)); \
fmgr_info_cxt(procOid, procedure, scan->indexRelation->rd_indexcxt); \
} \
} while(0)
static IndexScanDesc index_beginscan_internal(Relation indexRelation,
2005-10-15 04:49:52 +02:00
int nkeys, ScanKey key);
/* ----------------------------------------------------------------
* index_ interface functions
* ----------------------------------------------------------------
*/
/* ----------------
* index_open - open an index relation by relation OID
*
* If lockmode is not "NoLock", the specified kind of lock is
2006-10-04 02:30:14 +02:00
* obtained on the index. (Generally, NoLock should only be
* used if the caller knows it has some appropriate lock on the
* index already.)
*
* An error is raised if the index does not exist.
*
* This is a convenience routine adapted for indexscan use.
* Some callers may prefer to use relation_open directly.
* ----------------
*/
Relation
index_open(Oid relationId, LOCKMODE lockmode)
{
Relation r;
r = relation_open(relationId, lockmode);
if (r->rd_rel->relkind != RELKIND_INDEX)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not an index",
RelationGetRelationName(r))));
return r;
}
/* ----------------
* index_close - close an index relation
*
* If lockmode is not "NoLock", we then release the specified lock.
*
* Note that it is often sensible to hold a lock beyond index_close;
* in that case, the lock is released automatically at xact end.
* ----------------
*/
void
index_close(Relation relation, LOCKMODE lockmode)
{
LockRelId relid = relation->rd_lockInfo.lockRelId;
Assert(lockmode >= NoLock && lockmode < MAX_LOCKMODES);
/* The relcache does the real work... */
RelationClose(relation);
if (lockmode != NoLock)
UnlockRelationId(&relid, lockmode);
}
/* ----------------
* index_insert - insert an index tuple into a relation
* ----------------
*/
bool
index_insert(Relation indexRelation,
Datum *values,
bool *isnull,
ItemPointer heap_t_ctid,
Relation heapRelation,
IndexUniqueCheck checkUnique)
{
FmgrInfo *procedure;
RELATION_CHECKS;
GET_REL_PROCEDURE(aminsert);
/*
* have the am's insert proc do all the work.
*/
return DatumGetBool(FunctionCall6(procedure,
PointerGetDatum(indexRelation),
PointerGetDatum(values),
PointerGetDatum(isnull),
PointerGetDatum(heap_t_ctid),
PointerGetDatum(heapRelation),
Int32GetDatum((int32) checkUnique)));
}
/*
* index_beginscan - start a scan of an index with amgettuple
*
* Caller must be holding suitable locks on the heap and the index.
*/
IndexScanDesc
index_beginscan(Relation heapRelation,
Relation indexRelation,
Snapshot snapshot,
int nkeys, ScanKey key)
{
IndexScanDesc scan;
scan = index_beginscan_internal(indexRelation, nkeys, key);
/*
2005-10-15 04:49:52 +02:00
* Save additional parameters into the scandesc. Everything else was set
* up by RelationGetIndexScan.
*/
scan->heapRelation = heapRelation;
scan->xs_snapshot = snapshot;
return scan;
}
/*
* index_beginscan_bitmap - start a scan of an index with amgetbitmap
*
* As above, caller had better be holding some lock on the parent heap
* relation, even though it's not explicitly mentioned here.
*/
IndexScanDesc
index_beginscan_bitmap(Relation indexRelation,
Snapshot snapshot,
int nkeys, ScanKey key)
{
IndexScanDesc scan;
scan = index_beginscan_internal(indexRelation, nkeys, key);
/*
2005-10-15 04:49:52 +02:00
* Save additional parameters into the scandesc. Everything else was set
* up by RelationGetIndexScan.
*/
scan->xs_snapshot = snapshot;
return scan;
}
/*
* index_beginscan_internal --- common code for index_beginscan variants
*/
static IndexScanDesc
index_beginscan_internal(Relation indexRelation,
int nkeys, ScanKey key)
{
IndexScanDesc scan;
FmgrInfo *procedure;
RELATION_CHECKS;
GET_REL_PROCEDURE(ambeginscan);
/*
* We hold a reference count to the relcache entry throughout the scan.
*/
RelationIncrementReferenceCount(indexRelation);
/*
* Tell the AM to open a scan.
*/
scan = (IndexScanDesc)
DatumGetPointer(FunctionCall3(procedure,
PointerGetDatum(indexRelation),
Int32GetDatum(nkeys),
PointerGetDatum(key)));
return scan;
}
/* ----------------
* index_rescan - (re)start a scan of an index
*
* The caller may specify a new set of scankeys (but the number of keys
2003-08-04 02:43:34 +02:00
* cannot change). To restart the scan without changing keys, pass NULL
* for the key array.
*
* Note that this is also called when first starting an indexscan;
* see RelationGetIndexScan. Keys *must* be passed in that case,
* unless scan->numberOfKeys is zero.
* ----------------
*/
void
index_rescan(IndexScanDesc scan, ScanKey key)
{
FmgrInfo *procedure;
SCAN_CHECKS;
GET_SCAN_PROCEDURE(amrescan);
/* Release any held pin on a heap page */
if (BufferIsValid(scan->xs_cbuf))
{
ReleaseBuffer(scan->xs_cbuf);
scan->xs_cbuf = InvalidBuffer;
}
scan->xs_next_hot = InvalidOffsetNumber;
2002-09-04 22:31:48 +02:00
scan->kill_prior_tuple = false; /* for safety */
FunctionCall2(procedure,
PointerGetDatum(scan),
PointerGetDatum(key));
}
/* ----------------
* index_endscan - end a scan
* ----------------
*/
void
index_endscan(IndexScanDesc scan)
{
FmgrInfo *procedure;
SCAN_CHECKS;
GET_SCAN_PROCEDURE(amendscan);
/* Release any held pin on a heap page */
if (BufferIsValid(scan->xs_cbuf))
{
ReleaseBuffer(scan->xs_cbuf);
scan->xs_cbuf = InvalidBuffer;
}
/* End the AM's scan */
FunctionCall1(procedure, PointerGetDatum(scan));
/* Release index refcount acquired by index_beginscan */
RelationDecrementReferenceCount(scan->indexRelation);
/* Release the scan data structure itself */
IndexScanEnd(scan);
}
/* ----------------
* index_markpos - mark a scan position
* ----------------
*/
void
index_markpos(IndexScanDesc scan)
{
FmgrInfo *procedure;
SCAN_CHECKS;
GET_SCAN_PROCEDURE(ammarkpos);
FunctionCall1(procedure, PointerGetDatum(scan));
}
/* ----------------
* index_restrpos - restore a scan position
*
* NOTE: this only restores the internal scan state of the index AM.
* The current result tuple (scan->xs_ctup) doesn't change. See comments
* for ExecRestrPos().
*
* NOTE: in the presence of HOT chains, mark/restore only works correctly
* if the scan's snapshot is MVCC-safe; that ensures that there's at most one
* returnable tuple in each HOT chain, and so restoring the prior state at the
* granularity of the index AM is sufficient. Since the only current user
* of mark/restore functionality is nodeMergejoin.c, this effectively means
2007-11-15 22:14:46 +01:00
* that merge-join plans only work for MVCC snapshots. This could be fixed
* if necessary, but for now it seems unimportant.
* ----------------
*/
void
index_restrpos(IndexScanDesc scan)
{
FmgrInfo *procedure;
Assert(IsMVCCSnapshot(scan->xs_snapshot));
SCAN_CHECKS;
GET_SCAN_PROCEDURE(amrestrpos);
scan->xs_next_hot = InvalidOffsetNumber;
2002-09-04 22:31:48 +02:00
scan->kill_prior_tuple = false; /* for safety */
FunctionCall1(procedure, PointerGetDatum(scan));
}
/* ----------------
* index_getnext - get the next heap tuple from a scan
*
* The result is the next heap tuple satisfying the scan keys and the
2002-09-04 22:31:48 +02:00
* snapshot, or NULL if no more matching tuples exist. On success,
* the buffer containing the heap tuple is pinned (the pin will be dropped
* at the next index_getnext or index_endscan).
*
* Note: caller must check scan->xs_recheck, and perform rechecking of the
* scan keys if required. We do not do that here because we don't have
* enough information to do it efficiently in the general case.
* ----------------
*/
HeapTuple
index_getnext(IndexScanDesc scan, ScanDirection direction)
{
HeapTuple heapTuple = &scan->xs_ctup;
2007-11-15 22:14:46 +01:00
ItemPointer tid = &heapTuple->t_self;
FmgrInfo *procedure;
SCAN_CHECKS;
GET_SCAN_PROCEDURE(amgettuple);
Assert(TransactionIdIsValid(RecentGlobalXmin));
/*
* We always reset xs_hot_dead; if we are here then either we are just
* starting the scan, or we previously returned a visible tuple, and in
* either case it's inappropriate to kill the prior index entry.
*/
scan->xs_hot_dead = false;
for (;;)
{
OffsetNumber offnum;
2007-11-15 22:14:46 +01:00
bool at_chain_start;
Page dp;
if (scan->xs_next_hot != InvalidOffsetNumber)
{
/*
2007-11-15 22:14:46 +01:00
* We are resuming scan of a HOT chain after having returned an
* earlier member. Must still hold pin on current heap page.
*/
Assert(BufferIsValid(scan->xs_cbuf));
Assert(ItemPointerGetBlockNumber(tid) ==
BufferGetBlockNumber(scan->xs_cbuf));
Assert(TransactionIdIsValid(scan->xs_prev_xmax));
offnum = scan->xs_next_hot;
at_chain_start = false;
scan->xs_next_hot = InvalidOffsetNumber;
}
else
{
bool found;
Buffer prev_buf;
/*
* If we scanned a whole HOT chain and found only dead tuples,
2010-02-26 03:01:40 +01:00
* tell index AM to kill its entry for that TID. We do not do this
* when in recovery because it may violate MVCC to do so. see
* comments in RelationGetIndexScan().
*/
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
if (!scan->xactStartedInRecovery)
scan->kill_prior_tuple = scan->xs_hot_dead;
/*
* The AM's gettuple proc finds the next index entry matching the
* scan keys, and puts the TID in xs_ctup.t_self (ie, *tid). It
* should also set scan->xs_recheck, though we pay no attention to
* that here.
*/
found = DatumGetBool(FunctionCall2(procedure,
PointerGetDatum(scan),
Int32GetDatum(direction)));
/* Reset kill flag immediately for safety */
scan->kill_prior_tuple = false;
/* If we're out of index entries, break out of outer loop */
if (!found)
break;
pgstat_count_index_tuples(scan->indexRelation, 1);
/* Switch to correct buffer if we don't have it already */
prev_buf = scan->xs_cbuf;
scan->xs_cbuf = ReleaseAndReadBuffer(scan->xs_cbuf,
scan->heapRelation,
ItemPointerGetBlockNumber(tid));
/*
* Prune page, but only if we weren't already on this page
*/
if (prev_buf != scan->xs_cbuf)
heap_page_prune_opt(scan->heapRelation, scan->xs_cbuf,
RecentGlobalXmin);
/* Prepare to scan HOT chain starting at index-referenced offnum */
offnum = ItemPointerGetOffsetNumber(tid);
at_chain_start = true;
/* We don't know what the first tuple's xmin should be */
scan->xs_prev_xmax = InvalidTransactionId;
/* Initialize flag to detect if all entries are dead */
scan->xs_hot_dead = true;
}
/* Obtain share-lock on the buffer so we can examine visibility */
LockBuffer(scan->xs_cbuf, BUFFER_LOCK_SHARE);
dp = (Page) BufferGetPage(scan->xs_cbuf);
/* Scan through possible multiple members of HOT-chain */
for (;;)
{
2007-11-15 22:14:46 +01:00
ItemId lp;
ItemPointer ctid;
/* check for bogus TID */
if (offnum < FirstOffsetNumber ||
offnum > PageGetMaxOffsetNumber(dp))
break;
lp = PageGetItemId(dp, offnum);
/* check for unused, dead, or redirected items */
if (!ItemIdIsNormal(lp))
{
/* We should only see a redirect at start of chain */
if (ItemIdIsRedirected(lp) && at_chain_start)
{
/* Follow the redirect */
offnum = ItemIdGetRedirect(lp);
at_chain_start = false;
continue;
}
/* else must be end of chain */
break;
}
/*
2007-11-15 22:14:46 +01:00
* We must initialize all of *heapTuple (ie, scan->xs_ctup) since
* it is returned to the executor on success.
*/
heapTuple->t_data = (HeapTupleHeader) PageGetItem(dp, lp);
heapTuple->t_len = ItemIdGetLength(lp);
ItemPointerSetOffsetNumber(tid, offnum);
heapTuple->t_tableOid = RelationGetRelid(scan->heapRelation);
ctid = &heapTuple->t_data->t_ctid;
/*
* Shouldn't see a HEAP_ONLY tuple at chain start. (This test
* should be unnecessary, since the chain root can't be removed
2007-11-15 22:14:46 +01:00
* while we have pin on the index entry, but let's make it
* anyway.)
*/
if (at_chain_start && HeapTupleIsHeapOnly(heapTuple))
break;
/*
* The xmin should match the previous xmax value, else chain is
2007-11-15 22:14:46 +01:00
* broken. (Note: this test is not optional because it protects
* us against the case where the prior chain member's xmax aborted
* since we looked at it.)
*/
if (TransactionIdIsValid(scan->xs_prev_xmax) &&
!TransactionIdEquals(scan->xs_prev_xmax,
2007-11-15 22:14:46 +01:00
HeapTupleHeaderGetXmin(heapTuple->t_data)))
break;
/* If it's visible per the snapshot, we must return it */
if (HeapTupleSatisfiesVisibility(heapTuple, scan->xs_snapshot,
scan->xs_cbuf))
{
/*
2007-11-15 22:14:46 +01:00
* If the snapshot is MVCC, we know that it could accept at
* most one member of the HOT chain, so we can skip examining
* any more members. Otherwise, check for continuation of the
* HOT-chain, and set state for next time.
*/
if (IsMVCCSnapshot(scan->xs_snapshot))
scan->xs_next_hot = InvalidOffsetNumber;
else if (HeapTupleIsHotUpdated(heapTuple))
{
Assert(ItemPointerGetBlockNumber(ctid) ==
ItemPointerGetBlockNumber(tid));
scan->xs_next_hot = ItemPointerGetOffsetNumber(ctid);
scan->xs_prev_xmax = HeapTupleHeaderGetXmax(heapTuple->t_data);
}
else
scan->xs_next_hot = InvalidOffsetNumber;
LockBuffer(scan->xs_cbuf, BUFFER_LOCK_UNLOCK);
pgstat_count_heap_fetch(scan->indexRelation);
return heapTuple;
}
/*
* If we can't see it, maybe no one else can either. Check to see
* if the tuple is dead to all transactions. If we find that all
* the tuples in the HOT chain are dead, we'll signal the index AM
* to not return that TID on future indexscans.
*/
if (scan->xs_hot_dead &&
HeapTupleSatisfiesVacuum(heapTuple->t_data, RecentGlobalXmin,
scan->xs_cbuf) != HEAPTUPLE_DEAD)
scan->xs_hot_dead = false;
/*
* Check to see if HOT chain continues past this tuple; if so
* fetch the next offnum (we don't bother storing it into
* xs_next_hot, but must store xs_prev_xmax), and loop around.
*/
if (HeapTupleIsHotUpdated(heapTuple))
{
Assert(ItemPointerGetBlockNumber(ctid) ==
ItemPointerGetBlockNumber(tid));
offnum = ItemPointerGetOffsetNumber(ctid);
at_chain_start = false;
scan->xs_prev_xmax = HeapTupleHeaderGetXmax(heapTuple->t_data);
}
else
break; /* end of chain */
2007-11-15 22:14:46 +01:00
} /* loop over a single HOT chain */
LockBuffer(scan->xs_cbuf, BUFFER_LOCK_UNLOCK);
/* Loop around to ask index AM for another TID */
scan->xs_next_hot = InvalidOffsetNumber;
}
/* Release any held pin on a heap page */
if (BufferIsValid(scan->xs_cbuf))
{
ReleaseBuffer(scan->xs_cbuf);
scan->xs_cbuf = InvalidBuffer;
}
return NULL; /* failure exit */
}
/* ----------------
* index_getbitmap - get all tuples at once from an index scan
*
* Adds the TIDs of all heap tuples satisfying the scan keys to a bitmap.
* Since there's no interlock between the index scan and the eventual heap
* access, this is only safe to use with MVCC-based snapshots: the heap
* item slot could have been replaced by a newer tuple by the time we get
* to it.
*
* Returns the number of matching tuples found. (Note: this might be only
* approximate, so it should only be used for statistical purposes.)
* ----------------
*/
int64
index_getbitmap(IndexScanDesc scan, TIDBitmap *bitmap)
{
FmgrInfo *procedure;
int64 ntids;
Datum d;
SCAN_CHECKS;
GET_SCAN_PROCEDURE(amgetbitmap);
/* just make sure this is false... */
scan->kill_prior_tuple = false;
/*
* have the am's getbitmap proc do all the work.
*/
d = FunctionCall2(procedure,
PointerGetDatum(scan),
PointerGetDatum(bitmap));
ntids = DatumGetInt64(d);
/* If int8 is pass-by-ref, must free the result to avoid memory leak */
#ifndef USE_FLOAT8_BYVAL
pfree(DatumGetPointer(d));
#endif
pgstat_count_index_tuples(scan->indexRelation, ntids);
return ntids;
}
/* ----------------
* index_bulk_delete - do mass deletion of index entries
*
* callback routine tells whether a given main-heap tuple is
* to be deleted
2006-10-04 02:30:14 +02:00
*
* return value is an optional palloc'd struct of statistics
* ----------------
*/
IndexBulkDeleteResult *
index_bulk_delete(IndexVacuumInfo *info,
IndexBulkDeleteResult *stats,
IndexBulkDeleteCallback callback,
void *callback_state)
{
Relation indexRelation = info->index;
FmgrInfo *procedure;
IndexBulkDeleteResult *result;
RELATION_CHECKS;
GET_REL_PROCEDURE(ambulkdelete);
result = (IndexBulkDeleteResult *)
DatumGetPointer(FunctionCall4(procedure,
PointerGetDatum(info),
PointerGetDatum(stats),
PointerGetDatum((Pointer) callback),
PointerGetDatum(callback_state)));
return result;
}
/* ----------------
* index_vacuum_cleanup - do post-deletion cleanup of an index
*
* return value is an optional palloc'd struct of statistics
* ----------------
*/
IndexBulkDeleteResult *
index_vacuum_cleanup(IndexVacuumInfo *info,
IndexBulkDeleteResult *stats)
{
Relation indexRelation = info->index;
FmgrInfo *procedure;
IndexBulkDeleteResult *result;
RELATION_CHECKS;
GET_REL_PROCEDURE(amvacuumcleanup);
result = (IndexBulkDeleteResult *)
DatumGetPointer(FunctionCall2(procedure,
PointerGetDatum(info),
PointerGetDatum(stats)));
return result;
}
/* ----------------
* index_getprocid
*
* Index access methods typically require support routines that are
* not directly the implementation of any WHERE-clause query operator
* and so cannot be kept in pg_amop. Instead, such routines are kept
* in pg_amproc. These registered procedure OIDs are assigned numbers
* according to a convention established by the access method.
* The general index code doesn't know anything about the routines
* involved; it just builds an ordered list of them for
* each attribute on which an index is defined.
*
* As of Postgres 8.3, support routines within an operator family
* are further subdivided by the "left type" and "right type" of the
* query operator(s) that they support. The "default" functions for a
* particular indexed attribute are those with both types equal to
* the index opclass' opcintype (note that this is subtly different
* from the indexed attribute's own type: it may be a binary-compatible
2007-11-15 22:14:46 +01:00
* type instead). Only the default functions are stored in relcache
* entries --- access methods can use the syscache to look up non-default
* functions.
*
* This routine returns the requested default procedure OID for a
* particular indexed attribute.
* ----------------
*/
RegProcedure
index_getprocid(Relation irel,
AttrNumber attnum,
uint16 procnum)
{
RegProcedure *loc;
int nproc;
int procindex;
nproc = irel->rd_am->amsupport;
Assert(procnum > 0 && procnum <= (uint16) nproc);
procindex = (nproc * (attnum - 1)) + (procnum - 1);
loc = irel->rd_support;
Assert(loc != NULL);
return loc[procindex];
}
/* ----------------
* index_getprocinfo
*
* This routine allows index AMs to keep fmgr lookup info for
2007-11-15 22:14:46 +01:00
* support procs in the relcache. As above, only the "default"
* functions for any particular indexed attribute are cached.
*
* Note: the return value points into cached data that will be lost during
* any relcache rebuild! Therefore, either use the callinfo right away,
* or save it only after having acquired some type of lock on the index rel.
* ----------------
*/
FmgrInfo *
index_getprocinfo(Relation irel,
AttrNumber attnum,
uint16 procnum)
{
FmgrInfo *locinfo;
int nproc;
int procindex;
nproc = irel->rd_am->amsupport;
Assert(procnum > 0 && procnum <= (uint16) nproc);
procindex = (nproc * (attnum - 1)) + (procnum - 1);
locinfo = irel->rd_supportinfo;
Assert(locinfo != NULL);
locinfo += procindex;
/* Initialize the lookup info if first time through */
if (locinfo->fn_oid == InvalidOid)
{
RegProcedure *loc = irel->rd_support;
RegProcedure procId;
Assert(loc != NULL);
procId = loc[procindex];
/*
2005-10-15 04:49:52 +02:00
* Complain if function was not found during IndexSupportInitialize.
* This should not happen unless the system tables contain bogus
* entries for the index opclass. (If an AM wants to allow a support
* function to be optional, it can use index_getprocid.)
*/
if (!RegProcedureIsValid(procId))
elog(ERROR, "missing support function %d for attribute %d of index \"%s\"",
procnum, attnum, RelationGetRelationName(irel));
fmgr_info_cxt(procId, locinfo, irel->rd_indexcxt);
}
return locinfo;
}