postgresql/src/include/access/nbtree.h

274 lines
9.3 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* nbtree.h--
* header file for postgres btree access method implementation.
*
*
* Copyright (c) 1994, Regents of the University of California
*
* $Id: nbtree.h,v 1.5 1997/01/10 09:36:33 vadim Exp $
*
*-------------------------------------------------------------------------
*/
#ifndef NBTREE_H
#define NBTREE_H
#include <access/sdir.h>
#include <access/relscan.h>
#include <storage/itemid.h>
#include <storage/page.h>
#include <access/funcindex.h>
#include <access/itup.h>
#include <storage/buf.h>
#include <storage/itemptr.h>
/*
* BTPageOpaqueData -- At the end of every page, we store a pointer
* to both siblings in the tree. See Lehman and Yao's paper for more
* info. In addition, we need to know what sort of page this is
* (leaf or internal), and whether the page is available for reuse.
*
* Lehman and Yao's algorithm requires a ``high key'' on every page.
* The high key on a page is guaranteed to be greater than or equal
* to any key that appears on this page. Our insertion algorithm
* guarantees that we can use the initial least key on our right
* sibling as the high key. We allocate space for the line pointer
* to the high key in the opaque data at the end of the page.
*
* Rightmost pages in the tree have no high key.
*/
typedef struct BTPageOpaqueData {
BlockNumber btpo_prev;
BlockNumber btpo_next;
uint16 btpo_flags;
#define BTP_LEAF (1 << 0)
#define BTP_ROOT (1 << 1)
#define BTP_FREE (1 << 2)
#define BTP_META (1 << 3)
} BTPageOpaqueData;
typedef BTPageOpaqueData *BTPageOpaque;
/*
* ScanOpaqueData is used to remember which buffers we're currently
* examining in the scan. We keep these buffers locked and pinned
* and recorded in the opaque entry of the scan in order to avoid
* doing a ReadBuffer() for every tuple in the index. This avoids
* semop() calls, which are expensive.
*
* And it's used to remember actual scankey info (we need in it
* if some scankeys evaled at runtime.
*/
typedef struct BTScanOpaqueData {
Buffer btso_curbuf;
Buffer btso_mrkbuf;
uint16 qual_ok; /* 0 for quals like key == 1 && key > 2 */
uint16 numberOfKeys; /* number of key attributes */
ScanKey keyData; /* key descriptor */
} BTScanOpaqueData;
typedef BTScanOpaqueData *BTScanOpaque;
/*
* BTItems are what we store in the btree. Each item has an index
* tuple, including key and pointer values. In addition, we must
* guarantee that all tuples in the index are unique, in order to
* satisfy some assumptions in Lehman and Yao. The way that we do
* this is by generating a new OID for every insertion that we do in
* the tree. This adds eight bytes to the size of btree index
* tuples. Note that we do not use the OID as part of a composite
* key; the OID only serves as a unique identifier for a given index
* tuple (logical position within a page).
*/
typedef struct BTItemData {
Oid bti_oid;
int32 bti_dummy; /* padding to make bti_itup
* align at 8-byte boundary
*/
IndexTupleData bti_itup;
} BTItemData;
typedef BTItemData *BTItem;
/*
* BTStackData -- As we descend a tree, we push the (key, pointer)
* pairs from internal nodes onto a private stack. If we split a
* leaf, we use this stack to walk back up the tree and insert data
* into parent nodes (and possibly to split them, too). Lehman and
* Yao's update algorithm guarantees that under no circumstances can
* our private stack give us an irredeemably bad picture up the tree.
* Again, see the paper for details.
*/
typedef struct BTStackData {
BlockNumber bts_blkno;
OffsetNumber bts_offset;
BTItem bts_btitem;
struct BTStackData *bts_parent;
} BTStackData;
typedef BTStackData *BTStack;
/*
* We need to be able to tell the difference between read and write
* requests for pages, in order to do locking correctly.
*/
#define BT_READ 0
#define BT_WRITE 1
/*
* Similarly, the difference between insertion and non-insertion binary
* searches on a given page makes a difference when we're descending the
* tree.
*/
#define BT_INSERTION 0
#define BT_DESCENT 1
/*
* In general, the btree code tries to localize its knowledge about
* page layout to a couple of routines. However, we need a special
* value to indicate "no page number" in those places where we expect
* page numbers.
*/
#define P_NONE 0
#define P_LEFTMOST(opaque) ((opaque)->btpo_prev == P_NONE)
#define P_RIGHTMOST(opaque) ((opaque)->btpo_next == P_NONE)
#define P_HIKEY ((OffsetNumber) 1)
#define P_FIRSTKEY ((OffsetNumber) 2)
/*
* Strategy numbers -- ordering of these is <, <=, =, >=, >
*/
#define BTLessStrategyNumber 1
#define BTLessEqualStrategyNumber 2
#define BTEqualStrategyNumber 3
#define BTGreaterEqualStrategyNumber 4
#define BTGreaterStrategyNumber 5
#define BTMaxStrategyNumber 5
/*
* When a new operator class is declared, we require that the user
* supply us with an amproc procedure for determining whether, for
* two keys a and b, a < b, a = b, or a > b. This routine must
* return < 0, 0, > 0, respectively, in these three cases. Since we
* only have one such proc in amproc, it's number 1.
*/
#define BTORDER_PROC 1
/*
* prototypes for functions in nbtinsert.c
*/
extern InsertIndexResult _bt_doinsert(Relation rel, BTItem btitem,
bool index_is_unique, Relation heapRel);
/* default is to allow duplicates */
extern bool _bt_itemcmp(Relation rel, Size keysz, BTItem item1, BTItem item2,
StrategyNumber strat);
/*
* prototypes for functions in nbtpage.c
*/
extern void _bt_metapinit(Relation rel);
extern void _bt_checkmeta(Relation rel);
extern Buffer _bt_getroot(Relation rel, int access);
extern Buffer _bt_getbuf(Relation rel, BlockNumber blkno, int access);
extern void _bt_relbuf(Relation rel, Buffer buf, int access);
extern void _bt_wrtbuf(Relation rel, Buffer buf);
extern void _bt_wrtnorelbuf(Relation rel, Buffer buf);
extern void _bt_pageinit(Page page, Size size);
extern void _bt_metaproot(Relation rel, BlockNumber rootbknum);
extern Buffer _bt_getstackbuf(Relation rel, BTStack stack, int access);
extern void _bt_setpagelock(Relation rel, BlockNumber blkno, int access);
extern void _bt_unsetpagelock(Relation rel, BlockNumber blkno, int access);
extern void _bt_pagedel(Relation rel, ItemPointer tid);
/*
* prototypes for functions in nbtree.c
*/
extern bool BuildingBtree; /* in nbtree.c */
extern void btbuild(Relation heap, Relation index, int natts,
AttrNumber *attnum, IndexStrategy istrat, uint16 pcount,
Datum *params, FuncIndexInfo *finfo, PredInfo *predInfo);
extern InsertIndexResult btinsert(Relation rel, Datum *datum, char *nulls,
ItemPointer ht_ctid, Relation heapRel);
extern char *btgettuple(IndexScanDesc scan, ScanDirection dir);
extern char *btbeginscan(Relation rel, bool fromEnd, uint16 keysz,
ScanKey scankey);
extern void btrescan(IndexScanDesc scan, bool fromEnd, ScanKey scankey);
extern void btmovescan(IndexScanDesc scan, Datum v);
extern void btendscan(IndexScanDesc scan);
extern void btmarkpos(IndexScanDesc scan);
extern void btrestrpos(IndexScanDesc scan);
extern void btdelete(Relation rel, ItemPointer tid);
/*
* prototypes for functions in nbtscan.c
*/
extern void _bt_regscan(IndexScanDesc scan);
extern void _bt_dropscan(IndexScanDesc scan);
extern void _bt_adjscans(Relation rel, ItemPointer tid);
extern void _bt_scandel(IndexScanDesc scan, BlockNumber blkno,
OffsetNumber offno);
extern bool _bt_scantouched(IndexScanDesc scan, BlockNumber blkno,
OffsetNumber offno);
/*
* prototypes for functions in nbtsearch.c
*/
extern BTStack _bt_search(Relation rel, int keysz, ScanKey scankey,
Buffer *bufP);
extern Buffer _bt_moveright(Relation rel, Buffer buf, int keysz,
ScanKey scankey, int access);
extern bool _bt_skeycmp(Relation rel, Size keysz, ScanKey scankey,
Page page, ItemId itemid, StrategyNumber strat);
extern OffsetNumber _bt_binsrch(Relation rel, Buffer buf, int keysz,
ScanKey scankey, int srchtype);
extern RetrieveIndexResult _bt_next(IndexScanDesc scan, ScanDirection dir);
extern RetrieveIndexResult _bt_first(IndexScanDesc scan, ScanDirection dir);
extern bool _bt_step(IndexScanDesc scan, Buffer *bufP, ScanDirection dir);
extern int _bt_compare(Relation rel, TupleDesc itupdesc, Page page, int keysz, ScanKey scankey, OffsetNumber offnum);
/*
* prototypes for functions in nbtstrat.c
*/
extern StrategyNumber _bt_getstrat(Relation rel, AttrNumber attno,
RegProcedure proc);
extern bool _bt_invokestrat(Relation rel, AttrNumber attno,
StrategyNumber strat, Datum left, Datum right);
/*
* prototypes for functions in nbtutils.c
*/
extern ScanKey _bt_mkscankey(Relation rel, IndexTuple itup);
extern void _bt_freeskey(ScanKey skey);
extern void _bt_freestack(BTStack stack);
extern void _bt_orderkeys(Relation relation, uint16 *numberOfKeys,
ScanKey key, uint16 *qual_ok);
extern bool _bt_checkqual(IndexScanDesc scan, IndexTuple itup);
extern BTItem _bt_formitem(IndexTuple itup);
/*
* prototypes for functions in nbtsort.c
*/
extern void *_bt_spoolinit(Relation index, int ntapes);
extern void _bt_spooldestroy(void *spool);
extern void _bt_spool(Relation index, BTItem btitem, void *spool);
extern void _bt_upperbuild(Relation index, BlockNumber blk, int level);
extern void _bt_leafbuild(Relation index, void *spool);
#endif /* NBTREE_H */